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Motivation

We can use automata with name binding to generate data languages over an
infinite alphabet A.

s0(a) s1(a, b) s2()

s3()

(a) (a, c) ()

b b

a

Input: cc

X
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Motivation

We want to describe the trace semantics of such automata in a more general
setting using coalgebra.

Goal: Describe the semantics of nominal automata with name allocation as a
graded semantics, which provide a generic framework for describing trace
semantics coalgebraically.
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Preliminaries – Nominal Sets [1]

Intuitively, nominal sets are sets where the elements depend on a finite set of
atoms, their support. We write supp(x) for the smallest support of x.

Every nominal set X comes equipped with a permutation action
(·) : Perm(A)× → X to allow renaming of atoms.

Example (Nominal Sets)

• The set of lambda terms: supp(λx. x y) = {x, y}
• The set of lambda terms modulo alpha-equivalence: supp([λx. x y]α) = {y}
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Preliminaries – Nominal Sets [1]

Definition (Category of Nominal Sets)
Nominal sets form a category Nom:

• Objects: Nominal sets
• Morphisms: Equivariant functions f : X → Y with f(π · x) = π · f(x)

Equivariant functions preserve supports.

Definition (Name Abstraction Functor)
We can define alpha equivalence through a functor [A](−) : Nom → Nom, where
[A]X contains name abstractions 〈a〉x

equivalence class of (a, x) in (A×X)/∼α

.
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Preliminaries – Nominal Automata with Name Allocation [2]

Definition (Bar Strings)

• Extended Bar Alphabet: Ā = A ∪ { a : a ∈ A}
• Bar Strings: Words over Ā
• Alpha-Equivalence on Bar Strings: Equivalence ≡α generated by

w av ≡α w bu if 〈a〉v = 〈b〉u in [A]Ā?.

Example

a aab ≡α a ccb 6≡α a bbb
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Preliminaries – Nominal Automata with Name Allocation [2]

Definition (RNNA [2])
A regular nondeterministic nominal automaton (RNNA) is a tuple (A,→, s, F )

consisting of

• an orbit-finite set Q of states,
• an equivariant subset→ ⊆ Q× Ā×Q called the transition relation,
• an initial state s ∈ Q,
• an equivariant subset F ⊆ Q of final states,

such that

1. The relation→ is α-invariant

if s a−→ q and 〈a〉q = 〈a′〉q′ , then s
a′

−−→ q′

.
2. The relation→ is finitely branching up to α-equivalence.

{(a, q) : s a−→ q} and {〈a〉q : s
a−→ q} are finite for s ∈ Q
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Preliminaries – Nominal Automata with Name Allocation [2]

s0 s1

(b c)s1

. . .

. . .

s2

s3

b

c

b

a

Literal Language: L0(s0) = { bb, ba, cc, ca, dd, da, . . .}
 Bar Language: Lα(s0) = {[ bb]α, [ ba]α}

 Local Freshness Semantics: D(Lα(s0)) = {aa, bb, ba, cc, ca, dd, da, . . .} 9



Preliminaries – Nominal Automata with Name Allocation [2]

s0 s1

(b c)s1

. . .

. . .

s2

s3

b

c

b

a

Literal Language Pretraces: L̂0(s0) = { bbs2, bas3, ccs2, cas3

poststate

, . . .}
 Bar Language Pretraces: L̂α(s0) = {[ bbs2]α̂, [ bas3]α̂}

 Local Freshness Semantics: D̂(L̂α(s0)) = {aas2, bbs2, bas3, ccs2, cas3, . . .} 9



Preliminaries – Nominal Automata with Name Allocation

Going forward, we will assume that every state is final.

Thus, we can consider an RNNA as an orbit-finite coalgebra γ : X → H(X) for the
functor H : Nom → Nom with

H(X) = Pf(A×X)

free transitions

× Pf([A]X)

bound transitions

.
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Preliminaries – Graded Semantics [3]

Definition (Graded Monad)
A graded monad on a category C is a tuple ((Mn)n∈N0 , η, (µ

nk)n,k∈N0) containing

• for every n ∈ N0, an endofunctorMn : C → C,
• a unit transformation η : Id → M0,
• for every n, k ∈ N0, a multiplication transformation µnk : MnMk → Mn+k ,

satisfying

1. the unit law: ∀n ∈ N0. µ
0,n · ηMn = idMn = µn,0 ·Mnη,

2. the associative law: ∀n, k,m ∈ N0. µ
n,k+m ·Mnµ

k,m = µn+k,m · µn,kMm.
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Preliminaries – Graded Semantics [3]

Definition (Graded Semantics)
A graded semantics for G-coalgebras consists of

• a graded monad ((Mn), η, (µ
nk)),

• a natural transformation α : G → M1.

Given a G-coalgebra γ : X → G(X), the α-pretrace sequence is then given by

γ(0) = (X
ηX−−→ M0(X)),

γ(n+1) = (X
αX◦γ−−−→ M1(X)

M1(γ(n))−−−−−→ M1(Mn(X))
µ1n
X−−→ Mn+1(X)),

and the α-trace sequence is defined as (Mn(!) ◦ γ(n) : X → Mn(1))n∈N0 .
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Preliminaries – Graded Semantics [3]

Example (Graded Semantics [4])
We consider labelled transition systems as coalgebras for G(X) = P(A×X).

The graded semantics withMn(X) = P(An ×X) and α = id describes the
trace-semantics of LTS.

s0 s1 s2

s3

a b

c

γ(2)(s0) = µ1,1({(a, γ(1)(s1)})
= µ1,1({(a, µ1,0({(b, γ(0)(s2)), (c, γ(0)(s3))}))})
= µ1,1({(a, µ1,0({(b, {s2}), (c, {s3})}))})
= µ1,1({(a, {(b, s2), (c, s3)}))})
= {(ab, s2), (ac

trace

, s3

poststate

)}

(Mn(!) ◦ γ(2))(s0) ∼= {ab, ac}
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Preliminaries – Graded Semantics [3]

Fact (Graded Theories on Set)
On Set, every graded monad corresponds to a graded theory

algebraic theory where every operation has a depth and axioms have uniform depth

.

The graded theory (Σ, E, d) induces a graded monad ((Mn), η, (µ
nk)), where

• Mn(X) are depth-n terms over X modulo derivable equality,
• η converts variables into terms,
• µnk collapses layered terms, ”removing” the inner equivalence classes.

This motivates a similar construction on Nom.
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Goal

Given an RNNA

s0 s1 s2

s3

b b

a

we want to describe the pretraces as terms:

b(bs2 + as3)  bbs2 + bas3.

We will first define these terms and theories over them in a more general setting.
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Terms

Definition (Terms)
Given a nominal set X and a graded signature Σ = (Σ0

pure operations

,Σf

free operations

,Σb

bound operations

), define a
nominal Σ-term as

t ::= x | f(t1, . . . , tp) | a.g(t1, . . . , tq) | νa.h(t1, . . . , tr),

ranging over all x ∈ X , a ∈ A, f/p ∈ Σ0, g/q ∈ Σf , and h/r ∈ Σb.

Example (Pretrace Terms)
To describe pretraces of RNNA, we will use the signature Σ with
Σ0 = {+/2,⊥/0}, Σf = {pre/1}, and Σb = {abs/1}, where we will write + in infix
notation and

at := a.pre(t) and at := νa.abs(t).
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Terms

Definition (Uniform Depth)
A term t over X has (uniform) depth n ∈ N0 iff

• t = x ∈ X and n = 0.
• t = f(t1, . . . , tp), where t1, . . . , tp have uniform depth n′, and n = n′ + d(f).
• Similarly for t = a.f(t1, . . . , tp) and t = νa.f(t1, . . . , tp).

Example (Pretrace Terms)
For pretraces of RNNA, d(+) = d(⊥) = 0 and d(pre) = d(abs) = 1.

The depth of a term is exactly the length of the pretraces. For example, the term
b(bs2 + as3) has uniform depth 2.

If c is a constant, then it has uniform depth n ∈ N0 for all n ≥ d(c).

We refer to the set of Σ-terms over X with uniform depth n as TermΣ,n(X).
18



Derivations

Definition (Graded Theories and Derivable Equality)

• Equations: pairs of terms t, u ∈ TermΣ,n(X) written as X `m t = u.
• Graded Theory T = (Σ, E): graded signature and class E of axiom equations.
• Derivable Equality: Congruence with additional rules

(axr=s)
X `l πσ(x) = σ(πx) ∀π ∈ Perm(A), x ∈ Y

X `m+l (τr)σ = (τs)σ

(permf )
a#ui X `m ti = (a b)ui ∀i ∈ {1, . . . , p}
X `m+d(f) νa.f(t1, . . . , tp) = νb.f(u1, . . . , up)

(a 6= b)

ranging over Y `m r = s ∈ E, τ ∈ Perm(A), σ : Y → TermΣ,l(X), f/p ∈ Σb.
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Semantics

Definition (Nominal Algebra)
A nominal (Σ, n)-algebra A consists of

• a family (Ai)0≤i≤n of nominal sets, called carriers,
• for f/p ∈ Σ0, a family (fA,m : Ap

m → Am+d(f)) of equivariant functions,
• for f/p ∈ Σf , a family (fA,m : A×Ap

m → Am+d(f)) of equivariant functions,
• for f/p ∈ Σb, a family (fA,m : [A]Ap

m → Am+d(f)) of equivariant functions.

A morphism between (Σ, n)-algebras A,B is a family (hi)0≤i≤n of equivariant
functions hi : Ai → Bi such that, for f/p ∈ Σ0 and x1, . . . , xp ∈ Am,

hm+d(f)(fA,m(x1, . . . , xp)) = fB,m(hm(x1), . . . , hm(xp)),

and similarly for Σf and Σb.
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Semantics

Definition (Evaluation)
Given a nominal (Σ, n)-algebra A and an environment ι : X → Ak , the
evaluation map J·Kιm : TermΣ,m(X) → Ak+m of depth-m terms is defined as

JxKι0 = ι(x),

Jf(t1, . . . , tp)Kιm+d(f) = fA,k+m(Jt1Kιm, . . . , JtpKιm),

Ja.f(t1, . . . , tp)Kιm+d(f) = fA,k+m(a, Jt1Kιm, . . . , JtpKιm),

Jνa.f(t1, . . . , tp)Kιm+d(f) = fA,k+m(〈a〉(Jt1Kιm, . . . , JtpKιm)).
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Semantics

Definition (Nominal Model)
A (T, n)-model is a (Σ, n)-algebra such that, for every axiom X `m t = u and
every environment ι, JtKιm = JuKιm.

Theorem (Soundness)
Let A be a (T, n)-model and t, u ∈ TermΣ,m(X) with m ≤ n.

If X `m t = u is derivable, then JtKιm = JuKιm for every environment ι.
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Free Models

Fix a graded theory T = (Σ, E) and a depth n ≤ ω.

We will refer to derivable equality as the binary relation ∼ between terms.

Since derivable equality is an equivalence, we can partition TermΣ,m(X) into
equivalence classes [t]m ∈ TermΣ,m(X)/∼.

Definition (Free Model)
The (T, n)-algebra F (X) is defined as follows:

(F (X))i = TermΣ,i(X)/∼,

fF (X),m([t1]m, . . . , [tp]m) = [f(t1, . . . , tp)]m+d(f) for f/p ∈ Σ0,

fF (X),m(a, [t1]m, . . . , [tp]m) = [a.f(t1, . . . , tp)]m+d(f) for f/p ∈ Σf ,

fF (X),m(〈a〉([t1]m, . . . , [tp]m)) = [νa.f(t1, . . . , tp)]m+d(f) for f/p ∈ Σb.
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Free Models

The class of (T, n)-models forms a category Alg(T, n).

Definition (Forgetful Functor)
We define the forgetful functor G : Alg(T, n) → Nom with

G(A) = A0

G(h) = h0.

Theorem
The definition of F (X) yields a left adjoint functor F to the forgetful functor G.
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Free Models

Corollary
Every graded theory T = (Σ, E) induces a graded monad ((Mn), η, (µ

nk)) with

Mn : Nom → Nom,

Mn(X) = TermΣ,n(X)/∼,

Mn(f)([t]n) = [tσf ]n,

ηX : X → M0(X),

ηX(x) = [x]0,

µnk
X : Mn(Mk(X)) → Mn+k(X),

µnk
X ([t]n) = JtKidn ,

with the substitution σf = (X
f−→ Y ↪−→ TermΣ,0(Y )). 25
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A Graded Theory for Local Freshness Semantics

We can now define a graded theory over pretrace terms with the axioms

X `0 x+ y = y + x,

X `0 (x+ y) + z = x+ (y + z),

X `0 x+ x = x,

X `0 x+⊥ = x,

X `1 a(x+ y) = ax+ ay,

X `1 a(x+ y) = ax+ ay,

X `1 a⊥ = ⊥,

X `1 a⊥ = ⊥,

X `1 ax = ax+ ax,

ranging over all a ∈ A, all nominal sets X , and all elements x, y, z ∈ X .
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A Model For Local Freshness Semantics

The (Σ, n)-model F ′(X) is defined as follows:

(F ′(X))m = Pfs(Am ×X),

preF ′(X),m(a, L) = {aw : w ∈ L},
absF ′(X),m(〈a〉L) = {bv : 〈a〉L = 〈a′〉L′, w′ ∈ L′, 〈a′〉w′ = 〈b〉v},
+F ′(X),m(L1, L2) = L1 ∪ L2,

⊥F ′(X),m = ∅.

We also define the interpretation as the morphism Φ : F (X) → F ′(X) with

Φm([t]m) = JtKη
′
X

m ,

with the equivariant environment η′X : X → (F ′(X))0, x 7→ {x}.
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A Model For Local Freshness Semantics

X `1 a(x+ y) = ax+ ay

s0 s1 s2

s3

b b

a

b(bs2 + as3)

absF ′(X),1(〈b〉{bs2, as3})

s0 s1

s′1

s2

s3

b

b

b

a

bbs2 + bas3

absF ′(X),1(〈b〉{bs2}) ∪ absF ′(X),1(〈b〉{as3})
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A Model For Local Freshness Semantics

For this case, we require absF ′(X),m to be monotone, in particular:

absF ′(X),1(〈b〉{bs2, as3}) ⊇ absF ′(X),1(〈b〉{bs2})

If we assume s2 6= s3, a 6= b, and a#s2, then 〈b〉{bs2} = 〈a〉{(a b)bs2)}.

=⇒ (a b)bs2 ∈ absF ′(X),1(〈b〉{bs2})

However, on the left-hand side, we have 〈b〉{bs2, as3} 6= 〈a〉(a b){bs2, as3}.

We can instead pick a c ∈ A \ supp({bs2}, {bs2, as3}).

=⇒ bs2 = (a c)bs2 and 〈b〉{bs2, as3} = 〈c〉{(b c)(a c)bs2, (b c)as3}.

Since a, b, c are pairwise distinct, (a c)(a b) = (b c)(a c).

=⇒ 〈c〉(b c)(a c)bs2 = 〈c〉(a c)(a b)bs2 = 〈a〉(a b)bs2.
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Interpretation under Local Freshness Semantics

We can identify the set of single pretraces Ām ×X as a fragment of Σ-terms.

Theorem
If k ∈ N0 and w1, . . . , wk ∈ Ām ×X are pretraces, then

Φm

([∑k
i=1wi

]
m

)
= D̂ ({[wi]α̂ : i ∈ {1, . . . , k}}) .

Theorem
Let t ∈ TermΣ,m(X) be a term and w ∈ Ām ×X a pretrace.

If D̂m({[w]α̂}) ⊆ Φm([t]m), then [t]m = [t+ w]m.

Corollary
The function Φm : TermΣ,m(X)/∼ → Pfs(Am ×X) is injective for every m ∈ N0.

31



Outline

1. Motivation

2. Preliminaries

3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

32



A Graded Semantics for RNNAs

Recall that we can view RNNAs as orbit-finite coalgebras for the functor
H : Nom → Nom given by

H(X) = Pf(A×X)× Pf([A]X).

We define a graded semantics for RNNA using α : H → M1 with

αX(Sf , Sb) =

 ∑
(a,x)∈Sf

ax+
∑

(a,x)∈uX [Sb]

ax


1

,

where uX : [A]X → A×X is any splitting of [A]X .
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Capturing Pretraces

Theorem
Let s ∈ Q be a state in an RNNA defined by γ : Q → H(Q). Then

γ(n)(s) =

 ∑
wq∈vn

[
L̂
(n)
α (s)

]wq

n

,

where
L̂(n)
α (s) = {w ∈ L̂α(s) : |w| = n},

and vn : (Ān ×Q)/≡̂α → Ān ×Q is any splitting.
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Capturing Pretraces

Example

s0 s1 s2

s3

b b

a

γ(2)(s0) = µ1,1
X ([ b(γ(1)(s1))]1)

= µ1,1
X ([ b(µ1,0

X ([b(γ(0)(s2)) + a(γ(0)(s3))]1)]1)

= µ1,1
X ([ b(µ1,0

X ([b[s2]0 + a[s3]0]1)]1)

= µ1,1
X ([ b[bs2 + as3]1)

= [ b(bs2 + as3)]2 = [ bbs2 + bas3]2
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Capturing Traces

Theorem
Let s ∈ Q be a state in an RNNA defined by γ : Q → H(Q) and n ∈ N0. Then

Φn(Mn(!)(γ
(n)(s))) ∼= {w ∈ D(Lα(s)) : |w| = n}.

Corollary
Let q ∈ Q, s ∈ S be states in RNNAs defined by γ : Q → H(Q) and δ : S → H(S).

The states q and s have the same α-trace sequence iff D(Lα(q)) = D(Lα(s)).
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Conclusion and Future Work

We have:

• introduced a concept of graded theories over Nom inducing graded monads.
• defined a graded theory capturing local freshness semantics of pretraces.
• defined graded semantics capturing the local freshness semantics of RNNAs.

Future Work:

• It remains to be shown that the induced graded monad is depth-1 if all
operations and axioms in the theory are at most depth-1.

• It may be possible to replace the infinitary (axr=s) rule with a finitary one.
• Turn F ′(X) into a functor (possibly using Pfs(Am × Frs(X)), not Pfs(Am ×X)).
• Give an alternative description of the graded monad based on F ′(X).
• Extend the graded semantics to work on ufs sets of transitions.
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