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Motivation

@ Why Coalgebraic Logics?

e Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).

e Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

@ Why Fuzziness?
e Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
o Classical (crisp) logics are inadequate for modeling partial
or approximate information.
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Fuzzy Bases and Computational Hardness

@ kukasiewicz logic:

e Rich expressivity and strong logical properties.
e But computationally hard.

@ Zadeh logic:

e Simpler semantics: truth values interpreted via min/max.
o Efficient reasoning, but entails little to no deviation from
classical logic.

@ = There is a trade-off between expressivity and
tractability.
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Non-Expansivity: A Computationally Friendly Middle
Ground

@ Non-expansivity restricts operators and modalities to be
1-Lipschitz:
f(x) — f(y)l < d(x.y)

@ This captures a class of computationally well-behaved
fuzzy logics.

@ Non-expansive semantics often allow for efficient model
checking and reasoning.

@ = Non-expansive fuzzy coalgebraic logic offers a
principled bridge:
e Retains useful structure from tukasiewicz.
e Avoids worst-case complexity; closer to Zadeh in tractability.
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@ Formulas over signature A, A are given by:
¢ =0[p[-¢|looc|ony|D¢

withpe A, ce[0,1], © e A.
@ A predicate lifting of © € A given T : Set — Set is a natural

transformation
[[Q]] : HomSet(ia [07 1]) = HomSet(Top(i)’ [07 1])
@ A T-modelis a coalgebra M = (X € Set,{ : X — TX).

5/17

Gebhart et al.

July 9, 2025



Non-expansive Fuzzy Coalgebraic Logic

@ The extension [¢]y : X — [0, 1] for a formula is given by:
[0l =0 [~¢lm=1-I[¢lm

[peclu=I¢lmecc  [eNLIn = min([¢]m, [¥]Im)
[©lm = [Clx([¢lm) €
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Examples

@ Fix T = D as the distribution functor.

@ Given piecewise linear monotonic h: [0, 1] — [0, 1] the
logic non-expansive fuzzy Lgen is defined by: A = {G} with

([Glx(V))p = Sl[lopﬂ{min(a, h(u({x € X | v(x) > a}))}
ac|l,
@ For h = id write non-expansive fuzzy Lgen.

@ Define non-expansive quantitative fuzzy ALC by:
A= {Mp | p € [0,1]} with

(Mplx())p:=supfa | > wu(x)>p}

xeX,v(x)>a
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Labelled Interval Systems

@ A labelled interval system (LIS) over a set L is a function
4 L — Z, where Z is the set of all intervals in [0, 1]
(including the empty interval).

@ 7Zisasub-LISof #ifD( 7)=D(¥)andforall | € D(.#)
we have #(I) € (/).

@ Can write .# as a set of assertions of the form ¢ € [ with
pel, 7(p)=1

@ LIS .# over formulas L is satisfied by state x in model M if

for every ¢ € L we have [¢]u(x) € #(¢) and we write
M x = .7.

Gebhart et al.

July 9, 2025 8/17



One-step logics

Gebhart et al. July 9, 2025 9/17



One-step logics

@ Foraset Vwrite A(V):={Qv|veV,QecA}

Gebhart et al. July 9, 2025 9/17



One-step logics

@ Foraset Vwrite A(V):={Qv|veV,QecA}
@ Define one-step formulas Prop(A(V)) over A by:

o =0]-9l¢oc|ony|Qv

Gebhart et al.

July 9, 2025 9/17



One-step logics

@ Foraset Vwrite A(V):={Qv|veV,QecA}
@ Define one-step formulas Prop(A(V)) over A by:

o =0]-9l¢oc|ony|Qv

@ Define T-one-step model as tuple M = (X, 7, t) with
XeSet,te TXand7: V — (X — [0,1]).
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One-step logics

@ Define extension by:
[0l =0 [~¢lm=1—[o]m

[poclu=1I¢lmecc  [oNyIn = min([¢]m, [¥Im)
[OvIm = [Clx(r(v))(1)

@ LIS .7 over L C Prop(A(V)) is one-step satisfiable if there
exists a T-one-step model M such that we have
[lm € #(I) foreach I € L.

@ We then write M = .7.
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From full logic to one-step logic

@ A top-level decomposition of a LIS .# over formulas L is
7’V — F(N) and a LIS .#* over one-step formulas such
that each v € V occurs exactly once in D(.#*) and
replacing each v by .#°(v) in .#* gives us back ..

A LIS over formulas L C F(N) is satisfiable in a logic L iff its
top-level decomposition (V,.#°, .7%) has the following property:
7t is one-step satisfiable in a one-step model M = (X, 7, 1)
where for each x € X we have a satisfiable LIS ¢y over the
image of .#° such that for all v € V we have

T(V)(x) € Fx(I(V)).

.
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A Tableau Calculus

Tableau Rules

(Ax) S48 (Ax 0) SEBE (i 0 ¢ (a, b))

(=) —'<i>€(]a,bD,¢>€/
S,pelin)—"1—b,1—a(~!

S b)), pel .
(6) ssgeladocl (if0 ¢ (a b))

S, b)), pel .
(&) Sl (it0€ (a,b))

(l—l) S,¢H¢€qa,bb,¢€l1 71/"6/2
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A Tableau Calculus

LIS .7 over one-step formulas L is one-step satisfiable if and
only if there exists a tableau graph with leaf with label Y # |
and the LIS .7 (over formulas of the form QOv) is one-step
satisfiable.

€

Deciding if LIS .7 over one-step formulas L has a tableau graph
with leaf with label Y # | is in NP (with respect to the syntactic
size of formulas in L). Furthemore if such a tableau graph
exists, the LIS .#Y can be computed in non-deterministic
polynomial time.

€
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Polynomially Space Bounded Logics

@ Logic L is one-step exponentially bounded if any LIS .#
over one-step formulas L is one-step satisfiable iff it is
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Polynomially Space Bounded Logics

@ Logic L is one-step exponentially bounded if any LIS .#
over one-step formulas L is one-step satisfiable iff it is
one-step satisfiable in a one-step model with at most
exponentially many states X, in |L|.

@ One-step exponentially bounded logic £ is exponentially
branching if for any LIS .# over one-step formulas L there
exists a satisfying set Y » of at most exponentially many
LIS over X, x V such that for (X ~, 7) there exists t € TX »
with (X~, 7, t) = .# if and only if there exists Q € Y, with
T(v)(x) € Q(x,v) forallve V,x € X,.
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Polynomially Space Bounded Logics

@ Exponentially branching logic £ polynomial space bounded
if for any LIS .# over one-step formulas L we have the
following properties:

e Fixing a satisfying set Y» as {Q,..., Qn} and computing
some Q) can be done in polynomial space.

e Deciding whether a LIS Q over V x X is a sub-LIS of
some Q; is in PSPACE.

Here these bounds refer to the combined syntactic size of
L.
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@ Exponentially branching logic £ polynomial space bounded
if for any LIS .# over one-step formulas L we have the
following properties:

e Fixing a satisfying set Y.» as {Q, ..., Qn} and computing
some Q; can be done in polynomial space.

e Deciding whether a LIS Q over V x X is a sub-LIS of
some Q; is in PSPACE.

Here these bounds refer to the combined syntactic size of
L.

Satisfiability of a LIS .# over formulas L in a polynomial space
bounded logic L is decidable in PSPACE (bounded in the
combined syntactic size of L).
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Conclusion
@ We introduced non-expansive fuzzy coalgebraic logic.
@ We reduced satisfiability to that of one-step logics.

@ We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.

@ We proved this for the logic Lgen.

Future work
@ Cover more logics (partially done).
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