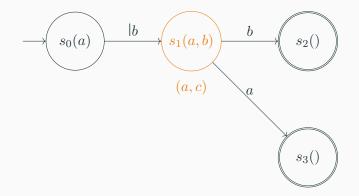
A Graded Monad for the Local Freshness Semantics of Nominal Automata with Name Allocation

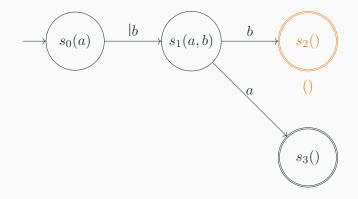
Bachelor's Thesis

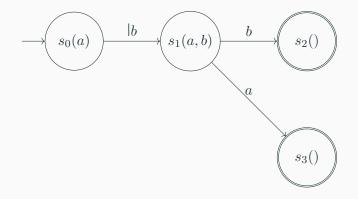
Hannes Schulze June 17, 2025



Input: cc







We want to describe the trace semantics of such automata in a more general setting using coalgebra.

Goal: Describe the semantics of nominal automata with name allocation as a **graded semantics**, which provide a generic framework for describing trace semantics coalgebraically.

Outline

1. Motivation

2. Preliminaries

3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

Intuitively, nominal sets are sets where the elements *depend on* a finite set of atoms, their **support**. We write supp(x) for the smallest support of x.

Every nominal set X comes equipped with a permutation action $(\cdot): \operatorname{Perm}(\mathbb{A}) \times \to X$ to allow renaming of atoms.

Example (Nominal Sets)

- The set of lambda terms: $supp(\lambda x. x y) = \{x, y\}$
- The set of lambda terms modulo alpha-equivalence: $supp([\lambda x. x y]_{\alpha}) = \{y\}$

Definition (Category of Nominal Sets)

Nominal sets form a category Nom:

- Objects: Nominal sets
- Morphisms: Equivariant functions $f: X \to Y$ with $f(\pi \cdot x) = \pi \cdot f(x)$

Equivariant functions preserve supports.

Definition (Name Abstraction Functor)

We can define alpha equivalence through a functor $[\mathbb{A}](-)$: Nom \rightarrow Nom, where $[\mathbb{A}]X$ contains name abstractions $\langle a \rangle x$.

equivalence class of (a, x) in $(\mathbb{A} \times X)/\sim_{\alpha}$

Definition (Bar Strings)

- Extended Bar Alphabet: $\overline{\mathbb{A}} = \mathbb{A} \cup \{ | a : a \in \mathbb{A} \}$
- \cdot Bar Strings: Words over $\bar{\mathbb{A}}$
- Alpha-Equivalence on Bar Strings: Equivalence \equiv_{α} generated by

$$w|av \equiv_{\alpha} w|bu$$
 if $\langle a \rangle v = \langle b \rangle u$ in $[\mathbb{A}]\overline{\mathbb{A}}^{\star}$.

Example

$$a|aab \equiv_{\alpha} a|ccb \not\equiv_{\alpha} a|bbb$$

Definition (RNNA [2])

A regular nondeterministic nominal automaton (RNNA) is a tuple (A, \rightarrow, s, F) consisting of

- \cdot an orbit-finite set Q of **states**,
- an equivariant subset $\rightarrow \subseteq Q \times \overline{\mathbb{A}} \times Q$ called the **transition relation**,
- \cdot an initial state $s \in Q$,
- $\cdot \,$ an equivariant subset $F \subseteq Q$ of final states,

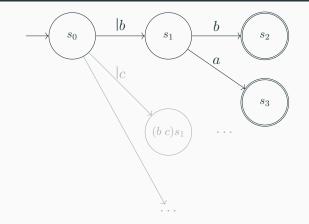
such that

- 1. The relation \rightarrow is α -invariant.
- 2. The relation \rightarrow is finitely branching up to α -equivalence.

 $\{(a,q):s\xrightarrow{a}q\} \text{ and } \{\langle a\rangle q:s\xrightarrow{\mathsf{la}}q\} \text{ are finite for }s\in Q$

Preliminaries - Nominal Automata with Name Allocation [2]

 $\sim \rightarrow$



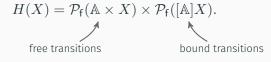
Literal Language: $L_0(s_0) = \{|bb, |ba, |cc, |ca, |dd, |da, ...\}$ \rightsquigarrow Bar Language: $L_{\alpha}(s_0) = \{[|bb]_{\alpha}, [|ba]_{\alpha}\}$ Local Freshness Semantics: $D(L_{\alpha}(s_0)) = \{aa, bb, ba, cc, ca, dd, da, ...\}$

Preliminaries - Nominal Automata with Name Allocation [2]

 $\sim \rightarrow$

|b|b s_0 s_1 s_2 a s_3 poststate Literal Language Pretraces: $\hat{L}_0(s_0) = \{|bbs_2, |bas_3, |ccs_2, |cas_3, ...\}$ Bar Language Pretraces: $\hat{L}_{\alpha}(s_0) = \{ [|bbs_2]_{\hat{\alpha}}, [|bas_3]_{\hat{\alpha}} \}$ $\sim \rightarrow$ Local Freshness Semantics: $\hat{D}(\hat{L}_{\alpha}(s_0)) = \{aas_2, bbs_2, bas_3, ccs_2, cas_3, \ldots\}$ Going forward, we will assume that every state is final.

Thus, we can consider an RNNA as an orbit-finite coalgebra $\gamma: X \to H(X)$ for the functor $H: Nom \to Nom$ with



Definition (Graded Monad)

A graded monad on a category C is a tuple $((M_n)_{n \in \mathbb{N}_0}, \eta, (\mu^{nk})_{n,k \in \mathbb{N}_0})$ containing

- for every $n \in \mathbb{N}_0$, an endofunctor $M_n : \mathbf{C} \to \mathbf{C}$,
- a **unit** transformation $\eta : \mathsf{Id} \to M_0$,
- for every $n, k \in \mathbb{N}_0$, a multiplication transformation $\mu^{nk} : M_n M_k \to M_{n+k}$,

satisfying

- 1. the unit law: $\forall n \in \mathbb{N}_0$. $\mu^{0,n} \cdot \eta M_n = \mathrm{id}_{M_n} = \mu^{n,0} \cdot M_n \eta$,
- 2. the associative law: $\forall n, k, m \in \mathbb{N}_0$. $\mu^{n,k+m} \cdot M_n \mu^{k,m} = \mu^{n+k,m} \cdot \mu^{n,k} M_m$.

Definition (Graded Semantics)

A graded semantics for G-coalgebras consists of

- a graded monad $((M_n), \eta, (\mu^{nk}))$,
- a natural transformation $\alpha: G \to M_1$.

Given a *G*-coalgebra $\gamma: X \to G(X)$, the α -pretrace sequence is then given by

$$\gamma^{(0)} = (X \xrightarrow{\eta_X} M_0(X)),$$

$$\gamma^{(n+1)} = (X \xrightarrow{\alpha_X \circ \gamma} M_1(X) \xrightarrow{M_1(\gamma^{(n)})} M_1(M_n(X)) \xrightarrow{\mu_X^{1n}} M_{n+1}(X)),$$

and the α -trace sequence is defined as $(M_n(!) \circ \gamma^{(n)} : X \to M_n(1))_{n \in \mathbb{N}_0}$.

Example (Graded Semantics [4])

We consider labelled transition systems as coalgebras for $G(X) = \mathcal{P}(\mathbb{A} \times X)$.

The graded semantics with $M_n(X) = \mathcal{P}(\mathbb{A}^n \times X)$ and $\alpha = id$ describes the trace-semantics of LTS.

algebraic theory where every operation has a depth and axioms have uniform depth

Fact (Graded Theories on Set)

On Set, every graded monad corresponds to a graded theory.

The graded theory (Σ, E, d) induces a graded monad $((M_n), \eta, (\mu^{nk}))$, where

- $M_n(X)$ are depth-n terms over X modulo derivable equality,
- \cdot η converts variables into terms,
- μ^{nk} collapses layered terms, "removing" the inner equivalence classes.

This motivates a similar construction on Nom.

2. Preliminaries

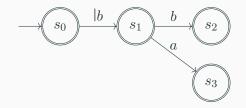
3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

Given an RNNA

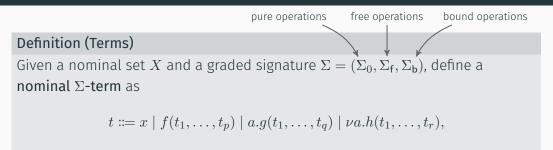


we want to describe the pretraces as terms:

$$|b(bs_2 + as_3) \quad \rightsquigarrow \quad |bbs_2 + |bas_3.$$

We will first define these terms and theories over them in a more general setting.

Terms



ranging over all $x \in X$, $a \in \mathbb{A}$, $f/p \in \Sigma_0$, $g/q \in \Sigma_f$, and $h/r \in \Sigma_b$.

Example (Pretrace Terms)

To describe pretraces of RNNA, we will use the signature Σ with $\Sigma_0 = \{+/2, \perp/0\}, \Sigma_f = \{pre/1\}, and \Sigma_b = \{abs/1\}, where we will write + in infix notation and$

 $at \coloneqq a.\operatorname{pre}(t)$ and $|at \coloneqq \nu a.\operatorname{abs}(t)$.

Terms

Definition (Uniform Depth)

A term t over X has **(uniform) depth** $n \in \mathbb{N}_0$ iff

- $t = x \in X$ and n = 0.
- $t = f(t_1, \ldots, t_p)$, where t_1, \ldots, t_p have uniform depth n', and n = n' + d(f).
- Similarly for $t = a.f(t_1, \ldots, t_p)$ and $t = \nu a.f(t_1, \ldots, t_p)$.

Example (Pretrace Terms)

For pretraces of RNNA,
$$d(+) = d(\perp) = 0$$
 and $d(pre) = d(abs) = 1$.

The depth of a term is exactly the length of the pretraces. For example, the term $|b(bs_2 + as_3)|$ has uniform depth 2.

If c is a constant, then it has uniform depth $n \in \mathbb{N}_0$ for all $n \ge d(c)$.

We refer to the set of Σ -terms over X with uniform depth n as $\operatorname{Term}_{\Sigma,n}(X)$.

Derivations

Definition (Graded Theories and Derivable Equality)

- Equations: pairs of terms $t, u \in \text{Term}_{\Sigma,n}(X)$ written as $X \vdash_m t = u$.
- Graded Theory $T = (\Sigma, E)$: graded signature and class E of axiom equations.
- Derivable Equality: Congruence with additional rules

$$(\operatorname{ax}_{r=s}) \frac{X \vdash_{l} \pi \sigma(x) = \sigma(\pi x) \quad \forall \pi \in \operatorname{Perm}(\mathbb{A}), x \in Y}{X \vdash_{m+l} (\tau r)\sigma = (\tau s)\sigma}$$

$$(\operatorname{perm}_{f}) \underbrace{\begin{array}{cc} a \# u_{i} & X \vdash_{m} t_{i} = (a \ b) u_{i} & \forall i \in \{1, \dots, p\} \\ \hline X \vdash_{m+d(f)} \nu a.f(t_{1}, \dots, t_{p}) = \nu b.f(u_{1}, \dots, u_{p}) \end{array}}_{(a \neq b)} \quad (a \neq b)$$

ranging over $Y \vdash_m r = s \in E$, $\tau \in \mathsf{Perm}(\mathbb{A})$, $\sigma : Y \to \mathsf{Term}_{\Sigma,l}(X)$, $f/p \in \Sigma_{\mathsf{b}}$.

Semantics

Definition (Nominal Algebra)

A nominal (Σ, n) -algebra A consists of

- a family $(A_i)_{0 \le i \le n}$ of nominal sets, called **carriers**,
- for $f/p \in \Sigma_0$, a family $(f_{A,m} : A^p_m \to A_{m+d(f)})$ of equivariant functions,
- for $f/p \in \Sigma_{f}$, a family $(f_{A,m} : \mathbb{A} \times A^{p}_{m} \to A_{m+d(f)})$ of equivariant functions,
- for $f/p \in \Sigma_b$, a family $(f_{A,m} : [\mathbb{A}]A^p_m \to A_{m+d(f)})$ of equivariant functions.

A morphism between (Σ, n) -algebras A, B is a family $(h_i)_{0 \le i \le n}$ of equivariant functions $h_i : A_i \to B_i$ such that, for $f/p \in \Sigma_0$ and $x_1, \ldots, x_p \in A_m$,

$$h_{m+d(f)}(f_{A,m}(x_1,\ldots,x_p)) = f_{B,m}(h_m(x_1),\ldots,h_m(x_p)),$$

and similarly for Σ_{f} and Σ_{b} .

Definition (Evaluation)

Given a nominal (Σ, n) -algebra A and an **environment** $\iota : X \to A_k$, the **evaluation map** $\llbracket \cdot \rrbracket_m^{\iota} : \operatorname{Term}_{\Sigma,m}(X) \to A_{k+m}$ of depth-m terms is defined as

$$\llbracket x \rrbracket_{0}^{\iota} = \iota(x),$$

$$\llbracket f(t_{1}, \dots, t_{p}) \rrbracket_{m+d(f)}^{\iota} = f_{A,k+m}(\llbracket t_{1} \rrbracket_{m}^{\iota}, \dots, \llbracket t_{p} \rrbracket_{m}^{\iota}),$$

$$\llbracket a.f(t_{1}, \dots, t_{p}) \rrbracket_{m+d(f)}^{\iota} = f_{A,k+m}(a, \llbracket t_{1} \rrbracket_{m}^{\iota}, \dots, \llbracket t_{p} \rrbracket_{m}^{\iota}),$$

$$\llbracket \nu a.f(t_{1}, \dots, t_{p}) \rrbracket_{m+d(f)}^{\iota} = f_{A,k+m}(\langle a \rangle (\llbracket t_{1} \rrbracket_{m}^{\iota}, \dots, \llbracket t_{p} \rrbracket_{m}^{\iota}))$$

Definition (Nominal Model)

A (T, n)-model is a (Σ, n) -algebra such that, for every axiom $X \vdash_m t = u$ and every environment ι , $[\![t]\!]_m^\iota = [\![u]\!]_m^\iota$.

Theorem (Soundness)

Let A be a (T, n)-model and $t, u \in \text{Term}_{\Sigma, m}(X)$ with $m \leq n$.

If $X \vdash_m t = u$ is derivable, then $\llbracket t \rrbracket_m^{\iota} = \llbracket u \rrbracket_m^{\iota}$ for every environment ι .

Free Models

Fix a graded theory $T = (\Sigma, E)$ and a depth $n \leq \omega$.

We will refer to derivable equality as the binary relation \sim between terms.

Since derivable equality is an equivalence, we can partition $\operatorname{Term}_{\Sigma,m}(X)$ into equivalence classes $[t]_m \in \operatorname{Term}_{\Sigma,m}(X)/\sim$.

Definition (Free Model)

The (T, n)-algebra F(X) is defined as follows:

$$\begin{split} (F(X))_i &= \mathrm{Term}_{\Sigma,i}(X)/\sim, \\ f_{F(X),m}([t_1]_m, \dots, [t_p]_m) &= [f(t_1, \dots, t_p)]_{m+d(f)} & \text{for } f/p \in \Sigma_0, \\ f_{F(X),m}(a, [t_1]_m, \dots, [t_p]_m) &= [a.f(t_1, \dots, t_p)]_{m+d(f)} & \text{for } f/p \in \Sigma_{\mathbf{f}}, \\ f_{F(X),m}(\langle a \rangle([t_1]_m, \dots, [t_p]_m)) &= [\nu a.f(t_1, \dots, t_p)]_{m+d(f)} & \text{for } f/p \in \Sigma_{\mathbf{b}}. \end{split}$$

The class of (T, n)-models forms a category Alg(T, n).

Definition (Forgetful Functor)

We define the forgetful functor $G:\operatorname{Alg}(T,n)\to\operatorname{Nom}$ with

 $G(A) = A_0$ $G(h) = h_0.$

Theorem

The definition of F(X) yields a left adjoint functor F to the forgetful functor G.

Free Models

Corollary

Every graded theory $T = (\Sigma, E)$ induces a graded monad $((M_n), \eta, (\mu^{nk}))$ with

$$\begin{split} &M_n:\operatorname{Nom}\to\operatorname{Nom},\\ &M_n(X)=\operatorname{Term}_{\Sigma,n}(X)/{\sim},\\ &M_n(f)([t]_n)=[t\sigma_f]_n, \end{split}$$

 $\eta_X : X \to M_0(X),$ $\eta_X(x) = [x]_0,$

 $\mu_X^{nk} : M_n(M_k(X)) \to M_{n+k}(X),$ $\mu_X^{nk}([t]_n) = \llbracket t \rrbracket_n^{\mathsf{id}},$

with the substitution $\sigma_f = (X \xrightarrow{f} Y \hookrightarrow \operatorname{Term}_{\Sigma,0}(Y)).$

Outline

1. Motivation

2. Preliminaries

3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

A Graded Theory for Local Freshness Semantics

We can now define a graded theory over pretrace terms with the axioms

$$X \vdash_0 x + y = y + x,$$

$$X \vdash_0 (x + y) + z = x + (y + z),$$

$$X \vdash_0 x + x = x,$$

$$X \vdash_0 x + \bot = x,$$

$$X \vdash_1 a(x + y) = ax + ay,$$

$$X \vdash_1 a(x + y) = |ax + |ay,$$

$$X \vdash_1 a \bot = \bot,$$

$$X \vdash_1 |a \bot = |ax + ax,$$

ranging over all $a \in A$, all nominal sets X, and all elements $x, y, z \in X$.

The (Σ, n) -model F'(X) is defined as follows:

$$(F'(X))_m = \mathcal{P}_{\mathsf{fs}}(\mathbb{A}^m \times X),$$

$$\mathsf{pre}_{F'(X),m}(a, L) = \{aw : w \in L\},$$

$$\mathsf{abs}_{F'(X),m}(\langle a \rangle L) = \{bv : \langle a \rangle L = \langle a' \rangle L', w' \in L', \langle a' \rangle w' = \langle b \rangle v\},$$

$$+_{F'(X),m}(L_1, L_2) = L_1 \cup L_2,$$

$$\perp_{F'(X),m} = \emptyset.$$

We also define the *interpretation* as the morphism $\Phi: F(X) \to F'(X)$ with

$$\Phi_m([t]_m) = \llbracket t \rrbracket_m^{\eta'_X},$$

with the equivariant environment $\eta'_X : X \to (F'(X))_0, x \mapsto \{x\}.$

A Model For Local Freshness Semantics

 $X \vdash_1 |a(x+y)| = |ax+|ay|$

$$\begin{split} |b(bs_2+as_3) \\ \mathsf{abs}_{F'(X),1}(\langle b\rangle\{bs_2,as_3\}) \end{split}$$

 $|bbs_2 + |bas_3|$

 $\mathsf{abs}_{F'(X),1}(\langle b \rangle \{ bs_2 \}) \cup \mathsf{abs}_{F'(X),1}(\langle b \rangle \{ as_3 \})$

For this case, we require $\operatorname{abs}_{F'(X),m}$ to be monotone, in particular:

 $\mathsf{abs}_{F'(X),1}(\langle b \rangle \{bs_2, as_3\}) \supseteq \mathsf{abs}_{F'(X),1}(\langle b \rangle \{bs_2\})$

If we assume $s_2 \neq s_3$, $a \neq b$, and $a \# s_2$, then $\langle b \rangle \{ bs_2 \} = \langle a \rangle \{ (a \ b) bs_2) \}$.

 $\implies (a \ b)bs_2 \in \mathsf{abs}_{F'(X),1}(\langle b \rangle \{ bs_2 \})$

However, on the left-hand side, we have $\langle b \rangle \{bs_2, as_3\} \neq \langle a \rangle (a \ b) \{bs_2, as_3\}$. We can instead pick a $c \in \mathbb{A} \setminus \text{supp}(\{bs_2\}, \{bs_2, as_3\})$.

 $\implies bs_2 = (a \ c)bs_2 \text{ and } \langle b \rangle \{bs_2, as_3\} = \langle c \rangle \{(b \ c)(a \ c)bs_2, (b \ c)as_3\}.$

Since a, b, c are pairwise distinct, (a c)(a b) = (b c)(a c).

$$\implies \langle c \rangle (b \ c) (a \ c) bs_2 = \langle c \rangle (a \ c) (a \ b) bs_2 = \langle a \rangle (a \ b) bs_2.$$

Interpretation under Local Freshness Semantics

We can identify the set of single pretraces $\overline{\mathbb{A}}^m \times X$ as a fragment of Σ -terms.

Theorem

If $k \in \mathbb{N}_0$ and $w_1, \ldots, w_k \in \overline{\mathbb{A}}^m \times X$ are pretraces, then

$$\Phi_m\left(\left[\sum_{i=1}^k w_i\right]_m\right) = \hat{D}\left(\{[w_i]_{\hat{\alpha}} : i \in \{1, \dots, k\}\}\right).$$

Theorem

Let $t \in \operatorname{Term}_{\Sigma,m}(X)$ be a term and $w \in \overline{\mathbb{A}}^m \times X$ a pretrace.

If $\hat{D}_m(\{[w]_{\hat{\alpha}}\}) \subseteq \Phi_m([t]_m)$, then $[t]_m = [t+w]_m$.

Corollary

The function Φ_m : $\operatorname{Term}_{\Sigma,m}(X)/\sim \to \mathcal{P}_{\mathsf{fs}}(\mathbb{A}^m \times X)$ is injective for every $m \in \mathbb{N}_0$.

Outline

1. Motivation

2. Preliminaries

3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

Recall that we can view RNNAs as orbit-finite coalgebras for the functor $H: \mathsf{Nom} \to \mathsf{Nom}$ given by

$$H(X) = \mathcal{P}_{\mathsf{f}}(\mathbb{A} \times X) \times \mathcal{P}_{\mathsf{f}}([\mathbb{A}]X).$$

We define a graded semantics for RNNA using $\alpha: H \rightarrow M_1$ with

$$\alpha_X(S_{\mathsf{f}}, S_{\mathsf{b}}) = \left[\sum_{(a,x)\in S_{\mathsf{f}}} ax + \sum_{(a,x)\in u_X[S_{\mathsf{b}}]} |ax\right]_1,$$

where $u_X : [\mathbb{A}]X \to \mathbb{A} \times X$ is any splitting of $[\mathbb{A}]X$.

Theorem

Let $s \in Q$ be a state in an RNNA defined by $\gamma : Q \to H(Q)$. Then

$$\gamma^{(n)}(s) = \left[\sum_{wq \in v_n \left[\hat{L}_{\alpha}^{(n)}(s)\right]} wq\right]_n,$$

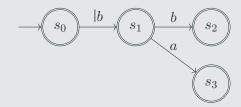
where

$$\hat{L}_{\alpha}^{(n)}(s) = \{ w \in \hat{L}_{\alpha}(s) : |w| = n \},\$$

and $v_n: (\bar{\mathbb{A}}^n \times Q) / \hat{\equiv}_{\alpha} \to \bar{\mathbb{A}}^n \times Q$ is any splitting.

Capturing Pretraces

Example



$$\begin{aligned} \gamma^{(2)}(s_0) &= \mu_X^{1,1}([|b(\gamma^{(1)}(s_1))]_1) \\ &= \mu_X^{1,1}([|b(\mu_X^{1,0}([b(\gamma^{(0)}(s_2)) + a(\gamma^{(0)}(s_3))]_1)]_1) \\ &= \mu_X^{1,1}([|b(\mu_X^{1,0}([b[s_2]_0 + a[s_3]_0]_1)]_1) \\ &= \mu_X^{1,1}([|b[bs_2 + as_3]_1) \\ &= [|b(bs_2 + as_3)]_2 = [|bbs_2 + |bas_3]_2 \end{aligned}$$

Theorem

Let $s \in Q$ be a state in an RNNA defined by $\gamma : Q \to H(Q)$ and $n \in \mathbb{N}_0$. Then

$$\Phi_n(M_n(!)(\gamma^{(n)}(s))) \cong \{ w \in D(L_\alpha(s)) : |w| = n \}.$$

Corollary

Let $q \in Q$, $s \in S$ be states in RNNAs defined by $\gamma : Q \to H(Q)$ and $\delta : S \to H(S)$.

The states q and s have the same α -trace sequence iff $D(L_{\alpha}(q)) = D(L_{\alpha}(s))$.

Outline

1. Motivation

2. Preliminaries

3. Nominal Algebra

4. Local Freshness Semantics

5. Graded Semantics for RNNAs

6. Conclusion and Future Work

Conclusion and Future Work

We have:

- introduced a concept of graded theories over Nom inducing graded monads.
- \cdot defined a graded theory capturing local freshness semantics of pretraces.
- defined graded semantics capturing the local freshness semantics of RNNAs.

Future Work:

- It remains to be shown that the induced graded monad is depth-1 if all operations and axioms in the theory are at most depth-1.
- It may be possible to replace the infinitary $(ax_{r=s})$ rule with a finitary one.
- Turn F'(X) into a functor (possibly using $\mathcal{P}_{fs}(\mathbb{A}^m \times Frs(X))$, not $\mathcal{P}_{fs}(\mathbb{A}^m \times X)$).
- Give an alternative description of the graded monad based on F'(X).
- Extend the graded semantics to work on ufs sets of transitions.

 [1] A. M. Pitts, Nominal sets: names and symmetry in computer science (Cambridge tracts in theoretical computer science 57). Cambridge ; New York: Cambridge University Press, 2013, 276 pp., OCLC: ocn826076032, ISBN: 978-1-107-01778-8.

[2] L. Schröder, D. Kozen, S. Milius, and T. Wißmann, Nominal automata with name binding, Jan. 21, 2021. DOI: 10.48550/arXiv.1603.01455. arXiv: 1603.01455[cs]. Accessed: Feb. 9, 2025. [Online]. Available: http://arxiv.org/abs/1603.01455.

Bibliography (cont.)

- [3] S. Milius, D. Pattinson, and L. Schröder, "Generic trace semantics and graded monads", LIPIcs, Volume 35, CALCO 2015, vol. 35, in collab. with L. S. Moss and P. Sobocinski, pp. 253–269, 2015, Artwork Size: 17 pages, 487152 bytes ISBN: 9783939897842 Medium: application/pdf Publisher: Schloss Dagstuhl Leibniz-Zentrum für Informatik, ISSN: 1868-8969. DOI: 10.4230/LIPICS.CALCO.2015.253. Accessed: Feb. 9, 2025. [Online]. Available: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs. CALCO.2015.253.
- U. Dorsch, S. Milius, and L. Schröder, Graded monads and graded logics for the linear time – branching time spectrum, Oct. 20, 2020. DOI: 10.48550/arXiv.1812.01317. arXiv: 1812.01317[cs]. Accessed: Feb. 9, 2025.
 [Online]. Available: http://arxiv.org/abs/1812.01317.