Behavioural Conformances based on Lax Couplings

Paul Wild Lutz Schröder

Tuesday 3rd June, 2025

 $Friedrich-Alexander-Universit\"{a}t\ Erlange\ n-N\"{u}rnberg,\ Germany$

Behavioural Distances

- ■ and ▲ are not bisimilar
- \bullet and \triangle have behavioural distance 0.01

Coalgebra

$$lpha\colon X o 1+\mathcal D X$$
 Markov chain with deadlock

$$\alpha \colon X \to \mathcal{P}(\mathcal{A} \times X)$$
 Labelled transition system

 $\alpha \colon X \to FX$, where $F \colon \mathsf{Set} \to \mathsf{Set}$ is a functor

Functor Liftings and Lax Extensions

Functor lifting

Given a pseudometric d on X, construct one on FX.

$$(F \colon \mathsf{Set} \to \mathsf{Set}) \quad \leadsto \quad (\overline{F} \colon \mathsf{PMet} \to \mathsf{PMet})$$

Behavioural distance = fixpoint of $d \mapsto \overline{F}(d) \cdot (\alpha \times \alpha)$

Lax extension

Given $r \colon X \times Y \to [0,\infty]$, construct $Lr \colon FX \times FY \to [0,\infty]$

L-simulation: r such that $r \leq Lr \cdot (\alpha \times \beta)$

The Wasserstein Metric

Functor lifting/lax extension for \mathcal{D}

$$W(d)(\mu,\nu) = \inf\{\mathbb{E}_{\rho}(d) \mid \rho \text{ is a coupling of } \mu \text{ and } \nu\}$$

$$ho$$
 is a coupling of μ and $\nu \iff \forall x. \, \mu(x) = \sum_y \rho(x,y)$ and $\forall y. \, \nu(y) = \sum_x \rho(x,y)$

Optimal transport

Generalized couplings

$$\rho$$
 is a coupling of μ and $\nu \iff \forall x.\, \mu(x) = \sum_y \rho(x,y)$ and $\forall y.\, \nu(y) = \sum_x \rho(x,y)$

Generalized couplings

$$\rho$$
 is a coupling of μ and $\nu\iff \mathcal{D}\pi_1(\rho)=\mu$ and $\mathcal{D}\pi_2(\rho)=\nu$

Generalized couplings

t is a coupling of t_1 and $t_2 \iff F\pi_1(t) = t_1$ and $F\pi_2(t) = t_2$

Generalized couplings

t is a coupling of t_1 and $t_2 \iff F\pi_1(t) = t_1$ and $F\pi_2(t) = t_2$

Predicate liftings

$$f: X \to [0, \infty] \quad \rightsquigarrow \quad \mathbb{E}_{(-)}(f): \mathcal{D}X \to [0, \infty]$$

Generalized couplings

t is a coupling of t_1 and $t_2 \iff F\pi_1(t) = t_1$ and $F\pi_2(t) = t_2$

Predicate liftings

$$f \colon X \to [0, \infty] \quad \leadsto \quad \lambda_X(f) \colon FX \to [0, \infty]$$

Generalized couplings

t is a coupling of t_1 and $t_2 \iff F\pi_1(t) = t_1$ and $F\pi_2(t) = t_2$

Predicate liftings

$$f \colon X \to [0, \infty] \quad \leadsto \quad \lambda_X(f) \colon FX \to [0, \infty]$$

Coalgebraic Wasserstein

[Hofmann 07, Baldan et al 14]

$$W_{\lambda}^{=}(d)(t_1,t_2) = \inf\{\lambda_{X\times Y}(t)(d) \mid t \text{ is a coupling of } t_1 \text{ and } t_2\}$$

Example: Hamming Distance

$$\mathsf{List} X = \mathsf{set} \mathsf{ of finite sequences over } X$$

$$\lambda_X(f)((x_1, \dots, x_n)) = f(x_1) + \dots + f(x_n)$$

$$\Delta_{01}(x, y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{otherwise} \end{cases}$$

 $\operatorname{\mathsf{Ham}} \coloneqq W_\lambda^=(\Delta_{01}) = \operatorname{\mathsf{Hamming}} \operatorname{\mathsf{distance}} \operatorname{\mathsf{on}} \operatorname{\mathsf{List}} X$

$$\operatorname{Ham}(\operatorname{LICS},\operatorname{NICE})=2$$

Failure of Couplings

Couplings need not exist in general:

Finite measures

- Meas $X = \{\mu \colon X \to [0, \infty] \mid \sum_x \mu(x) < \infty\}$
- μ and ν have couplings $\iff \sum_x \mu(x) = \sum_x \nu(x)$

Lists

 $\ell_1,\ell_2\in \mathsf{List} X$ have a coupling $\iff \ell_1$ and ℓ_2 have the same length

Labelled transition systems

Couplings only exist if the labels match exactly

$$t_1$$
 and t_2 have no coupling $\implies W_{\lambda}^{=}(d)(t_1,t_2)=\infty$

Example: Unbalanced Optimal Transport

Total variation distance for Meas

$$d_{\mathsf{TV}}(\mu, \nu) = \sup_{U \subset X} \max(\nu(U) - \mu(U), 0)$$

Intuition: produce missing goods and/or scrap excess goods

Distance

$$d_{\mathsf{UOT}}(\mu,\nu) = \inf\{d_{\mathsf{TV}}(\mu,\mu') + W_{\mathbb{E}}^{=}(\mu',\nu') + d_{\mathsf{TV}}(\nu',\nu) \mid \mu',\nu' \text{ finite measures}\}$$

Example: Levenshtein Distance

Insertion/deletion distance

$$d_{\pm}(s,t) = \begin{cases} ||t| - |s||, & \text{if one of } s \text{ or } t \text{ is subsequence of the other} \\ \infty, & \text{otherwise} \end{cases}$$

Levenshtein distance

$$\mathsf{Lev}(s,t) = \inf\{d_{\pm}(s,s') + \mathsf{Ham}(s',t') + d_{\pm}(t',t) \mid s',t' \in \mathsf{List}X\}$$

$$\mathsf{Lev}(\mathtt{WORLD},\mathtt{ABOARD}) = d_{\pm}(\mathtt{WORLD},\mathtt{WORD}) + \mathsf{Ham}(\mathtt{WORD},\mathtt{BORD}) + d_{\pm}(\mathtt{BORD},\mathtt{ABOARD}) = 4$$

Functor Liftings Revisited

Setup

- Instead of $F \colon \mathsf{Set} \to \mathsf{Set}$, consider $F \colon \mathsf{Set} \to \mathsf{PMet}$
- lacktriangle The pseudometric d_{FX} handles failure of couplings

List functor

$$FX = (\mathsf{List}X, d_\pm)$$

Finite measure functor

$$FX = (\mathsf{Meas}X, d_{\mathsf{TV}})$$

$$W_{\lambda}(d)(t_1, t_2) = \inf\{d_{FX}(t_1, t_1') + W_{\lambda}^{=}(d)(t_1', t_2') + d_{FY}(t_2', t_2) \mid t_1' \in FX, t_2' \in FY\}$$

$$W_{\lambda}(d) = d_{FY} \cdot W_{\lambda}^{=}(d) \cdot d_{FX}$$

$$W_{\lambda}(d)(t_1, t_2) = \inf\{d_{FX}(t_1, F\pi_1(t)) + \lambda_{X\times Y}(d)(t) + d_{FY}(F\pi_2(t), t_2) \mid t \in F(X\times Y)\}$$

$$W_{\lambda}(d)(t_1,t_2) = \inf\{\epsilon + \lambda_{X\!\times\!Y}(d)(t) \mid t \text{ is an } \epsilon\text{-coupling of } t_1 \text{ and } t_2\}$$

$$t$$
 is an ϵ -coupling of t_1 and $t_2 \iff d_{FX}(t_1,F\pi_1(t))+d_{FY}(F\pi_2(t),t_2)\leq \epsilon$

Distributorial Wasserstein

$$W_{\lambda}(d)(t_1,t_2) = \inf\{\epsilon + \lambda_{X\!X\!Y}(d)(t) \mid t \text{ is an } \epsilon\text{-coupling of } t_1 \text{ and } t_2\}$$

t is an ϵ -coupling of t_1 and $t_2 \iff d_{FX}(t_1, F\pi_1(t)) + d_{FY}(F\pi_2(t), t_2) \leq \epsilon$

"Distributorial"?

 $W_{\lambda}(d)$ is compatible with d_{FX} and d_{FY} :

$$d_{FY} \cdot W_{\lambda}(d) = W_{\lambda}(d) \cdot d_{FX} = W_{\lambda}(d)$$

Viewing d_{FX}, d_{FY} as categories (à la Lawvere), $W_{\lambda}(d)$ is a distributor/profunctor

Conditions on F and λ

Preservation of exact squares

Conditions on λ

Monotonicity, preservation of 0, V-subadditivity

Simulations

Also works in the two-valued setting or for a quantale V:

Examples in the two-valued setting:

- Egli-Milner simulation (forward and backward)
- Ready and complete simulation (forward and backward)
- Refinement for modal transition systems

Conclusions

Results

- New method of defining behavioural preorders and metrics
- Abstraction over type of system and type of conformance
- Conditions under which this construction works

Future work

- Combine distances in other ways than with +
- Different preorders/distances on either side
- Non-pseudometric distances, e.g. divergences