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Motivation

Why Coalgebraic Logics?

Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.
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Fuzzy Bases and Computational Hardness

Łukasiewicz logic:

Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.
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Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.
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Non-expansive Fuzzy Coalgebraic Logic

Formulas over signature A,Λ are given by:

ϕ, ψ ::= 0 | p | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡ϕ

with p ∈ A, c ∈ [0,1], ♡ ∈ Λ.
A predicate lifting of ♡ ∈ Λ given T : Set → Set is a natural
transformation
J♡K : HomSet(−, [0,1]) ⇒ HomSet(T op(−), [0,1]).
A T-model is a coalgebra M = (X ∈ Set, ξ : X → TX ).
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Non-expansive Fuzzy Coalgebraic Logic

The extension JϕKM : X → [0,1] for a formula is given by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡ϕKM = J♡KX (JϕKM) ◦ ξ
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Examples

Fix T = D as the distribution functor.
Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.
Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}
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Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).
J is a sub-LIS of I if D(J ) = D(I ) and for all l ∈ D(I )
we have J (l) ⊆ I (l).
Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.
LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .
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One-step logics

For a set V write Λ(V ) := {♡v | v ∈ V ,♡ ∈ Λ}.
Define one-step formulas Prop(Λ(V )) over Λ by:

ϕ, ψ ::= 0 | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡v

Define T -one-step model as tuple M = (X , τ, t) with
X ∈ Set, t ∈ TX and τ : V → (X → [0,1]).
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One-step logics

Define extension by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡vKM = J♡KX (τ(v))(t)

LIS I over L ⊆ Prop(Λ(V )) is one-step satisfiable if there
exists a T -one-step model M such that we have
JlKM ∈ I (l) for each l ∈ L.
We then write M |= I .
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From full logic to one-step logic

A top-level decomposition of a LIS I over formulas L is
I ♭ : V → F(Λ) and a LIS I ♯ over one-step formulas such
that each v ∈ V occurs exactly once in D(I ♯) and
replacing each v by I ♭(v) in I ♯ gives us back I .
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I ♭ : V → F(Λ) and a LIS I ♯ over one-step formulas such
that each v ∈ V occurs exactly once in D(I ♯) and
replacing each v by I ♭(v) in I ♯ gives us back I .

Lemma

A LIS over formulas L ⊆ F(Λ) is satisfiable in a logic L iff its
top-level decomposition (V ,I ♭,I ♯) has the following property:
I ♯ is one-step satisfiable in a one-step model M = (X , τ, t)
where for each x ∈ X we have a satisfiable LIS Jx over the
image of I ♭ such that for all v ∈ V we have
τ(v)(x) ∈ Jx(I ♭(v)).
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A Tableau Calculus

Tableau Rules

(Ax) S,ϕ∈∅
⊥ (Ax 0) S,0∈La,bM

⊥ (if 0 /∈ La,bM)

(¬) S,¬ϕ∈La,bM,ϕ∈I
S,ϕ∈I∩M−11−b,1−aL−1

(⊖) S,ϕ⊖c∈La,bM,ϕ∈I
S,ϕ∈I∩La+c,b+cM (if 0 /∈ La,bM)

(⊖′) S,ϕ⊖c∈La,bM,ϕ∈I
S,ϕ∈I∩[0,b+cM (if 0 ∈ La,bM)

(⊓) S,ϕ⊓ψ∈La,bM,ϕ∈I1,ψ∈I2
S,ϕ∈I1∩La,bM,ψ∈I2∩La,1] S,ϕ∈I1∩La,1],ψ∈I2∩La,bM
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A Tableau Calculus

Lemma
LIS I over one-step formulas L is one-step satisfiable if and
only if there exists a tableau graph with leaf with label Y ̸= ⊥
and the LIS I Y (over formulas of the form ♡v) is one-step
satisfiable.
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A Tableau Calculus

Lemma
LIS I over one-step formulas L is one-step satisfiable if and
only if there exists a tableau graph with leaf with label Y ̸= ⊥
and the LIS I Y (over formulas of the form ♡v) is one-step
satisfiable.

Lemma
Deciding if LIS I over one-step formulas L has a tableau graph
with leaf with label Y ̸= ⊥ is in NP (with respect to the syntactic
size of formulas in L). Furthemore if such a tableau graph
exists, the LIS I Y can be computed in non-deterministic
polynomial time.
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Polynomially Space Bounded Logics

Logic L is one-step exponentially bounded if any LIS I
over one-step formulas L is one-step satisfiable iff it is
one-step satisfiable in a one-step model with at most
exponentially many states XI in |L|.
One-step exponentially bounded logic L is exponentially
branching if for any LIS I over one-step formulas L there
exists a satisfying set YI of at most exponentially many
LIS over XI × V such that for (XI , τ) there exists t ∈ TXI

with (XI , τ, t) |= I if and only if there exists Q ∈ YI with
τ(v)(x) ∈ Q(x , v) for all v ∈ V , x ∈ XI .
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Polynomially Space Bounded Logics

Exponentially branching logic L polynomial space bounded
if for any LIS I over one-step formulas L we have the
following properties:

Fixing a satisfying set YI as {Q1, . . . ,Qm} and computing
some Qi can be done in polynomial space.
Deciding whether a LIS Q over V × XI is a sub-LIS of
some Qi is in PSPACE.

Here these bounds refer to the combined syntactic size of
L.
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some Qi can be done in polynomial space.
Deciding whether a LIS Q over V × XI is a sub-LIS of
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Theorem
Satisfiability of a LIS I over formulas L in a polynomial space
bounded logic L is decidable in PSPACE (bounded in the
combined syntactic size of L).
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Conclusion & Future Work

Conclusion

We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Cover more logics (partially done).
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