Trees

1/15

Trees in Coalgebra from Generalized Reachability

FAU Erlangen-Nürnberg, Germany Radbound University, the Netherlands

CALCO 2025, Glasgow, UK June 17, 2025

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 2/15 When is a pointed coalgebra a rooted tree? E.g. for the Set-functor $FX = 1 + X^2$, which of the following is a tree? æ В C D Ε a а Ь Ь S_1 Б С d d

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 2/15 When is a pointed coalgebra a rooted tree? E.g. for the Set-functor $FX = 1 + X^2$, which of the following is a tree? В С D Ε a а Ь Ь S_1 Б C d d So Ċ

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 2/15 When is a pointed coalgebra a rooted tree? E.g. for the Set-functor $FX = 1 + X^2$, which of the following is a tree? В D Ε a а Ь S_1 Ь Б С d d

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 2/15 When is a pointed coalgebra a rooted tree? E.g. for the Set-functor $FX = 1 + X^2$, which of the following is a tree? æ В Ε a а Ь S_1 Ь Ь а С d d C

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 2/15 When is a pointed coalgebra a rooted tree? E.g. for the Set-functor $FX = 1 + X^2$, which of the following is a tree? æ В E a а Ь S_1 Ь Ь ้ล่ С d dC

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	3 / 15

$$\mathbf{C} = \left(I \xrightarrow{i_C} C \xrightarrow{c} FC \right)$$

$$I := 1 \text{ in this talk}$$

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	3/15

$$\mathbf{C} = \left(\begin{array}{c} I \xrightarrow{i_{c}} C \xrightarrow{c} FC \end{array} \right)$$

$$I := 1 \text{ in this talk}$$

Definition: $Coalg_1(F)$

Definition: A coalgebra $\mathbf{C} \in \text{Coalg}_1(F)$ is called a (rooted) *tree*:

if every $h: \mathbf{B} \to \mathbf{C}$ is a split epimorphism in $\operatorname{Coalg}_1(F)$.

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	3 / 15

$$\mathbf{C} = \left(\begin{array}{c} I \xrightarrow{i_{c}} C \xrightarrow{c} FC \end{array} \right)$$

$$I := 1 \text{ in this talk}$$

Definition: $Coalg_1(F)$

Definition: A coalgebra $\mathbf{C} \in \text{Coalg}_1(F)$ is called a (rooted) *tree*:

if every $h: \mathbf{B} \to \mathbf{C}$ is a split epimorphism in $\operatorname{Coalg}_1(F)$.

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	3/15

$$\mathbf{C} = \left(\begin{array}{c} I \xrightarrow{i_{c}} C \xrightarrow{c} FC \end{array} \right)$$

$$I := 1 \text{ in this talk}$$

Definition: $Coalg_1(F)$

Definition: A coalgebra $C \in Coalg_1(F)$ is called a (rooted) *tree*:

if every $h: \mathbf{B} \to \mathbf{C}$ is a split epimorphism in $\operatorname{Coalg}_1(F)$.

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	3 / 15
D		inted) Coalge		Definition: is called a (0	$\mathbf{C} \in \operatorname{Coalg}_1(F)$	-)
	C = (/ –	$\stackrel{i_{C}}{\longrightarrow} C \stackrel{c}{\longrightarrow}$ $i_{i=1} \text{ in this talk}$	FC)	if every <i>h</i> : B		olit epimorphism	in
				$Coalg_1(F)$.			
D	efinition: Coa	$\lg_1(F)$		- · · ·	$id_{\mathcal{C}}$		

ic

C

∀h

Fh

ÍR

FB

Definition: **C** a tree \Leftrightarrow every $h: \mathbf{B} \to \mathbf{C}$ a split-epimorphism

Definition: **C** a tree \Leftrightarrow every $h: \mathbf{B} \to \mathbf{C}$ a split-epimorphism

Definition:

 \Leftrightarrow

every $h: \mathbf{B} \to \mathbf{C}$ a split-epimorphism

Definition: Tree unravelling of a pointed coalgebra **C** A morphism $h: \mathbf{T} \rightarrow \mathbf{C}$, where **T** is a tree.

Definition: **C** a tree \iff every $h: \mathbf{B} \rightarrow \mathbf{C}$ a split-epimorphism

Definition: Tree unravelling of a pointed coalgebra **C** A morphism $h: \mathbf{T} \rightarrow \mathbf{C}$, where **T** is a tree.

Proposition

- There is at most one tree unravelling of C, if $Coalg_1(F)$ has weak pullbacks.
- Every tree is reachable
- **T** is a tree \iff every $h: \mathbf{R} \rightarrow \mathbf{T}$ with **R** reachable is an isomorphism

Definition: **C** a tree \iff every $h: \mathbf{B} \rightarrow \mathbf{C}$ a split-epimorphism

A morphism $h: \mathbf{T} \to \mathbf{C}$, where **T** is a tree.

Proposition

- There is at most one tree unravelling of C, if $Coalg_1(F)$ has weak pullbacks.
- Every tree is reachable
- **T** is a tree \iff every $h: \mathbf{R} \to \mathbf{T}$ with **R** reachable is an isomorphism

Definition: **C** a tree \iff every $h: \mathbf{B} \rightarrow \mathbf{C}$ a split-epimorphism

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	6 / 15	
		Reachabilit	ty	Trees				
	"At leas	t one path to e	very state"	"Precisely	one path to	o every state"		

Intro	Trees	Reachability	Construction		Examples	Conclusions	Thorsten Wißma	ann 6 / 15
	Reachability					Trees		
	"At least	one path to e	very state"		"Precisely	one path to	every stat	te"
	Def.: C ∈	$\operatorname{Coalg}_1(F)$ is	reachable		Def.: C ∈	$Coalg_1(F)$	is a tree	
	Every mon	ic $h: \mathbf{D} \rightarrow \mathbf{C}$ is	an iso		Every h: D	\rightarrow C is an sp	olit epi	
	Adáme	ek, Milius, Mos	s, Sousa '13				-	
								THE

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	7 / 15
	Definition: ($(\mathcal{E}$, $\mathcal{M})$ -factoriza	ation system o	n a category C	·		
			-				
			f				
				\downarrow			
			$A \xrightarrow{e} \mathcal{I}m($	$(f) \xrightarrow{m} B$			

+ closure of \mathcal{E} , \mathcal{M} + diagonal lift

Examples

- $\mathcal{E} = \mathsf{Epi}, \ \mathcal{M} = \mathsf{Mono} \ \mathsf{in} \ \mathsf{Set}$
- $\mathcal{E} = \mathsf{Iso}, \ \mathcal{M} = \mathsf{Mor} \text{ in every category}$
- If $(\mathcal{E}, \mathcal{M})$ in $\mathcal{C}, F: \mathcal{C} \to \mathcal{C}, F[\mathcal{M}] \subseteq \mathcal{M} \Longrightarrow (\mathcal{E}, \mathcal{M})$ in $\mathsf{Coalg}_1(F)$ Wißmann '22

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	8 / 15
	Assumption: (${\mathcal E}$, ${\mathcal M}$)-factoriz	ation system on	${\mathcal C} \mbox{ and } {\it F}[{\mathcal M}$	$] \subseteq \mathcal{M}$		
	Definition: G	eneralized Rea	achability				
	• <i>M</i> -subco	algebra of C : <i>I</i>	$m: \mathbf{B} \mapsto \mathbf{C} \text{ in } \mathcal{N}$	in Coalg ₁ (F	.)		
						/\	

• **C** is \mathcal{M} -reachable: every $m: \mathbf{B} \rightarrow \mathbf{C}$ in \mathcal{M} is a split-epi in $\text{Coalg}_1(F)$

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	8 / 15
	A	C (A) for at a wind					
	Assumption: (\mathcal{E},\mathcal{M})-factoriza	ation system or	C and $F[\mathcal{M}]$	$\subseteq \mathcal{M}$		
	Definition: G	eneralized Rea	achability				
	Demition. O		icitability				
	 <i>M</i>-subco 	algebra of C : <i>i</i>	$m: \mathbf{B} \rightarrow \mathbf{C} \text{ in } \mathcal{N}$	t in Coalg $_1(F)$)		

• **C** is \mathcal{M} -reachable: every $m: \mathbf{B} \rightarrow \mathbf{C}$ in \mathcal{M} is a split-epi in $\text{Coalg}_1(F)$

Instance

For $\mathcal{M} \subseteq \mathsf{Mono}$

Earlier concepts of reachability

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	8 / 15
	Assumption: (${\mathcal E}$, ${\mathcal M}$)-factoriz	ation system on	$\mathcal{C} \text{ and } F[\mathcal{M}]$	$] \subseteq \mathcal{M}$		
	Definition: G	eneralized Rea	achability				
	• <i>M</i> -subco	algebra of C : <i>I</i>	$m: \mathbf{B} \rightarrow \mathbf{C}$ in \mathcal{M}	in $Coalg_1(F)$)		
	• C is <i>M</i> -r	eachable: ever	$m: \mathbf{B} \rightarrow \mathbf{C}$ in .	${\cal M}$ is a split-e	pi in Coalg $_1$	(<i>F</i>)	
		↓ Instance			↓ New Ins	tance	
F	or $\mathcal{M} \subseteq Monc$)		For $\mathcal{M} = \mathbb{N}$	lor		
E	arlier concepts	of reachability		$\mathcal M$ -reachabi	lity = being	a tree	

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	8 / 15
	Assumption: (${\mathcal E}$, ${\mathcal M}$)-factoriz	ation system on	\mathcal{C} and $F[\mathcal{M}]$	$] \subseteq \mathcal{M}$		
	Definition: G	eneralized Rea	achability				
	• <i>M</i> -subco	algebra of C :	$m: \mathbf{B} \mapsto \mathbf{C}$ in \mathcal{N}	t in Coalg₁(<i>F</i>)		
		0	$m: \mathbf{B} \mapsto \mathbf{C}$ in	010	<i>,</i>	(F)	
		↓ Instance			↓ New Ins	tance	
F	or $\mathcal{M} \subseteq Mono$)		For $\mathcal{M} = \mathbb{N}$	lor		
E	arlier concepts	of reachability		$\mathcal M$ -reachabi	lity = being	a tree	
		-					
	How to const	ruct the \mathcal{M} -r	eachable subco	palgebra of a	coalgebra?		

Get rid of assumption $\mathcal{M} \subseteq \mathsf{Mono}$ of Wißmann, Milius, Katsumata, Dubut '19

Intro Trees Reachability Construction Examples Conclusions Thorsten Wißmann 9/15 Definition for a functor $F: \mathcal{C} \to \mathcal{D}$ $p: P \to FR$ is F-precise if for all $m, n \in \mathcal{M}$ $P \xrightarrow{P} FR$ $g \downarrow \qquad \downarrow Fm$ $FC \xrightarrow{Fn} FD$ $P \xrightarrow{P} FR$ $g \downarrow \swarrow FC$ $FC \xrightarrow{P} FD$ $P \xrightarrow{P} FR$ $g \downarrow \swarrow FC$ $C \xrightarrow{n} D$

For $\mathcal{M} \subseteq$ Mono

Least bound (also called *base*) for the Blok '12

Intuition: $p: P \rightarrow FR$ is precise

iff every $y \in R$ is mentioned at least once in the definition of p

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	10 / 15
	Example for f P $fx_1 x_2x_3x_4 x_4$	$\begin{array}{c} R \\ \downarrow & y_1 \\ \downarrow & y_2 \\ \downarrow & y_2 \\ \downarrow & y_3 \\ \downarrow & y_3 \end{array} f: P \\ x_1 \\ x_2 \\ x_3 \\ y_3 \\ x_3 \\ \vdots \\ x_4 \\ x_5 \\ $	$\begin{array}{l} \mathcal{K} \times X \text{ and } \mathcal{M} \\ \rightarrow FR \\ \rightarrow \bot \\ \rightarrow (y_1, y_2) \\ \rightarrow (y_2, y_2) \\ \rightarrow \bot \end{array}$	= Mor			

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	10 / 15
	Example for F P $fx_1 x_2x_3x_4 x_4$	$\begin{array}{c} R \\ \downarrow & y_1 \\ \downarrow & y_2 \\ \downarrow & y_3 \\ \downarrow & y$	$\begin{array}{l} X \times X \text{ and } \mathcal{M} \\ \rightarrow FR \\ \mapsto \bot \\ \mapsto (y_1, y_2) \\ \mapsto (y_2, y_2) \\ \mapsto \bot \end{array}$	= Mor		$\begin{array}{c} R' \xrightarrow{h} R \\ y_1' \xrightarrow{h} y_1 \\ y_2' \xrightarrow{y_3'} y_2' \\ y_3' \xrightarrow{y_3'} y_3' \end{array}$	

Example for $FX = \{\bot\} + X \times X$ and $\mathcal{M} = Mor$

 $P \xrightarrow{p} FR'$

 $\sqrt{\frac{1}{\sqrt{Fh}}}$

FR

Definition: F admits precise factorizations for \mathcal{M} For every $f: P \to FR$, there is a precise $p: P \to FR'$ with $h: R' \to R$ in \mathcal{M} such that $f = Fh \cdot p$.

Definition: F admits precise factorizations for \mathcal{M} For every $f: P \to FR$, there is a precise $p: P \to FR'$ with $h: R' \to R$ in \mathcal{M} such that $f = Fh \cdot p$. $\begin{array}{ccc} P \xrightarrow{p} FR' \\ & \searrow & \downarrow^{Fh} \\ & & FR \end{array}$

Examples for M = MorPolynomials, Right-Adjoints, Analytic Functors

Definition: F admits precise factorizations for \mathcal{M} For every $f: P \to FR$, there is a precise $p: P \to FR'$ with $h: R' \to R$ in \mathcal{M} such that $f = Fh \cdot p$.

For $\mathcal{M} \subseteq$ Mono \Leftrightarrow *F* preserves infinite \mathcal{M} -intersections Examples for M = MorPolynomials, Right-Adjoints, Analytic Functors

 $P \xrightarrow{p} FR'$

, ¦Fh

FR

Theorem

The image $\mathcal{I}m([m_k])$ of the coalgebra morphism $[m_k]_k: \coprod_{k \in \mathbb{N}} T_k \to C$ is a \mathcal{M} -reachable subcoalgebra of **C**.

Theorem

The image $\mathcal{I}m([m_k])$ of the coalgebra morphism $[m_k]_k \colon \coprod_{k \in \mathbb{N}} T_k \to C$ is a \mathcal{M} -reachable subcoalgebra of **C**.

Instance for $\mathcal{M} \subseteq$ Mono $\mathcal{I}m =$ Union of reachable states

Theorem

The image $\mathcal{I}m([m_k])$ of the coalgebra morphism $[m_k]_k \colon \prod_{k \in \mathbb{N}} T_k \to C$ is a \mathcal{M} -reachable subcoalgebra of **C**.

Instance for $\mathcal{M} \subseteq \mathsf{Mono}$ $\mathcal{T}m =$ Union of reachable states

Instance for $\mathcal{M} = Mor$. $\mathcal{E} = Iso$: $\mathcal{I}m = \prod_{k} T_{k}$ is the tree-unravelling of **C**

Adamek & Porst 2004 for polynomial functors $F: Set \rightarrow Set$ Every element $e \in \nu F$ in the final (point-free) *F*-coalgebra induces a tree coalgebra.

Adamek & Porst 2004 for polynomial functors $F: Set \rightarrow Set$ Every element $e \in \nu F$ in the final (point-free) *F*-coalgebra induces a tree coalgebra.

🕆 Instance

Our Construction for final coalgebras in Set:

For every element $e \in \nu F$, consider the pointed coalgebra

$$1 \xrightarrow{e} \nu F \xrightarrow{f} F(\nu F)$$

Its tree unravelling = Adamek & Porst's tree coalgebra.

- Trees = For every state q, there is precisely one $w \in A^*$ with $q_0 \xrightarrow{w} q$.
- Tree unravelling of an automaton = Words for which the automaton is defined.

Partial automata $FX = O \times (A \rightarrow X)$

- Trees = For every state q, there is precisely one $w \in A^*$ with $q_0 \xrightarrow{w} q$.
- Tree unravelling of an automaton = Words for which the automaton is defined.

Rooted Multigraphs: Coalgebras for the finite multiset-functor $\mathcal{B}X = \mathbb{N}^{(X)}$

- Trees = For every node precisely one path from the root
- Tree unravelling = Coalgebra of paths

Partial automata $FX = O \times (A \rightarrow X)$

- Trees = For every state q, there is precisely one $w \in A^*$ with $q_0 \xrightarrow{w} q$.
- Tree unravelling of an automaton = Words for which the automaton is defined.

Rooted Multigraphs: Coalgebras for the finite multiset-functor $\mathcal{B}X = \mathbb{N}^{(X)}$

- Trees = For every node precisely one path from the root
- Tree unravelling = Coalgebra of paths

Partial automata $FX = O \times (A \rightarrow X)$

- Trees = For every state q, there is precisely one $w \in A^*$ with $q_0 \xrightarrow{w} q$.
- Tree unravelling of an automaton = Words for which the automaton is defined.

Rooted Multigraphs: Coalgebras for the finite multiset-functor $\mathcal{B}X = \mathbb{N}^{(X)}$

- Trees = For every node precisely one path from the root
- Tree unravelling = Coalgebra of paths

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	14 / 15
Powers	set						

No precise maps for powerset \mathcal{P} : Set \rightarrow Set

$$p: P \to \mathcal{P}R$$
 is \mathcal{P} -precise $\iff R = \emptyset$

.

$\mathcal{P} ext{-}\mathsf{Coalgebras}$

 $\textcircled{\sc only}$ Only one tree: the $\mathcal P\text{-}coalgebra$ of one state and no transitions.

$$d(p) = \{q, q\} \quad d(q) = \emptyset$$
$$e(p) = \{q\} \quad e(q) = \emptyset$$

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	15 / 15
Conclu	sions						

- Being a tree = instance of reachability
 - \Rightarrow Leveraging reachability to arbitrary (\mathcal{E} , \mathcal{M})-factorizations
- Universal property of tree unravellings
 - \Rightarrow Unique up to iso \neq Unique up to *unique* iso
- Construction & existence of the tree unravelling and $\mathcal M\text{-reachability}$
 - \Rightarrow Subsumes earlier explicit definitions for polynomial functors by Adamek & Porst
 - \Rightarrow Also works for all analytic Set-functors ...
 - \Rightarrow ... e.g. the finite multiset functor

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	∞ / 15

Adámek, Jirí, Stefan Milius, Lawrence S. Moss, Lurdes Sousa. "Well-Pointed Coalgebras". Log. Methods Comput. Sci. 9.3 (2013). DOI: 10.2168/LMCS-9(3:2)2013. URL:

https://doi.org/10.2168/LMCS-9(3:2)2013.

- Adámek, Jirí, Hans-E. Porst. "On tree coalgebras and coalgebra presentations". Theor. Comput. Sci. 311.1-3 (2004), pp. 257–283. DOI: 10.1016/S0304-3975(03)00378-5. URL: https://doi.org/10.1016/S0304-3975(03)00378-5.
- Barlocco, Simone, Clemens Kupke, Jurriaan Rot. "Coalgebra Learning via Duality". *Foundations of Software Science and Computation Structures (FoSSaCS)*. Springer, 2019, pp. 62–79. ISBN: 978-3-030-17127-8. DOI: 10.1007/978-3-030-17127-8_4.
- Blok, Alwin. "Interaction, observation and denotation". MA thesis. Universiteit van Amsterdam, 2012.

Intro	Trees	Reachability	Construction	Examples	Conclusions	Thorsten Wißmann	∞ / 15

- Wißmann, Thorsten. "Minimality Notions via Factorization Systems and Examples". Logical Methods in Computer Science Volume 18, Issue 3 (Sept. 2022). DOI: 10.46298/lmcs-18(3:31)2022.
- Wißmann, Thorsten, Jérémy Dubut, Shin-ya Katsumata, Ichiro Hasuo. "Path Category for Free". Proc. 22nd International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2019). Ed. by Mikołaj Bojańczyk, Alex Simpson. Vol. 11425. LNCS. Cham: Springer International Publishing, Apr. 2019, pp. 523–540. ISBN: 978-3-030-17127-8. DOI: 10.1007/978-3-030-17127-8_30.
- Wißmann, Thorsten, Stefan Milius, Shin-ya Katsumata, Jérémy Dubut. "A Coalgebraic View on Reachability". Commentationes Mathematicae Universitatis Carolinae 60:4 (Dec. 2019), pp. 605–638. DOI: 10.14712/1213-7243.2019.026.