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Intuition EAU

Inquisitive FOL can be seen as an extension of classical logic by questions.
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Intuition EAU

Inquisitive FOL can be seen as an extension of classical logic by questions.
Example

Natural Language Formula
Luisa is guilty. Guilty (Luisa)

If Luisa was there, do we know whether WasThere (Luisa) —7 Guilty (Luisa)
Luisa is guilty?

If we knew whether Luisa was there, do 7 WasThere (Luisa) —7 Guilty (Luisa)
we know whether Luisa is guilty?

ls there some person, who is guilty? 2. Guilty (z)
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Intuition EAU

Formulae shall be supported by sets of possible worlds which refer to FO-Models.
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Intuition EAU

Formulae shall be supported by sets of possible worlds which refer to FO-Models.
Example
'Guilty Not Guilty

® Consider the following possible worlds regarding Luisa: = Was There (g Woy
Was Not There| w3 Wy
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Intuition EAU

Formulae shall be supported by sets of possible worlds which refer to FO-Models.
Example
'Guilty Not Guilty

® Consider the following possible worlds regarding Luisa: = Was There (g Woy
Was Not There| w3 Wy

® We get the following properties
regarding the single worlds:

wy = WasThere (Luisa) —7 Guilty (Luisa)
wy = WasThere (Luisa) —7 Guilty (Luisa)
w3 = WasThere (Luisa) —7 Guilty (Luisa)
wy = WasThere (Luisa) —7 Guilty (Luisa)
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Intuition EAU

Formulae shall be supported by sets of possible worlds which refer to FO-Models.
Example

'Guilty Not Guilty

® Consider the following possible worlds regarding Luisa: = Was There (g Woy

® We get the following properties
regarding the single worlds:

wq
w2
w3
w4

Was Not There| w3 Wy

® |f we look at information states, we get
the following support properties:

{wy, we} = WasThere (Luisa) —7 Guilty (Luisa)

{wy, w3} E WasThere (Luisa) —7 Guilty (Luisa)
{w, we, w3} = WasThere (Luisa) —7 Guilty (Luisa)

— WasThere (Luisa) —7 Guilty (Luisa)
= WasThere (Luisa) —7 Guilty (Luisa)
= WasThere (Luisa) —7 Guilty (Luisa)

(Luisa) (Luisa)

— WasThere (Luisa) —7 Guilty (Luisa
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Syntax EAU

e We callaset ) .= (Py, Fy,ary, rigidy) a signature.

® Py provides predicate symbols.

® |5, provides function symbols.

® ary: Py + Fx, — N maps symbols to their arity.

¢ rigidy, C Fy indicates whether a function symbol is rigid.

[Cia22]
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Syntax EAU

e We callaset ) .= (Py, Fy,ary, rigidy) a signature.

® Py provides predicate symbols.

® |5, provides function symbols.

® ary: Py + Fx, — N maps symbols to their arity.

¢ rigidy, C Fy indicates whether a function symbol is rigid.

Assume the existence of a set Var of variables.

[Cia22]
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Syntax EAU

Definition

e We callaset ) .= (Py, Fy,ary, rigidy) a signature.

® Py provides predicate symbols.

® [y provides function symbols.

® ary: Py + F5xy, — N maps symbols to their arity.

¢ rigidy, C Fy indicates whether a function symbol is rigid.

Assume the existence of a set Var of variables.

Terms and Formulae over a signature 2. are defined as follows:
t € Tery :::az|f(t1,...,tar2(f)) feky
o, € Fyx ZI:P(tl,...,tarE(p)) | 1 ‘ o — Y ‘ O N\Y | O\ P ‘ quﬁ‘ Hz. ¢ P e Py
Y0 =\ 0
[Cia22]
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Syntax EAU

Regarding Rocg

[dBr72]
2[STS]
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Syntax EAU

Regarding Rocg

* Implement variables via De Bruijn indices’:

Var .= N
peEFy=...|V.o|F.¢
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Syntax EAU

Regarding Rocg

* Implement variables via De Bruijn indices’:

Var .= N
peEFy=...|V.o|F.¢

e Use Autosubst?-library to implement
substitutions.
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Syntax EAU

Regarding Rocg

* Implement variables via De Bruijn indices’:

Var .= N
peEFy=...|V.o|F.¢

e Use Autosubst?-library to implement
substitutions.

® Use Typeclasses to use signatures implicitly.

[dBr72]
2[STS]
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Syntax EAU

Regarding Rocg

® Ensure decidable equality for predicate and

* Implement variables via De Bruijn indices’: function symbols to distinguish them.

Var .= N
peEFy=...|V.o|F. ¢

e Use Autosubst?-library to implement
substitutions.

® Use Typeclasses to use signatures implicitly.

[dBr72]
2[STS]
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Syntax EAU

Regarding Rocg

® Ensure decidable equality for predicate and
function symbols to distinguish them.

® Implement variables via De Bruijn indices': TUIS IS
® |mplement arities via arity types:

Var := N .
e Fy = ...|V.0|F.0 ary: Py + Fy — |FinSet|

e Use Autosubst?-library to implement
substitutions.

® Use Typeclasses to use signatures implicitly.

[dBr72]
2[STS]
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Syntax EAU

Regarding Rocg

® Ensure decidable equality for predicate and
function symbols to distinguish them.

® Implement variables via De Bruijn indices': TUIS IS
® |mplement arities via arity types:

Var := N .
e Fy = ...|V.0|F.0 ary: Py + Fy — |FinSet|

e Use Autosubst?-library to implement ® |mplement arguments via argument functions:

substitutions. t=...| f(args) where args :arx(f) — Tery
® Use Typeclasses to use signatures implicitly. ¢ = P (args) | ... where args : ars (P) — Tery

[dBr72]

2[STS]
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Syntax
Regarding Rocq (2)

Class Signature =

{

).

PSymb : Type;

PSymb_EqgDec :: EqDec (eq_setoid PSymb);
PAri : PSymb — Type;

FSymb : Type;

FSymb_EqDec :: EqDec (eq_setoid FSymb);
FAri : FSymb — Type,;

rigid : FSymb — bool

Gk ... %)

Inductive form ‘{Signature} =

Pred : forall (p: PSymb), (PAri p — term) — form
Bot : var — form

Impl : form — form — form

Conj : form — form — form

Idisj : form — form — form

Forall : {bind term in form} — form

TIexists :{bind term in form} — form.

=AU
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Syntax
Regarding Rocq (2)

Class Signature =

{

).

PSymb : Type;

PSymb_EqgDec :: EqDec (eq_setoid PSymb);
PAri : PSymb — Type;

FSymb : Type;

FSymb_EqDec :: EqDec (eq_setoid FSymb);
FAri : FSymb — Type,;

rigid : FSymb — bool

Gk ... %)

Inductive form ‘{Signature} =

Pred : forall (p: PSymb), (PAri p — term) — form
Bot : var — form

Impl : form — form — form

Conj : form — form — form

Idisj : form — form — form

Forall : {bind term in form} — form

TIexists :{bind term in form} — form.

=AU

® (Decidable) syntactic equality for formulae (and

terms) becomes non-trivial because of dependent

types.
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Syntax
Regarding Rocq (2)

=AU

Class Signature =

{

],

PSymb : Type;

PSymb_EqgDec :: EqDec (eq_setoid PSymb);
PAri : PSymb — Type;

FSymb : Type;

FSymb_EqDec :: EqDec (eq_setoid FSymb);
FAri : FSymb — Type,;

rigid : FSymb — bool

Gk ... %)

Inductive form ‘{Signature} =

Pred : forall (p: PSymb), (PAri p — term) — form
Bot : var — form

Impl : form — form — form

Conj : form — form — form

Idisj : form — form — form

Forall : {bind term in form} — form

TIexists :{bind term in form} — form.

® (Decidable) syntactic equality for formulae (and
terms) becomes non-trivial because of dependent
types.

e Solution: Define a setoid equality for terms and
formulae.
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Syntax
Regarding Rocq (3)

Fixpoint term_eq {S : Signature} (t : term) : term — Prop :=
match t with
| Var x1 =
fun t2 =
match t2 with
| Var x2 = (x1 == x2)%type
| = False
end
| Func f1 argsl =
fun t2 =
match t2 with
| Func £2 args2 =
match equiv_dec f1 f2 with
| left Heq =
term_eq_Func_Func_EqgDec term_eq f1 argsl £2 args2 Heq
| = False
end
| = False
end
end.

© 00 N O O A O DN =
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=AU

Definition term_eq_Func_Func_EgDec

{S: Signature}
(rec : relation term)

(f1: FSymb)

(argsi FAri f1 — term)

(f2 : FSymb)

(args2 : FAri £f2 — term)
(is_equal : (f1 == £2)%type) : Prop :

eq_rect
f1
(fun f = (FAri f — term) — Prop)
(fun args =
forall arg,
rec (argsl arg) (args arg)
)

f2
is_equal
args2.
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Semantics '
Models, States

Let X be a signature.
e Atuple M = (Wm, Lo, (M [ 1) wew rery. » (MM [[P]])wewapepz) is called a model.

[Cia22]
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Semantics '
Models, States

Definition
Let X be a signature.
e Atuple M = (Wm, Lo, (M [ 1) wew rery. » (MM [[P]])weW’PEPE) is called a model.

® Wyy is a set of possible worlds.

[Cia22]
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=AU

Semantics '
Models, States

Definition
Let ) be a signature.
e Atuple M = (Wm, Lo, (M [ 1) wew rery. » (MM [[P]])MEW,PEPE) is called a model.

® Wy is a set of possible worlds.
® [y, is a (non-empty) set of individuals.
o N, If] : Ig;z(f) — loy is the interpretation of f in a world w.

e N, [P] C Igjrf(P) is the interpretation of P in a world w.

[Cia22]
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=AU

Semantics '
Models, States

Definition

Let X be a signature.

e Atuple M = (Wm, Lo, (M [ 1) wew rery. » (MM [[P]])MEW,PEPE) is called a model.
® Wy is a set of possible worlds.

® [y, is a (non-empty) set of individuals.

o N, If] : Ig;z(f) — loy is the interpretation of f in a world w.

e N, [P] C Igjrf(m is the interpretation of P in a world w.

e for every rigid f € Fy and for all wy, wy € Wy we have M, [f] = M., [f]-

[Cia22]
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Semantics EAU
Models, States

Definition
Let ) be a signature.

e Atuple M = (Wm, Lo, (M [ 1) wew rery. » (MM [[P]])MEW,PEPE) is called a model.

® Wy is a set of possible worlds.
® [y, is a (non-empty) set of individuals.
o N, If] : Ig}gx(f) — loy is the interpretation of f in a world w.

e N, [P] C ISJTIZ(P) is the interpretation of P in a world w.
e for every rigid f € Fy and for all wy, wy € Wy we have M, [f] = M., [f]-

Definition
Let X' be a signature, )t be a model. A subset s C Wy is called an (information) state.

'[Cia22]
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Semantics EAU

Referent of a Term

Let 2 be a signature, 2t be a Model, s C Wyy an information state and n: Var — Igy a variable
assignment. The referent of a term t € 'lery; is defined as follows:
i)ﬁw,n [[ZC]] =T (33)
gﬁwﬂ? [[f (tl? e ’tarz(f))]] = My, [[f]] (Dﬁwm [[tl]] o 79ﬁwﬂ7 [[tarz(f)]])
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Semantics EAU

Referent of a Term

Let 2 be a signature, 2t be a Model, s C Wyy an information state and n: Var — Igy a variable
assignment. The referent of a term t € 'lery; is defined as follows:
i)ﬁw,n [[ZC]] =T (ZIZ)
ﬁﬁwm [[f (tl? e ’tarz(f))]] = My, [[f]] (Dﬁwm [[tl]] o 79ﬁwﬂ7 [[tarz(f)]])

Using the new syntax:
My [f (args)] = My [f] M,y [=] 0 arygs)
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Semantics EAU
Support

The support relation |= is defined as follows:
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Semantics EAU
Support

The support relation |= is defined as follows:
M, s,n =P (t,...,taxp) <= forallw € s we have (M, [t1]..... My [tarnr)]) € DM [P]
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Semantics EAU
Support

The support relation |= is defined as follows:

M, s,n =P (t,...,taxp) <= forallw € s we have (M, [t1]..... My [tarnr)]) € DM [P]
M s,nE L= s=10
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Semantics EAU
Support

The support relation |= is defined as follows:

M, 5,0 f= P (t1,... tayp)) <= forallw € s we have (M, [t1] ..., Muy [tasr)]) € M [P]
M s,nE L= s=10
M, s,n = ¢ — <= forallt Cs, M t,n = ¢implies M, t,n = Y
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Semantics EAU
Support

The support relation |= is defined as follows:

M, 5,0 f= P (t1,... tayp)) <= forallw € s we have (M, [t1] ..., Muy [tasr)]) € M [P]
M s,nE L= s=10
M, s,n = ¢ — <= forallt Cs, M t,n = ¢implies M, t,n = Y
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Semantics EAU
Support

The support relation |= is defined as follows:

M, 5,0 f= P (t1,... tayp)) <= forallw € s we have (M, [t1] ..., Muy [tasr)]) € M [P]
M s,nE L= s=10
M, s,n = ¢ — <= forallt Cs, M t,n = ¢implies M, t,n = Y
M, s,nEGNY <= M, s,nE=dand M, s,n = ¢
M, s,nE OV <= M s,nE=porM, s, n k=Y
M, s,n =Ve. ¢ < foralli € oy, M, s,n[x — 1] = o
M, s,n = Fz. ¢ <= there exists i € log, M, s,n[x — i] E ¢
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Semantics EAU
Support

The support relation |= is defined as follows:

M, 5,0 f= P (t1,... tayp)) <= forallw € s we have (M, [t1] ..., Muy [tasr)]) € M [P]
M s,nE L= s=10
M, s,nE¢— Y <=forallt Cs, M t,n = ¢implies M, t,n = ¢
M, s,nEGNY <= M, s,nE=dand M, s,n = ¢
M, s,nE OV <= M s,nE=porM, s, n k=Y
M, s,n =Ve. ¢ < foralli € oy, M, s,n[x — 1] = o
M, s,n = Fz. ¢ <= there exists i € log, M, s,n[x — i] E ¢

Using the new syntax:
M, s,n = P (args) <= for allw € s we have (M, [—] o args) € M, [P]
M, s,n=V.¢ < foralli € oy, M,s,ien = ¢
M, s,n = F.¢ <= there exists i € oy, M, s,ien = ¢
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Semantics
Various properties

Persistency

tCsandM,s,n == M, t,n, = o

Empty State Property

M, 0,n = ¢

=AU
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Semantics EAU

Various properties

Persistency

tCsandM,s,n == M, t,n, = o

Empty State Property

M,0,n = ¢
* M|, = (s € Wop, Ion, . ..)
Locality

M, s,n = ¢ <= Mls,8,1 =
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Semantics EAU

Various properties

Persistency
tCsandM,s,n == M, t,n, = o
Empty State Property

M, 0,n = ¢
® 9)T|3 = (Sng,Igﬁ,)

Locality

im>3>77 |:¢<:>m|578777 Ing

e Defining 91|, in Rocq needs subtypes.
® Solution: Generalize Wyy, to a setoid.
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Semantics EAU

Various properties

Context {M : Model}. Context (s : state).
Persistency

Program Definition restricted_Model : Model =
{l
World :={w: World| contains s w};
World Setoid :=sig_Setoid (contains_Morph s);
PInterpretation w := PInterpretation (projl _sig w);
FInterpretation w := FInterpretation (projl_sig w);

(x ... %)
1}

Program Definition restricted_state (t : state):
@state (restricted Model s):= (* ... %)

tCsandM,s,n == M, t,n, = o

© 00 N o 0 A 0w N o=

Empty State Property

M, 0,n = ¢
® 9)T|3 = (8§W§)ﬁ,1§m,)

a4 a4 a4
w N =+ O

—_
IS

Locality

-
(3}

Program Definition unrestricted_state
(t : Qstate (restricted Model s)):state:= (x ... *)

—a
N O

M,s,n = ¢ <= M, 8,0 ¢
18 |Proposition locality ‘{M : Model} :

[ Def|n|ng m|8 |n Rocq needs Subtypes 19 forall phl sat, substatet s —

. . ) 20 support phi t a <> support phi (Qrestricted state Mst)a.
e Solution: Generalize Wqy to a setoid. pport p pport phi ( _ _ )
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Semantics EAU
IngFOL

Define Inquisitive First-Order Logic as follows:
InqLogy = {¢ € Fx | M, s,n | ¢ for all models M, s C Wgp, n: Var — Ign}

[CG22]
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Semantics EAU
IngFOL

Define Inquisitive First-Order Logic as follows:
InqLogy = {¢ € Fx | M, s,n | ¢ for all models M, s C Wgp, n: Var — Ign}

e There exists a ND-System by Ciardelli/Grilletti’ which is sound, but not yet proven to be complete.

[CG22]
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2. Bounded Inquisitive FOL

2.1 Boundedness

2.2 A Sequent Calculus
2.3 Truth Semantics
2.4 The Casari Scheme



Boundedness EAU

Introduction

® Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.
InqLogBy., :={¢ € Fx | M,s,n = ¢ for all models N with [Wop| < n,s € Wag,n: Var — Iy}
InqLogB; := ()| InqLogB; ,

neN

={¢ € Fx | M, s,n = ¢ for all models M, sCsWon, n: Var — Ion}

[CG22]
M.O. Elliger IngFOL, Bounded and Mechanized June 17, 2025 15/37




Boundedness EAU

Introduction

® Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.
InqLogBy., :={¢ € Fx | M,s,n = ¢ for all models N with [Wop| < n,s € Wag,n: Var — Iy}
InqLogB; := ()| InqLogB; ,

neN

={¢ € Fx | M, s,n = ¢ for all models M, sCsWon, n: Var — Ion}

e Ciardelli/Griletti' extended their ND-System for InqLogB ».n, and it proved it to be also complete (for
most signatures).

e Added axiom: Cardinality Formula, which depends on the concrete signature.

[CG22]
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Cardinality Formulae' EAU
Only One Predicate

C{{,P} =1
ciP .= var P
cit =3\, [Pz P nPe s el ) |

[CG22]
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Cardinality Formulae’ EAU

Assuming all function symbols are rigid

CUE = 1
Cr = VI1?R1(T1) A ... AN VEIR(T)

cZ, = 37/, [ (Bi@) = CFYA (R1(T1) = Cly)] V...
\VEHTI\\/g 1[ Tt)%CL)A(_‘Rs(Tz)*(ﬁnH 1.)]

[CG22]
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. . E
Cardinality Formulae’ EAU
Adding equality to the syntax

CY=1

l
CY = A\ VE;?R;(T;) A N\ Vg, 3=2(f;(7;) = 2)

j=1 j=1
~ l - ) _ ) — X
Cﬁ‘H = \\/j:lzﬂmj\\/izl[ (R(z;) — CP) A (- i(Tj) — C:rzf+1—a;) IRY

Vv Vi 3,2 Vi [ (@) = 2 = CF) A (f5F;) # 2 = Ciqy)]

[CG22]
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A Sequent Calculus EAU

e Litak/Sano provide a Sequent Calculus’ for
InqLogB 5. which is proven to be sound and
complete.

'[LS]
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e Litak/Sano provide a Sequent Calculus’ for
InqLogB 5. which is proven to be sound and
complete.

® | abels: Finite sets of natural numbers.
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A Sequent Calculus EAU

e Litak/Sano provide a Sequent Calculus’ for
InqLogB 5. which is proven to be sound and
complete.

® | abels: Finite sets of natural numbers.

e Sequents: I' = A where
o I A are finite sets of labelled formulae, e.g.

({1,2},¢)

o [': “Assumptions”
o A: “Possible Proof Goals”

'[LS]
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A Sequent Calculus EAU

e Litak/Sano provide a Sequent Calculus’ for ® Semantics of a labelled formula (X, ¢) are given
InqLogB y- which is proven to be sound and by a mapping f: N — Wypy.
complete. e Semantics of a Sequent I' = A:
® | abels: Finite sets of natural numbers. IFOM, £, b= (X, ¢) forall (X.¢) el
* Sequents: I' = A where then M, f,n = (X,) forsome (Y, ¢)c A
o I A are finite sets of labelled formulae, e.g.
({1,2},¢)

o [': “Assumptions”
o A: “Possible Proof Goals”
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A Sequent Calculus EAU

e Litak/Sano provide a Sequent Calculus’ for ® Semantics of a labelled formula (X, ¢) are given
InqLogB y- which is proven to be sound and by a mapping f: N — Wypy.
complete. e Semantics of a Sequent I' = A:
® | abels: Finite sets of natural numbers. IFOM, £, b= (X, ¢) forall (X.¢) el
* Sequents: I' = A where then M, f,n = (X,) forsome (Y, ¢)c A
o I A are finite sets of labelled formulae, e.g.
({1,2},¢) .
o [": “Assumptions” e We slightly adapt the Sequent Calculus of
o A: “Possible Proof Goals” Litak/Sano to our needs.
'[LS]
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A Sequent Calculus EAU

Some Rules

0,¢) e A X, 1)el' neX
(F¢:> A (empty) | )F = A

(Xoov)ed {L(Y.0)= (V¥),AlYCX} |
I'= A

—)

= A (= V) = A (= 3)
. . X A.
(X,owv) el F,<Z{<,:<>b)A:>A LX) =4 (X,3.9)c T FIL(E)L,( ¢) = AFD] g,
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Sequent Calculus EAU

Some Notes

Inductive Seq {Signature} : relation (1list 1b_form) :=

(x ... %)

]
2
3| | Seq Iexists r:
4 forall 1s rs ns phi t,
5 InS (pair ns <{iexists phi}>) rs —
® The rule of cut is proven to be admissible by 6 term _rigidt —
Litak/Sano. 7 Seq 1s ((pair ns phi.|[t/]) = rs) —
8 Seq ls rs.
® |nside our formalization, we hardcoded it 9
whithout showing admissibility. 10 |Theorem soundness {Signature} :
11 | forall Phi Psi, Seq Phi Psi —
o Our implemen’[ation Of the Sequent CaICUIUS 12 satj_sfactj_on_conseq Phi Psi.
also comes with a proof of soundness. 13 |Proof.

14| induction 1. (* on Seq Phi Psi %)

® We currently lack of a proof of completeness. .| .11: cauto using

16 satisfaction_conseq_empty,
17 satisfaction_conseq_ id,

18 N DB

19 |Qed.

M.O. Elliger IngFOL, Bounded and Mechanized June 17, 2025 21/37



Truth Semantics EAU

e Define Truth Semantics via support of singleton states:
m7w777 ):truth ¢ :<1:> m? {w}777 ): ¢
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Truth Semantics EAU

e Define Truth Semantics via support of singleton states:
m7w777 ):truth ¢ :<1:> m) {w}7n }: ¢

® Truth semantics yield semantics of classic first-order logic.
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Truth Semantics EAU

e Define Truth Semantics via support of singleton states:
maw7n ):truth ¢ S m7 {w}ﬂ? }: Qb

® Truth semantics yield semantics of classic first-order logic.
® Therefore, classic first-order logic is precisely InqLogBy; ;.

Example
—-=P (0) — P(0) € InqLogy
Q) — @ € InqLogBjy;
—= (P (0)\W =P (0)) — (P(0)\Wv—=P(0)) ¢ InqLogB; D InqLogB -
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The Casari Scheme EAU

® Consider the following so-called Casari Scheme:

Casari := (V. (¢ (0) = V.6 (0)) = V.6 (0)) = V. ¢ (0)
® We get the following properties:

(V. (P(0) = V. P(0)) = V. P(0))

(0 — V.
(V. (¢(0) = V.0(0)) = V.9(0)) = V.
(V. (#.R(1,0)) = V. 4. R(1,0)) = V. 3. R(1,0)) - V. 4. R

P (0) € InqLogy
¢ (0) € InqLogBy,
(17 O) g InqLOgE
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The Casari Scheme EAU
Regarding Schematic Bounded Validity

Theorem
The Casari Scheme is schematically bounded valid.’

1. Prove that for every label X, the sequent = (X, Casari) is derivable in the given sequent calculus.
2. By the rule (=—)), it suffices to show for every Y C X the derivability of the following sequent:

(Y, V. (¢(0) = V.¢(0)) = V.4(0)) = (Y,V.9(0))

3. Use wellfounded induction on Y to proceed. Proof uses the rule of cut.

'[LS]
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The Casari Scheme EAU
Regarding Schematic Validity

Theorem

The Casari Scheme is not schematically valid, e.g. Casari instantiated with ¢ := 4. R(1,0) is not
schematically valid.

Proof Sketch.
By a suitable counterexample

'[LS]
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The Casari Scheme EAU
Regarding Schematic Validity

Theorem

The Casari Scheme is not schematically valid, e.g. Casari instantiated with ¢ := 4. R(1,0) is not
schematically valid.

Proof Sketch.
By a suitable counterexample whose formalization just took 2 months . .. []
'[LS]
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264 (x*x * The Casari "counter-example"

265
266
267
268
269
270
271
272
273
274
275
276

We will now provide a counter-—-example to show that the
Casari Scheme isn't schematically valid. For this, we
need a concrete signature, a concret instance of the
scheme via a formula [phi], a suitable model [M], a stats
[s] and a variable assignment [a] s.t. [M], [s] and [a]
do not support [phi].
*
)

Module Casari_fails.

Import PeanoNat.Nat.

Local Arguments contains s w /.

(** ** Signature and Syntax

We will use our signature with a single binary
predicate symbol for the counter example.

*)

Import Syntax_single_binary_predicate.

(**
The following formula will serve as our instance for
the Casari Scheme:

*)

Definition IES : form :=
<{iexists (Pred' (Var 1) (Var 8))}>.

(**
We can verify that [IES] has only one free variable.
*)
Remark highest_occ_free_var_IES :
highest_occ_free_var IES (Some 0).
Proof.
intros sigmal sigma2 H1.
simpl.
red.
rewrite <- eq_rect_eq_dec; try exact PSymb_EqgDec.
intros [|]; try reflexivity.
unfold mmap.
unfold MMap_fun.
unfold up.
simpl.
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do 2 rewrite rename_subst'.
rewrite Hl; reflexivity.

Qed.
Print Assumptions highest_occ_free_var_IES.

(** ** The Model

For our model, we decide on natural numbers to serve ajf
our type of Worlds and Individuals. By this,
[PInterpretation] becomes a ternary relation which we
define before:
*)
Definition rel (w m j : nat) : bool :=
(
negb (even m) &&
(m =? j)
) |1
(

even m &&
negb (j =7 w) &&
(

negb (even j) ||
(m <? j)

).

(€13

We will now instantiate the model.
*)

Local Obligation Tactic :=
try decide equality;
try contradiction.

Program Instance M : Model :=

World := nat;
World_Setoid := eq_setoid nat;
Individual := nat;
Individual_inh := 42;
PInterpretation :=

fun w p args =>

rel w (args true) (args false)

[}.

Next Obligation.
intros w p argsl args2 Hl.
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repeat rewrite H1.
reflexivity.

Qed.

Next Obligation.
intros wl w2 H1.

reflexivity.

Qed.

(** %% Intermezzo: Some classical logic properties =)

Lemma not_exists_forall_not {X}
forall (P : X —> Prop),
~ (exists x, P x) —>
forall x,
~ P x.
Proof.
firstorder.

Qed.

Lemma not_forall_exists_not {X}
forall (P : X —> Prop),
~ (forall x, P x) ->
exists x,
~ P x.
Proof.
intros P H1.
apply NNPP.
intros H2.
apply HL1.
intros x.
eapply not_exists_forall_not in H2.
apply NNPP.
exact H2.

Qed.

(*x *x* Some state properties

We start by defining some notation for state
properties.
*)

Declare Custom Entry boolpred.

Notation "(? p 2)" = p
(at level 0,
p custom boolpred at level 99)
: _form _scope.

M.O. Elliger IngFOL, Bounded and Mechanized June 17, 2025 28/37



Notation "( x )" := x
(in custom boolpred, x at level 99)
: form_scope.

Notation "x" := x
(in custom boolpred at level @, x constr at level 8)
: form_scope.

Notation "f x .. y" := (.. (f x) .. y)
(in custom boolpred at level 0,
only parsing,
f constr at level O,
X constr at level 9,
y constr at level 9)
: form_scope.

Notation "pl && p2" := (fun w => pl w && p2 w)
(in custom boolpred at level 40, right associativity)
: form_scope.

Notation "pl || p2" := (Fun w => pl w || p2 w)
(in custom boolpred at level 50, right associativity)
: form_scope.

Notation "~ p" := (fun w => negb (p w))
(in custom boolpred at level 75)
: form_scope.

(**
We define [contains_all p] to say that s contains all
worlds with property [p]. Note that this is in fact a
duplicate of [substate] which is intended to
distinguish between properties of worlds and states.
*)

Definition contains_all (p : nat —> bool) (s : state)
forall w,
pw= true —>
contains s w.

Instance contains_all_Proper :
forall p,
Proper (state_eq ==> iff) (contains_all p).
Proof.
intros p sl s2 H1.
split.
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intros H2 w H3.
rewrite <- H1.
apply H2.
exact H3.

intros H2 w H3.
rewrite H1.
apply H2.

exact H3.

Qed.

Lemma substate_contains_all :
forall p s t,
substate t s —>
contains_all p t —>
contains_all p s.
Proof.
intros p s t H1 H2 w H3.
apply H1.
apply H2.
exact H3.

Qed.

(**
Next, we implement the notion that a state contains at
least one world with property [p].
*)
Definition contains_any (p : nat —> bool) (s : state)
exists w,
p w = true /\
contains s w.

Instance contains_any_Proper :
forall p,
Proper (state_eq ==> iff) (contains_any p).
Proof.
intros p sl s2 H1.
split.

intros [w [H2 H3]].
exists w.

rewrite <- H1.
split; assumption.

intros [w [H2 H3]].
exists w.
rewrite H1.
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(%% %% Support for [IES]

We start by analysing support for [IES] itself.

Lsupport_IES_odd] represents Claim 3.7. in Litak/Sano
* )
Proposition support_IES_odd
forall (s : state) (a : assignment),
even (a 0) = false —->
s, a |= IES.
Proof.
intros s a H1.

exists (a 0).

intros w H2.
simpl.
unfold rel.

rewrite H1.
rewrite egb_refl.
reflexivity.

Qed.
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intros w H9.
destruct (even w) eqn:HA.
I
specialize (H7 _ HA).
destruct (contains_dec t w) as [HB|HB]; try assumptio
rewrite contains_complement_iff in H7.
specialize (H7 HB).
apply leb_le in H7.
apply ltb_1t in H9.
lia.

apply H6.
rewrite HA.
reflexivity.

unfold CasariImpl in H3.
rewrite support_Impl in H3.

apply H3.
+

exact H5.
+
destruct (even (a 0)) eqgn:H9.

*

apply support_IES_even.

exact H9.

destruct H8 as [e2 [H81 H82]].
exists e2.

simpl in =*.

rewrite H81,6H82.

rewrite orb_true_r.

split; reflexivity.

apply support_IES_odd.
exact H9.
ed.

Print Assumptions support_CasariImpl_IES_other_direction.
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(** *x Support for [CasariAnt IES]

Now, we can stick our previously proved propositions
together. By this, we get that [CasariAnt IES] is
valid in our instantiated model [M].

For this, we use classical logic in two points:

— In order to apply contraposition via [NNPP] and

— when we are applying
[not_E_finitely_many_complement].

*)
Proposition support_CasariAnt_IES :

forall (s : state) (a : assignment),
s, a |= <{CasariAnt IES}>.

Proof.

intros s a i t H1 H2.
apply support_CasariSuc_IES.

apply NNPP.
intros H3.
eapply support_CasariImpl_IES_other_direction.

apply not_E_contains_all.
exact H3.

apply not_E_finitely_many_complement.
exact H3.

exact H2.

Print Assumptions support_CasariAnt_IES.

(%% %% Support for [Casari IES]

We now conclude that we have indeed found a suitable
counter—example. For this, we still need to define a
suitable state. We would also need a concrete
[assignment] but this can be done one the fly.

[counter_state e] is a state that contains every odd
number and every (even) number greater than [e]. By
this, it contains at least one odd number and its
complement can only contain infinitely many even
numbers.

*)
Local Program Definition counter_state (e : nat) : state :
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Theorem not_support_valid_Casari_IES :
~ support_valid <{Casari IES}>.
Proof.
intros H1.

(%%
As [Casari IES] is an implication with conclusion
[CasariSuc IES], we try to falsify this.

*)

eapply support_CasariSuc_IES_other_direction.

apply counter_state_contains_all_odds.

apply counter_state_contains_all_1ltb.

eapply H1.
+

reflexivity.
+
fold support.
apply support_CasariAnt_IES.

(%x*
We still need to instantiate some existential
variables.
*)
Unshelve.
exact (fun _ => 25). (* any variable [assignment] =*)
exact 24. (* concrete instance of [counter_state] *)

Qed.

Print Assumptions not_support_valid_Casari_IES.
(=
Axioms:
classic : forall P : Prop, P\/ ~ P
*)
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Conclusion & Future Work EAU

Conclusion

® We provide a case study regarding the syntactic approach using arity types.

e We formalized theory regarding (bounded) InqgFOL using various methods.

® We extended the Sequent Calculus by Litak/Sano by allowing more generic signatures.
¢ We provide large demonstration proofs.
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Conclusion & Future Work EAU

Conclusion

® We provide a case study regarding the syntactic approach using arity types.

e We formalized theory regarding (bounded) InqgFOL using various methods.

® We extended the Sequent Calculus by Litak/Sano by allowing more generic signatures.
® We provide large demonstration proofs.

Future Work

® Formalize the admissability of the rule of Cut within the Sequent Calculus.
¢ Implement a proof of Completeness for the Sequent Calculus.

® Derive the cardinality formulae within the Sequent Calculus.
. " = om
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