Towards Reframing Probabilistic Monads

Nico Wittrock

Oberseminar at Chair for Theoretical Computer Science, University of Erlangen-Nuremberg,

30 July 2025

Table of contents

Thread One: Collaboration on Imprecise Probability Categorical Probability Imprecise Probability

Thread Two: Reframe Distribution Monads Fuzzy Monads Distribution Monads Thread One: Collaboration on Imprecise Probability
Categorical Probability
Imprecise Probability

Thread Two: Reframe Distribution Monads
Fuzzy Monads
Distribution Monads

Thread One: Collaboration

Joint Work with

- Laura Gonzales Bravo (PhD Student in Matrid),
- ► Paolo Perrone (Research Associate in Oxford),
- Tomáš Gonda (Postdoc in Innsbruck)

Categorical Probability

We use Markov categories [Fri20]. Recent research . . .

- unifies and generalizes different notions of probability (discrete, continuous, quantum, possibility, . . .)
- abstract, graphical characterizations for conditionals, independence, almost sure equality, Bayesian inversion, . . .
- generalizations of theorems (de Finetti, zero-one-laws, strong law of large numbers)

Markov Categories

symmetric monoidal cats (SMC)

 \bigcup

SMC with projections

 \bigcup

SMC with weak products

U

Markov cats

UI

cartesian monoidal cats

Markov Categories: Examples

Example (Probability Matrices)

- ▶ objects: $\mathbb{N}_{>0}$
- morphisms: probability matrices composition: matrix multiplication

Example (Giry's Approach to Probability [Gir82])

- objects: measurable spaces
- ▶ morphisms: measurable maps $X \to \{\text{prob. measures on } Y\}$ composition: Chapman–Kolmogorov equation

Distribution Monads

Lemma

- 1. Unital semiring $(R, +, 0, \cdot, 1)$ induces Set-monad D_R .
- 2. · commutative \Rightarrow Kleisli cat. KI_{D_R} is Markov cat.

Example (Markov Categories from Distribution Monads)

1. $R = \mathbb{R}_{\geq 0}$: D_R is distribution monad:

$$D_RX = \{\text{finitely supported distribution on } X\}$$

2. $R = \{0, 1\}$: D_R is a power-set monad:

$$D_R X \cong \{S \subseteq X \text{ finite, non-empty}\}\$$

Notions of Imprecise Probability

Imprecise distribution on set X could be ...

- a subset of DX
- a convex subset of DX
- ▶ pairs of lower and upper estimates $(I_x, u_x)_{x \in X}$

In particular: probability + non-determinism Application:

- Philosophy (ignorance, incomplete knowledge)
- Engineering (efficient software, unreliable sensors)

Lower and Upper Probability

Goal: Set-monad T with

- ► $TX \subseteq ([0,1] \times [0,1])^X$
- ▶ $(0,1)_{x \in X} \in TX(\text{for } |X| > 1)$
- ightharpoonup D \subseteq T is submonad:

$$\iota_X: \mathsf{D}X \to \mathsf{T}X$$

$$p \mapsto (p_x, p_x)_{x \in X}$$

Thread One: Collaboration on Imprecise Probability

Categorical Probability Imprecise Probability

Thread Two: Reframe Distribution Monads

Fuzzy Monads

Distribution Monads

Fuzzy Monads

Example (Fuzzy Powerset Monad)

$$F: \mathsf{Set} \to \mathsf{Set}$$

$$X \mapsto \{\mathsf{functions}\ X \to [0,1]\}$$

Lemma ([Man76])

Completely distributive lattice L induces fuzzy power set monad F_L .

Reframe Fuzzy Functors

Notation: CompDistLat is cat. of complete distributive lattices

 $\mathsf{CABA} \cong \mathsf{Set}^\mathsf{op}$ is cat. of complete atomic boolean algebras

Lemma

Functor F_L factorizes

 $\mathsf{Set} \xrightarrow{2^{-}} \mathsf{CABA}^{op} \subseteq \mathsf{CompDistLat}^{op} \xrightarrow{L^{-}} \mathsf{CompDistLat} \to \mathsf{Set}.$

Effect Algebras

Definition

An effect algebra is set E with

- ightharpoonup constants $0,1\in E$
- ▶ involution $\neg : E \rightarrow E$
- commutative, associative, partial addition

$$\oplus : E \times E \supseteq \perp \rightarrow E$$

s.th.

$$a \perp 1 \Leftrightarrow a = 0$$
 $a \oplus b = 1 \Leftrightarrow b = \neg a$

An effect algebra morphism is a function preserving $1, \perp, \oplus$.

Examples

[0,1], 2^X , Boolean algebras,

Reframe Finite Distribution Functors

Notation: FinSet is cat. of finite sets

 $FinBool \cong FinSet^{op}$ is cat. of finite boolean algebras

Lemma

Functor D factorizes

$$\mathsf{FinSet} \xrightarrow{2^{-}} \mathsf{FinBool}^{op} \subseteq \mathsf{EffAlg}^{op} \xrightarrow{[0,1]^{-}} \mathsf{EffAlg} \to \mathsf{Set}.$$

Summary

$$\begin{array}{c} \mathsf{D}_{\mathbb{R}_{\geq 0}} : \mathsf{FinSet} \xrightarrow{2^-} \mathsf{EffAlg^{op}} \xrightarrow{[0,1]^-} \mathsf{EffAlg} \to \mathsf{Set} \\ \mathsf{F}_{[0,1]} : \mathsf{Set} \xrightarrow{2^-} \mathsf{CompDistLat^{op}} \xrightarrow{[0,1]^-} \mathsf{CompDistLat} \to \mathsf{Set} \end{array}$$

- ? role of dualizing objects ?
- ? recover monad?
- ? recover (more types of) imprecise probability ?
- ? recover (notions of) quantum probability ?

Thank You.

- [Fri20] Tobias Fritz. "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics". In: Advances in Mathematics 370 (2020), p. 107239.
- [Gir82] Michèle Giry. "A categorical approach to probability theory". In: Categorical Aspects of Topology and Analysis. Ed. by B. Banaschewski. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 68–85.
- [Man76] Ernest G Manes. "Algebraic Theories". In: Graduate Texts in Mathematics (1976).