
Learning Automata

with Name Allocation

1st July 2025

Florian Frank, Stefan Milius, Jurriaan Rot

and Henning Urbat

Research Seminar

Chair for Computer Science 8 (Theoretical Computer Science)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata

 unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation (Register Automata & Data Languages)

∠∠∠ Data languages are formal languages over an infinite alphabet.

Standard model: Register Automata unfeasible for model checking (undecidable inclusion)

∠∠∠ To gain decidability, we must accept restrictions in their expressivity.

L =

{
a1 · · · an ∈ A?

:

(
a1 = an ∧

∀1 < i < n. a1 6= ai

)}
‘first and last user coincide and differ from any other user’

Result Schröder, Kozen, Milius, Wißmann ’17

(Specific) languages expressible by binding signatures and their automata

have decidable inclusion problems.

A: admissible user IDs for
a server (infinite set)

What are ‘words with binders’?

λa.(λb.)?a
(using shadowing)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 1 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Motivation

∠∠∠ We consider data languages with explicit binders, which we see with

λ-terms without parenthesis:

λx. f x λy. x y λz. y z scope of binders
is unlimited here

x f x y x y z y z

=
∧

bar strings/languages

a f a b ab ab a

≡α
admits an

α-equiv.

‘matching’ data words

x f x f x f x f x

x f x y x y z y z

a f aaaabab

∠∠∠ ‘Match’ data words by taking any

representative without bars.

∠∠∠ Our Problem: How do we get the neccessary models for model

checking from a black-box system?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 2 / 12

Models for Bar Languages

∠∠∠ We consider classical automata over finite subalphabets A0 ⊆f A:

Definition (Bar DFA)

A bar DFA A is a DFA over a finite alphabet A0 ⊆f A .

Its bar language Lα(A) =
{
w ∈ A?

: w ≡α w ′ ∈ L(A)
}
consists of all rep-

resentatives of its α-equivalence classes.

automaton is closed iff L(A) = Lα(A)

∠∠∠ Correspond precisely to Schröder et al.’s nominal automata.

(Schröder, Kozen, Milius, Wißmann ’17)

∠∠∠ Expressivity (data languages):

subclass of register automata

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 3 / 12

Models for Bar Languages

∠∠∠ We consider classical automata over finite subalphabets A0 ⊆f A:

Definition (Bar DFA)

A bar DFA A is a DFA over a finite alphabet A0 ⊆f A .

Its bar language Lα(A) =
{
w ∈ A?

: w ≡α w ′ ∈ L(A)
}
consists of all rep-

resentatives of its α-equivalence classes.

automaton is closed iff L(A) = Lα(A)

∠∠∠ Correspond precisely to Schröder et al.’s nominal automata.

(Schröder, Kozen, Milius, Wißmann ’17)

∠∠∠ Expressivity (data languages):

subclass of register automata

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 3 / 12

Models for Bar Languages

∠∠∠ We consider classical automata over finite subalphabets A0 ⊆f A:

Definition (Bar DFA)

A bar DFA A is a DFA over a finite alphabet A0 ⊆f A .

Its bar language Lα(A) =
{
w ∈ A?

: w ≡α w ′ ∈ L(A)
}
consists of all rep-

resentatives of its α-equivalence classes.

automaton is closed iff L(A) = Lα(A)

∠∠∠ Correspond precisely to Schröder et al.’s nominal automata.

(Schröder, Kozen, Milius, Wißmann ’17)

∠∠∠ Expressivity (data languages):

subclass of register automata

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 3 / 12

Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H) = LT ?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 4 / 12

Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H) = LT ?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 4 / 12

Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H) = LT ?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 4 / 12

Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H) = LT ?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 4 / 12

Active Automata Learning

Assumption: Black-box system recognises a bar language LT

∠∠∠ Task: Infer an automaton behaving ‘identically’ to the black-box system.

∠∠∠ Take Angluin’s framework: (Angluin ’87)

(replace the black-box system by an all-knowing oracle)

∠∠∠ Two kinds of queries:

???
MQ

Given a bar string w ∈ A?
,

is w ∈ LT ?

???
EQ

Given a bar automaton H ,

is Lα(H) = LT ?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Motivation) 4 / 12

Learning Bar Automata

Question: Can’t we just use classical learning algorithms for bar automata (as

they are just DFA with additional semantics)?

L T

Is w ∈ LT ?(MQ) (MQα)

YES/NO

Is Lα(H) = LT ?(EQ) (EQα)

YES/COUNTEREXAMPLE wc

∠∠∠ Problem:

q0 q1

q2

q3
|a |b

b

a

|a

wc is not a counterexample in

the classical sense.

(but |a|bb≡α wc would be)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Bar Automata) 5 / 12

Learning Bar Automata

Question: Can’t we just use classical learning algorithms for bar automata (as

they are just DFA with additional semantics)?

L T

Is w ∈ LT ?(MQ) (MQα)

YES/NO

Is Lα(H) = LT ?(EQ) (EQα)

YES/COUNTEREXAMPLE wc

∠∠∠ Problem:

q0 q1

q2

q3
|a |b

b

a

|a

wc is not a counterexample in

the classical sense.

(but |a|bb≡α wc would be)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Bar Automata) 5 / 12

Learning Bar Automata

Question: Can’t we just use classical learning algorithms for bar automata (as

they are just DFA with additional semantics)?

L T

Is w ∈ LT ?(MQ) (MQα)

YES/NO

Is Lα(H) = LT ?(EQ) (EQα)

YES/COUNTEREXAMPLE wc

∠∠∠ Problem:

q0 q1

q2

q3
|a |b

b

a

|a

Is Lα
(H) = LT?

No:
wc

= a aa

wc is not a counterexample in

the classical sense.

(but |a|bb≡α wc would be)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Bar Automata) 5 / 12

Learning Bar Automata

Question: Can’t we just use classical learning algorithms for bar automata (as

they are just DFA with additional semantics)?

L T

Is w ∈ LT ?(MQ) (MQα)

YES/NO

Is Lα(H) = LT ?(EQ) (EQα)

YES/COUNTEREXAMPLE wc

∠∠∠ Problem:

q0 q1

q2

q3
|a |b

b

a

|a

Is Lα
(H) = LT?

No:
wc

= a aa

wc is not a counterexample in

the classical sense.

(but |a|bb≡α wc would be)

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Bar Automata) 5 / 12

Learning Bar Automata (Our Approach)

∠∠∠ Indeed, this is the only problem with the previous approach:

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H)?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Bar Automata) 6 / 12

Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

(apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 7 / 12

Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

(apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 7 / 12

Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

(apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 7 / 12

Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

(apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 7 / 12

Learning Bar Automata (Problem 1: Computing α-equivalent words)

Given some bar word wT ∈ A?
, compute w ≡α wT over A

?
0ExclamationExclamationExclamation

∠∠∠ With λ-terms, checking if two terms are α-equivalent essentially boils
down to computing a De Bruijn representation.

(apply De Bruijn representations to bar strings)

1 b 1 2 1 2 3 2 3 a b a y a y z y z
normal form

De Bruijn

∠∠∠ These normal forms are unique (per equivalence class) and computable

in polynomial time (with linear-logarithmic space).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 7 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible?

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible?

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible?

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible?

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible? not exactly ...

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible? not exactly ...

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Problem 2: Finding accepted words)

Given some w ∈ A0, is there a w ′ ≡α w with w ′ ∈ L(H)?ExclamationExclamationExclamation

∠∠∠ Easy non-deterministic algorithm (in NP):

Algorithm

1) Guess a bar string of equal length;

2) Check for α-equivalence.

∠∠∠ Is a deterministic poly-time algorithm possible? not exactly ...

∠∠ In general: NP-completeness (via the Hamilton cycle problem) ...

∠∠ ... but for fixed alphabets in deterministic poly-time.

by comparing with the closed bar automaton.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 8 / 12

Learning Bar Automata (Our Approach)

∠∠∠ By solving both problems, correctness of our approach is shown.

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H)?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w

Query Complexity

Lbar asks at most as many queries as L would.

∠∠∠ Implicit Assumption: Lbar knows the number of registers (size of

alphabet) needed for LT .

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 9 / 12

Learning Bar Automata (Our Approach)

∠∠∠ By solving both problems, correctness of our approach is shown.

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H)?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w

Query Complexity

Lbar asks at most as many queries as L would.

∠∠∠ Implicit Assumption: Lbar knows the number of registers (size of

alphabet) needed for LT .

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 9 / 12

Learning Bar Automata (Our Approach)

∠∠∠ By solving both problems, correctness of our approach is shown.

L T

Lbar

Is w ∈ LT?(MQ) (MQα)

YES/NO

Is Lα(H) = LT?(EQ) (EQα)

wc Compute w ≡α wT

over A 0

∃w ′ ≡αw :
w ′ ∈ L0(H)?

1

2
TA

wT

YES

w

YESwc := w ′

NOwc := w

Query Complexity

Lbar asks at most as many queries as L would.

∠∠∠ Implicit Assumption: Lbar knows the number of registers (size of

alphabet) needed for LT .

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Problems with Learning) 9 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.

2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

How to handle an unknown Alphabet?

Idea

If Lbar gets stuck, just restart anew (with an extended alphabet).

1) Start with the empty alphabet A0 = ∅.
2) Repeat:

a) If a correct hypothesis is found, terminate.

b) If T delivers a counterexample wT and step 1

works, continue.

c) Else: Extend A0 to A0 ⊆ A′
0 and try again.

Choose extension via De Bruijn normal form.

Theorem (Extension Complexity)

Lbar can infer a bar automaton using the minimal alphabet with at most as many

queries as L would need (summed over all smaller cardinalities).

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learning Unknown Alphabets) 10 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

What about ω- and tree languages?

∠∠∠ Next to finite word languages, we extended our approach to bar ω- and
bar tree languages:

Alphatic Trees

As expected, everything works out analogously:

∠∠∠ Normal forms are computed branchwise (and thus still in poly-time).

∠∠∠ Finding accepted bar trees is NP-complete, but also in para. poly-time.

∠∠∠ Handling unknown alphabets works completely identical.

Challenges in the infinite word case

∠∠∠ There is no suitable normal form for infinite strings.

(example at blackboard)

∠∠∠ Checking α-equivalence is still in poly-time, but guessing seemingly im-

possible.

∠∠∠ Expensive computation of closures is important!

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Learningω- and Tree Languages) 11 / 12

Conclusion & Future Work

∠∠∠ Learnability of various kinds of bar languages in Angluin’s framework.

∠∠∠ Our learner is in terms of query complexity as optimal as the underlying

learner.

∠∠∠ Introduced efficient procedures for checking α-equivalence.

Future Work

∠∠∠ Is guessing possible for bar ω-languages? Can the computation of closures

be removed?

∠∠∠ Can this approach be extended to efficiently learn data languages?

∠∠∠ What to do about conformance testing?

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Conclusion) 12 / 12

Questions?

References

Angluin, Dana. ‘Learning regular sets from queries and

counterexamples’. Information and Computationc 75.2 (Nov. 1987),

pp. 87–106. ISSN: 0890-5401. DOI: 10.1016/0890-5401(87)90052-6.
URL: https://doi.org/10.1016/0890-5401(87)90052-6.
Schröder, Lutz, Dexter Kozen, Stefan Milius, Thorsten Wißmann.

‘Nominal Automata with Name Binding’. Proc. 20th International

Conference on Foundations of Software Science and Computation Structures,

(FOSSACS 2017). Vol. 10203. Lect. Notes Comput. Sci. 2017, pp. 124–142.

Frank et al. | INF8 Oberseminar | Learning Automata with Name Allocation (Appendix) ∞

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

	Motivation
	Learning Bar Automata
	Problems with Learning
	Learning Unknown Alphabets
	Learning - and Tree Languages
	Conclusion
	Appendix
	References

