
Non-expansive Fuzzy Coalgebraic Logic

Stefan Gebhart, Lutz Schröder, Paul Wild

Chair of Theoretical Computer Science
Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg

July 9, 2025

Motivation

Why Coalgebraic Logics?

Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?

Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?
Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).

Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?
Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?
Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?

Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?
Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?
Many real-world systems involve uncertainty, vagueness, or
degrees of truth.

Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Motivation

Why Coalgebraic Logics?
Provide a uniform, abstract framework for modeling and
reasoning about state-based systems (e.g., automata,
transition systems, probabilistic systems).
Use category-theoretic tools to generalize a wide range of
modal and temporal logics.

Why Fuzziness?
Many real-world systems involve uncertainty, vagueness, or
degrees of truth.
Classical (crisp) logics are inadequate for modeling partial
or approximate information.

Gebhart et al. July 9, 2025 2 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:

Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:

Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.

But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:

Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:
Simpler semantics: truth values interpreted via min/max.

Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:
Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Fuzzy Bases and Computational Hardness

Łukasiewicz logic:
Rich expressivity and strong logical properties.
But computationally hard.

Zadeh logic:
Simpler semantics: truth values interpreted via min/max.
Efficient reasoning, but entails little to no deviation from
classical logic.

⇒ There is a trade-off between expressivity and
tractability.

Gebhart et al. July 9, 2025 3 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.

Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-Expansivity: A Computationally Friendly Middle
Ground

Non-expansivity restricts operators and modalities to be
1-Lipschitz:

|f (x)− f (y)| ≤ d(x , y)

This captures a class of computationally well-behaved
fuzzy logics.

Non-expansive semantics often allow for efficient model
checking and reasoning.

⇒ Non-expansive fuzzy coalgebraic logic offers a
principled bridge:

Retains useful structure from Łukasiewicz.
Avoids worst-case complexity; closer to Zadeh in tractability.

Gebhart et al. July 9, 2025 4 / 17

Non-expansive Fuzzy Coalgebraic Logic

Formulas over signature A,Λ are given by:

ϕ, ψ ::= 0 | p | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡ϕ

with p ∈ A, c ∈ [0,1], ♡ ∈ Λ.
A predicate lifting of ♡ ∈ Λ given T : Set → Set is a natural
transformation
J♡K : HomSet(−, [0,1]) ⇒ HomSet(T op(−), [0,1]).
A T-model is a coalgebra M = (X ∈ Set, ξ : X → TX).

Gebhart et al. July 9, 2025 5 / 17

Non-expansive Fuzzy Coalgebraic Logic

Formulas over signature A,Λ are given by:

ϕ, ψ ::= 0 | p | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡ϕ

with p ∈ A, c ∈ [0,1], ♡ ∈ Λ.

A predicate lifting of ♡ ∈ Λ given T : Set → Set is a natural
transformation
J♡K : HomSet(−, [0,1]) ⇒ HomSet(T op(−), [0,1]).
A T-model is a coalgebra M = (X ∈ Set, ξ : X → TX).

Gebhart et al. July 9, 2025 5 / 17

Non-expansive Fuzzy Coalgebraic Logic

Formulas over signature A,Λ are given by:

ϕ, ψ ::= 0 | p | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡ϕ

with p ∈ A, c ∈ [0,1], ♡ ∈ Λ.
A predicate lifting of ♡ ∈ Λ given T : Set → Set is a natural
transformation
J♡K : HomSet(−, [0,1]) ⇒ HomSet(T op(−), [0,1]).

A T-model is a coalgebra M = (X ∈ Set, ξ : X → TX).

Gebhart et al. July 9, 2025 5 / 17

Non-expansive Fuzzy Coalgebraic Logic

Formulas over signature A,Λ are given by:

ϕ, ψ ::= 0 | p | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡ϕ

with p ∈ A, c ∈ [0,1], ♡ ∈ Λ.
A predicate lifting of ♡ ∈ Λ given T : Set → Set is a natural
transformation
J♡K : HomSet(−, [0,1]) ⇒ HomSet(T op(−), [0,1]).
A T-model is a coalgebra M = (X ∈ Set, ξ : X → TX).

Gebhart et al. July 9, 2025 5 / 17

Non-expansive Fuzzy Coalgebraic Logic

The extension JϕKM : X → [0,1] for a formula is given by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡ϕKM = J♡KX (JϕKM) ◦ ξ

Gebhart et al. July 9, 2025 6 / 17

Examples

Fix T = D as the distribution functor.
Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.
Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}

Gebhart et al. July 9, 2025 7 / 17

Examples

Fix T = D as the distribution functor.

Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.
Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}

Gebhart et al. July 9, 2025 7 / 17

Examples

Fix T = D as the distribution functor.
Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.
Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}

Gebhart et al. July 9, 2025 7 / 17

Examples

Fix T = D as the distribution functor.
Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.

Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}

Gebhart et al. July 9, 2025 7 / 17

Examples

Fix T = D as the distribution functor.
Given piecewise linear monotonic h : [0,1] → [0,1] the
logic non-expansive fuzzy Lh

gen is defined by: Λ = {G} with

(JGKX (ν))µ := sup
α∈[0,1]

{min(α,h(µ({x ∈ X | ν(x) ≥ α}))}

For h = id write non-expansive fuzzy Lgen.
Define non-expansive quantitative fuzzy ALC by:
Λ = {Mp | p ∈ [0,1]} with

(JMpKX (ν))µ := sup{α |
∑

x∈X ,ν(x)≥α

µ(x) > p}

Gebhart et al. July 9, 2025 7 / 17

Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).
J is a sub-LIS of I if D(J) = D(I) and for all l ∈ D(I)
we have J (l) ⊆ I (l).
Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.
LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .

Gebhart et al. July 9, 2025 8 / 17

Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).

J is a sub-LIS of I if D(J) = D(I) and for all l ∈ D(I)
we have J (l) ⊆ I (l).
Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.
LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .

Gebhart et al. July 9, 2025 8 / 17

Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).
J is a sub-LIS of I if D(J) = D(I) and for all l ∈ D(I)
we have J (l) ⊆ I (l).

Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.
LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .

Gebhart et al. July 9, 2025 8 / 17

Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).
J is a sub-LIS of I if D(J) = D(I) and for all l ∈ D(I)
we have J (l) ⊆ I (l).
Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.

LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .

Gebhart et al. July 9, 2025 8 / 17

Labelled Interval Systems

A labelled interval system (LIS) over a set L is a function
I : L → Z , where Z is the set of all intervals in [0,1]
(including the empty interval).
J is a sub-LIS of I if D(J) = D(I) and for all l ∈ D(I)
we have J (l) ⊆ I (l).
Can write I as a set of assertions of the form ϕ ∈ I with
ϕ ∈ L, I (ϕ) = I.
LIS I over formulas L is satisfied by state x in model M if
for every ϕ ∈ L we have JϕKM(x) ∈ I (ϕ) and we write
M, x |= I .

Gebhart et al. July 9, 2025 8 / 17

One-step logics

For a set V write Λ(V) := {♡v | v ∈ V ,♡ ∈ Λ}.
Define one-step formulas Prop(Λ(V)) over Λ by:

ϕ, ψ ::= 0 | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡v

Define T -one-step model as tuple M = (X , τ, t) with
X ∈ Set, t ∈ TX and τ : V → (X → [0,1]).

Gebhart et al. July 9, 2025 9 / 17

One-step logics

For a set V write Λ(V) := {♡v | v ∈ V ,♡ ∈ Λ}.

Define one-step formulas Prop(Λ(V)) over Λ by:

ϕ, ψ ::= 0 | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡v

Define T -one-step model as tuple M = (X , τ, t) with
X ∈ Set, t ∈ TX and τ : V → (X → [0,1]).

Gebhart et al. July 9, 2025 9 / 17

One-step logics

For a set V write Λ(V) := {♡v | v ∈ V ,♡ ∈ Λ}.
Define one-step formulas Prop(Λ(V)) over Λ by:

ϕ, ψ ::= 0 | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡v

Define T -one-step model as tuple M = (X , τ, t) with
X ∈ Set, t ∈ TX and τ : V → (X → [0,1]).

Gebhart et al. July 9, 2025 9 / 17

One-step logics

For a set V write Λ(V) := {♡v | v ∈ V ,♡ ∈ Λ}.
Define one-step formulas Prop(Λ(V)) over Λ by:

ϕ, ψ ::= 0 | ¬ϕ | ϕ⊖ c | ϕ ⊓ ψ | ♡v

Define T -one-step model as tuple M = (X , τ, t) with
X ∈ Set, t ∈ TX and τ : V → (X → [0,1]).

Gebhart et al. July 9, 2025 9 / 17

One-step logics

Define extension by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡vKM = J♡KX (τ(v))(t)

LIS I over L ⊆ Prop(Λ(V)) is one-step satisfiable if there
exists a T -one-step model M such that we have
JlKM ∈ I (l) for each l ∈ L.
We then write M |= I .

Gebhart et al. July 9, 2025 10 / 17

One-step logics

Define extension by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡vKM = J♡KX (τ(v))(t)

LIS I over L ⊆ Prop(Λ(V)) is one-step satisfiable if there
exists a T -one-step model M such that we have
JlKM ∈ I (l) for each l ∈ L.

We then write M |= I .

Gebhart et al. July 9, 2025 10 / 17

One-step logics

Define extension by:

J0KM = 0 J¬ϕKM = 1 − JϕKM

Jϕ⊖ cKM = JϕKM ⊖ c Jϕ ⊓ ψKM = min(JϕKM , JψKM)

J♡vKM = J♡KX (τ(v))(t)

LIS I over L ⊆ Prop(Λ(V)) is one-step satisfiable if there
exists a T -one-step model M such that we have
JlKM ∈ I (l) for each l ∈ L.
We then write M |= I .

Gebhart et al. July 9, 2025 10 / 17

From full logic to one-step logic

A top-level decomposition of a LIS I over formulas L is
I ♭ : V → F(Λ) and a LIS I ♯ over one-step formulas such
that each v ∈ V occurs exactly once in D(I ♯) and
replacing each v by I ♭(v) in I ♯ gives us back I .

Gebhart et al. July 9, 2025 11 / 17

From full logic to one-step logic

A top-level decomposition of a LIS I over formulas L is
I ♭ : V → F(Λ) and a LIS I ♯ over one-step formulas such
that each v ∈ V occurs exactly once in D(I ♯) and
replacing each v by I ♭(v) in I ♯ gives us back I .

Gebhart et al. July 9, 2025 11 / 17

From full logic to one-step logic

A top-level decomposition of a LIS I over formulas L is
I ♭ : V → F(Λ) and a LIS I ♯ over one-step formulas such
that each v ∈ V occurs exactly once in D(I ♯) and
replacing each v by I ♭(v) in I ♯ gives us back I .

Lemma

A LIS over formulas L ⊆ F(Λ) is satisfiable in a logic L iff its
top-level decomposition (V ,I ♭,I ♯) has the following property:
I ♯ is one-step satisfiable in a one-step model M = (X , τ, t)
where for each x ∈ X we have a satisfiable LIS Jx over the
image of I ♭ such that for all v ∈ V we have
τ(v)(x) ∈ Jx(I ♭(v)).

Gebhart et al. July 9, 2025 11 / 17

A Tableau Calculus

Tableau Rules

(Ax) S,ϕ∈∅
⊥ (Ax 0) S,0∈La,bM

⊥ (if 0 /∈ La,bM)

(¬) S,¬ϕ∈La,bM,ϕ∈I
S,ϕ∈I∩M−11−b,1−aL−1

(⊖) S,ϕ⊖c∈La,bM,ϕ∈I
S,ϕ∈I∩La+c,b+cM (if 0 /∈ La,bM)

(⊖′) S,ϕ⊖c∈La,bM,ϕ∈I
S,ϕ∈I∩[0,b+cM (if 0 ∈ La,bM)

(⊓) S,ϕ⊓ψ∈La,bM,ϕ∈I1,ψ∈I2
S,ϕ∈I1∩La,bM,ψ∈I2∩La,1] S,ϕ∈I1∩La,1],ψ∈I2∩La,bM

Gebhart et al. July 9, 2025 12 / 17

A Tableau Calculus

Lemma
LIS I over one-step formulas L is one-step satisfiable if and
only if there exists a tableau graph with leaf with label Y ̸= ⊥
and the LIS I Y (over formulas of the form ♡v) is one-step
satisfiable.

Gebhart et al. July 9, 2025 13 / 17

A Tableau Calculus

Lemma
LIS I over one-step formulas L is one-step satisfiable if and
only if there exists a tableau graph with leaf with label Y ̸= ⊥
and the LIS I Y (over formulas of the form ♡v) is one-step
satisfiable.

Lemma
Deciding if LIS I over one-step formulas L has a tableau graph
with leaf with label Y ̸= ⊥ is in NP (with respect to the syntactic
size of formulas in L). Furthemore if such a tableau graph
exists, the LIS I Y can be computed in non-deterministic
polynomial time.

Gebhart et al. July 9, 2025 13 / 17

Polynomially Space Bounded Logics

Logic L is one-step exponentially bounded if any LIS I
over one-step formulas L is one-step satisfiable iff it is
one-step satisfiable in a one-step model with at most
exponentially many states XI in |L|.
One-step exponentially bounded logic L is exponentially
branching if for any LIS I over one-step formulas L there
exists a satisfying set YI of at most exponentially many
LIS over XI × V such that for (XI , τ) there exists t ∈ TXI

with (XI , τ, t) |= I if and only if there exists Q ∈ YI with
τ(v)(x) ∈ Q(x , v) for all v ∈ V , x ∈ XI .

Gebhart et al. July 9, 2025 14 / 17

Polynomially Space Bounded Logics

Logic L is one-step exponentially bounded if any LIS I
over one-step formulas L is one-step satisfiable iff it is
one-step satisfiable in a one-step model with at most
exponentially many states XI in |L|.

One-step exponentially bounded logic L is exponentially
branching if for any LIS I over one-step formulas L there
exists a satisfying set YI of at most exponentially many
LIS over XI × V such that for (XI , τ) there exists t ∈ TXI

with (XI , τ, t) |= I if and only if there exists Q ∈ YI with
τ(v)(x) ∈ Q(x , v) for all v ∈ V , x ∈ XI .

Gebhart et al. July 9, 2025 14 / 17

Polynomially Space Bounded Logics

Logic L is one-step exponentially bounded if any LIS I
over one-step formulas L is one-step satisfiable iff it is
one-step satisfiable in a one-step model with at most
exponentially many states XI in |L|.
One-step exponentially bounded logic L is exponentially
branching if for any LIS I over one-step formulas L there
exists a satisfying set YI of at most exponentially many
LIS over XI × V such that for (XI , τ) there exists t ∈ TXI

with (XI , τ, t) |= I if and only if there exists Q ∈ YI with
τ(v)(x) ∈ Q(x , v) for all v ∈ V , x ∈ XI .

Gebhart et al. July 9, 2025 14 / 17

Polynomially Space Bounded Logics

Exponentially branching logic L polynomial space bounded
if for any LIS I over one-step formulas L we have the
following properties:

Fixing a satisfying set YI as {Q1, . . . ,Qm} and computing
some Qi can be done in polynomial space.
Deciding whether a LIS Q over V × XI is a sub-LIS of
some Qi is in PSPACE.

Here these bounds refer to the combined syntactic size of
L.

Gebhart et al. July 9, 2025 15 / 17

Polynomially Space Bounded Logics

Exponentially branching logic L polynomial space bounded
if for any LIS I over one-step formulas L we have the
following properties:

Fixing a satisfying set YI as {Q1, . . . ,Qm} and computing
some Qi can be done in polynomial space.
Deciding whether a LIS Q over V × XI is a sub-LIS of
some Qi is in PSPACE.

Here these bounds refer to the combined syntactic size of
L.

Theorem
Satisfiability of a LIS I over formulas L in a polynomial space
bounded logic L is decidable in PSPACE (bounded in the
combined syntactic size of L).

Gebhart et al. July 9, 2025 15 / 17

The Logic Lgen

Gebhart et al. July 9, 2025 16 / 17

The Logic Lgen

Lemma

The logic non-expansive fuzzy Lgen is one-step exponentially
bounded.

Gebhart et al. July 9, 2025 16 / 17

The Logic Lgen

Lemma

The logic non-expansive fuzzy Lgen is one-step exponentially
bounded.

Lemma

The logic non-expansive fuzzy Lgen is exponentially branching.

Gebhart et al. July 9, 2025 16 / 17

The Logic Lgen

Lemma

The logic non-expansive fuzzy Lgen is one-step exponentially
bounded.

Lemma

The logic non-expansive fuzzy Lgen is exponentially branching.

Theorem

The logic non-expansive fuzzy Lgen is polynomial space
bounded.

Gebhart et al. July 9, 2025 16 / 17

Conclusion & Future Work

Conclusion

We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

Conclusion & Future Work

Conclusion
We introduced non-expansive fuzzy coalgebraic logic.

We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

Conclusion & Future Work

Conclusion
We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.

We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

Conclusion & Future Work

Conclusion
We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.

We proved this for the logic Lgen.

Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

Conclusion & Future Work

Conclusion
We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Future work

Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

Conclusion & Future Work

Conclusion
We introduced non-expansive fuzzy coalgebraic logic.
We reduced satisfiability to that of one-step logics.
We introduced conditions under which satisfiability in such
a logic is decidable in PSPACE and proved that this is
actually the case.
We proved this for the logic Lgen.

Future work
Cover more logics (partially done).

Gebhart et al. July 9, 2025 17 / 17

