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Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server ( infinite set )

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)
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Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?
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Models for Bar Languages

∠∠∠ We consider classical automata over finite subalphabets A0 ⊆f A:

Definition (Bar DFA )

A bar DFA A is a DFA over a finite alphabet A0 ⊆f A .

Its bar language Lα(A ) =
{
w ∈ A?

: w ≡α w ′ ∈ L(A )
}
consists of all rep-

resentatives of its α-equivalence classes.

automaton is closed iff L(A ) = Lα(A )

∠∠∠ Correspond precisely to Schröder et al.’s nominal automata.

(Schröder, Kozen, Milius, Wißmann ’17)

∠∠∠ Expressivity (data languages):

subclass of register automata
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Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H ) = LT ?
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Learning Bar Automata

Question: Can’t we just use classical learning algorithms for bar automata (as

they are just DFA with additional semantics)?

L T

Is w ∈ LT ?(MQ) (MQα)

YES/NO

Is Lα(H ) = LT ?(EQ) (EQα)

YES/COUNTEREXAMPLE wc

∠∠∠ Problem:

q0 q1

q2

q3
|a |b

b

a

|a

wc is not a counterexample in

the classical sense.

(but |a|bb≡α wc would be)
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Learning Bar Automata (Our Approach)

∠∠∠ Indeed, this is the only problem with the previous approach:

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H ) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H )?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w
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Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

( apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).
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Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H )?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible?

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.
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by comparing with the closed bar automaton.
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Learning Bar Automata (Our Approach)

∠∠∠ By solving both problems, correctness of our approach is shown.

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H ) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H )?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w

Query Complexity

Lbar asks at most as many queries as L would.

∠∠∠ Implicit Assumption: Lbar knows the number of registers (size of

alphabet) needed for LT .
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How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.

2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity )

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).
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What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!
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Conclusion & Future Work

∠∠∠ Learnability of various kinds of bar languages in Angluin’s framework.

∠∠∠ Our learner is in terms of query complexity as optimal as the underlying

learner.

∠∠∠ Introduced efficient procedures for checking α-equivalence.

Future Work

∠∠∠ Is guessing possible for bar ω-languages? Can the computation of closures

be removed?

∠∠∠ Can this approach be extended to efficiently learn data languages?

∠∠∠ What to do about conformance testing?
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Questions?
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