Equivalence Checking in Coalgebraic Expression Languages Master Thesis Presentation

Moritz Blöcher

Friedrich-Alexander-University Erlangen Nürnberg

July 22, 2025

Outline

- 1 Coalgebaic Expression Languages
- 2 Modal Logics
- Bisimulation Checking
- 4 Evaluation

Bisimulation

Definition (Bisimulation)

Let (S,Λ, \to) be a transition system then the Relation $R \subseteq S \times S$ is a Bisimulation iff forall states $(p,q) \in R$ holds:

- if $p \to p'$, then there exists $q \to q'$ such that $(p',q') \in R$
- if $q \to q'$, then there exists $p \to p'$ such that $(p',q') \in R$

Markov Chain

Multiraph

Behavioral Equivalence

Definition (behavioral equivalence)

Let (C, γ) and (D, σ) be T-coalgebras. Two states $d \in D$ and $c \in C$ are behavioral equivalent if there exists (E, ϵ) T-coalgebra and a pair of morphisms $f: (C, \gamma) \to (E, \epsilon)$ and $g: (D, \sigma) \to (E, \epsilon)$ with f(c) = g(d)

Definition (Λ-Bisimulations)

Let (X,ξ) and (Z,ζ) be T-coalgebras. Relation $S\subseteq X\times Z$ is called a Λ -simulation if for all predicate liftings $\lambda\in\Lambda$ and $X_1,...,X_n\subseteq X$, xSy implies

$$\xi(x) \in \lambda(X_1, ..., X_n) \Rightarrow \zeta(y) \in \lambda(S[X_1], ..., S[X_n])$$

Iff S and S° are Λ -simulation then S is a Λ -Bisimulation

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Lax Extensions

Definition (lax extension)

A relation lifting L is a lax extension if for all relations $R, R' \subseteq X \times Y$, $S \subseteq Z \times Y$ and functions $f: X \to Y$ the following holds :

$$R' \subseteq R \Rightarrow LR' \subseteq LR$$

 $LR; LS \subseteq L(R; S)$
 $Tf \subseteq Lf$

A lax extension is diagonal preserving if for all sets X

$$L\Delta_X \subseteq \Delta_{TX}$$

Lax Extensions

Theorem ²

If L is a lax extension of T that preserves diagonals then L captures behavioral equivalence

²Marti, J., Venema, Y.: Lax extensions of coalgebra functors and their logic. J. Comput. Syst. Sci. 81(5), 880–900 (2015), Theorem 11 ← □ → ←

Strongly Expressive

Definition (singleton-preserving, strongly-expressive)

An n-ary predicate lifting $\lambda_n \in \Lambda$ is singleton-preserving if for all $x_1,...,x_n \in X$ it holds that

$$\forall x_i \in X \Rightarrow |\lambda(\{x_1\},\ldots,\{x_n\})| = 1$$

The set of predicate liftings Λ is strongly-expressive if

$$\forall t \in TX : \exists \lambda_n \in \Lambda, (x_1, ..., x_n) \in X.$$

$$\{t\} = \lambda_n(\{x_1\}, ..., \{x_n\})$$

Moss-Lifting

Definition (Moss-Lifting)

The predicate liftings defined by

$$\lambda = (Q^n \Rightarrow TQ \Rightarrow QT^{op})$$

$$\lambda_X(X_1, ..., X_n) = \{t \in TX | (t, \tau_{QX}(X_1, ..., X_n)) \in L(\in_X)\}$$

are called Moss-Liftings of T

For a finitary functor T and a diagonal preserving lax extension L, a set of all Moss-liftings is strongly expressive and separating

Theorem

For a seperating set Λ of monotone predicate liftings Λ -bisimulation coincides with behavioral equivalence

| **イロトイ掛トイミトイミト | 宝 | 釣**り

Characteristic fixpoint formula

 Λ is strongly expressive and contains only monotone and singleton preserving predicate liftings

formulas

$$\Phi ::= v | \nu v. \Phi | L(\Phi_1, ..., \Phi_n)$$

$$(v \in V, L/n \in \Lambda)$$

Characteristic fixpoint formula

characteristic system ¹

Let (X, ξ) be a T-coalgebra, let $\lambda_i/k \in \Lambda$, i =1,...,k, and let $(A_1, ..., A_k)$ be the greatest fixpoints of the equation system:

$$X_1 = \lambda_{1,X}(X_1, ..., X_k)$$

 \vdots
 $X_n = \lambda_{n,X}(X_1, ..., X_k)$

Then for each i, all elements of A_i are behavioral equivalent, and for all i,j, either $A_i \cap A_i = \emptyset$ or $A_i = A_i$

¹Ulrich Dorsch, Stefan Milius, Lutz Schröder, Thorsten Wissmann.: Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages . * * * * *

Example

Example (Graph1)

Example

$$x_{1} = L(x_{2}, x_{3}) x_{2} = L(x_{4})$$

$$x_{3} = L(x_{4}) x_{4} = L(x_{2}, x_{3})$$

$$\nu x_{1}.L(\nu x_{2}.L(\nu x_{4}.L(x_{2}, \nu x_{3}.L(x_{4}))), \nu x_{3}.L(\nu x_{4}.L(\nu x_{2}.L(x_{4}), x_{3})))$$

4 D L 4 D L 4 D L 2 D L 2 D L

Modal Logic

Definition (formula)

$$\phi, \psi := \mathbf{p} \mid \bot \mid \neg \phi \mid \phi \land \psi \mid \heartsuit \phi$$

Definition (Semantic)

The coalgebraic Model (C, γ) containing the set of states C and map $\gamma: C \to FC$

$$c \in \llbracket \heartsuit \phi \rrbracket \Leftrightarrow \gamma(c) \in \llbracket \heartsuit \rrbracket (\llbracket \phi \rrbracket)$$

Relational Modal Logic

functor

$$\gamma: \mathcal{C} \to \mathcal{P}(\mathcal{C})$$

modality

$$\llbracket\Box\rrbracket:Y\to\{B\in\mathcal{P}(C)|B\subseteq Y\}$$

$$\llbracket \lozenge \rrbracket : Y \to \{B \in \mathcal{P}(C) | B \cap Y \neq \emptyset\}$$

Relational Modal Logic

Moss-Lifting

$$\lambda_i(A_1,...,A_n) = \{X \in \mathcal{P}(X) | \forall_j. \exists_{a \in A_j} a \in X \land \forall x \in X. \exists_j x \in A_j\}$$

formula equations

$$\bigwedge_{a \in A_i} \lozenge a \wedge \square \bigvee_{a \in A_i} a$$

Relational Modal Logic

Example (Graph1)

$$x_{1} = \Diamond_{a}x_{2} \wedge \Diamond_{a}x_{3} \wedge \Box_{a}(x_{1} \vee x_{2}) \wedge \Box_{b} \bot$$

$$x_{2} = \Diamond_{a}x_{4} \wedge \Box_{a}x_{4} \wedge \Box_{b} \bot$$

$$x_{3} = \Diamond_{b}x_{5} \wedge \Box_{a} \bot \wedge \Box_{b}x_{5}$$

$$x_{4} = \Box_{a} \bot \wedge \Box_{b} \bot$$

$$x_{5} = \Box_{a} \bot \wedge \Box_{b} \bot$$

Graded Modal Logic

Definition (graded functor)

$$B(C) = \{ f : C \to N \cup \infty | \text{f a function} \}$$
$$\gamma : C \to B(C)$$

modality

$$[\![\langle k \rangle]\!]: X \to \{\mu \in BC | \mu(X) > k\}$$

$$\llbracket [k] \rrbracket : X \to \{ \mu \in BC | \mu(C - X) \le k \}$$

Graded Modal Logic

Moss-Lifting

$$\lambda^{\nu}(X_1,...,X_n) = \{\mu \in B_{\omega}(X) | \forall x \in \mathcal{P}\{X_1,...,X_n\}.$$

$$\mu(x) > \nu(x) - 1; \mu(X) \le \nu(X)\}$$

formula equation

$$\lambda^{\nu}(X_1,\ldots,X_n) \equiv (\bigwedge_{X \in \mathcal{P}\{X_1,\ldots,X_n\}} \langle (X)-1 \rangle \bigvee_{x \in \bigcup X} x) \wedge [\mu(X)] \perp$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Monotone Modal Logic

Definition (monotone neighbourhood functor)

$$\mathcal{N}(C) \subseteq \mathcal{P}(\mathcal{P}(C))$$

 $\mathcal{M}(C) = \{ N \in \mathcal{N}(C) | N \text{ upwards closed} \}$
 $\gamma : C \to M(C)$

modality

$$\llbracket \Box \rrbracket : Y \to \{ N \in \mathcal{M}(C) | Y \in N \}$$
$$\llbracket \Diamond \rrbracket : Y \to \{ N \in \mathcal{M}(C) | \forall B \in N.B \cap Y \neq \emptyset \}$$

- No bisimulation for Neighbourhood Modal Logic
 - possible for monotone Neighbourhood

Monotone Modal Logic

Moss-lifting

$$\begin{array}{ll} \lambda_i(A_1,...,A_n) := & \{\mathfrak{A} \in M_\omega X | \forall_i. \bigcup_j A_{i,j} \in \mathfrak{A} \text{ and } \forall B \in \mathfrak{A}. \exists_i. \forall_j. B \cap A_{i,j} = \emptyset \} \end{array}$$

formula equation

$$\lambda_i(A_1, ..., A_n) \equiv (\bigwedge_i \Box \bigvee_j A_{i,j}) \land \bigwedge_{\pi} \Diamond \bigvee_i A_{i,\pi(I)}$$

$$\pi \in \{f | \forall n \in N.0 < n < |A_i| \land 0 < f(n) < |A_{i,n}| \}$$

Behavioral Equivalence Checking

Theorem

for two states x,y the following are equivalent:

- 1. x is behavioral equivalent to y
- 2. characteristic formula of x implies characteristic formula of y
- 3. y satisfies the characteristic formula of x

Theorem ²

every characteristic formula ϕ defines one behavioral equivalence class $[\![\phi]\!]$

Theorem²

Let (X,ϵ) a finite T-coalgebra and $x\in X$ then there exists an expression ϕ such that $x\in [\![\phi]\!]$

²Ulrich Dorsch, Stefan Milius, Lutz Schröder, Thorsten Wissmann.: Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages → ⟨ ≥ → | ≥

COOL₂

- Supported Modal Logics
 - Graded
 - Probabilistic
 - Coalition
 - Fixpoint variants
- Model checking
- Satisfiablity checking

Formula Size

outdegree : d , number of nodes : n , longest path : p , number of neighborhoods : nnh, members of neighborhoods : mnh

Lemma (fixpoint formula sizes)

```
classic \approx (2 \cdot d)^p
probabilistic/graded \approx (2^n)^p
neighbourhood \approx ((nnh \cdot mnh) + (nnh^{mnh}))^p
```

Lemma (equation system sizes)

```
classic \approx n \cdot d
probabilistic/graded \approx n \cdot (2^n + 1)
neighbourhood \approx n \cdot ((nnh \cdot mnh) + (nnh^{mnh}))
```

- system one formula per state
- fixpoint formula one formula per path to state
- want to use formula system where possible

Formula Equation Reasoning

Fisher-Ladner Closure

$$FL(p) = \{p\}p \in Var$$

$$FL(\phi \land \psi) = \{\phi \land \psi\} \cup FL(\phi) \cup FL(\psi)$$

$$FL(\Box \phi) = \{\Box \phi\} \cup FL(\phi)$$

$$FL(\nu X.\phi) = \{\nu X.\phi\} \cup FL(\phi[X] \rightarrow \nu X.\phi)$$

- System only uses ν fixpoint operator (same alternating depth)
- Nesting order of fixpoint operator irrelevant for sat checking.

Formula Equation Reasoning

Definition (Parity Game moves)			
Position	Owner	Outgoing moves	Priority
(c, \perp)	3	Ø	0
(c, \top)	\forall	Ø	0
$(c, \phi \lor \psi)$	∃	$\{(c,\phi),(c,\psi)\}$	0
$(c, \phi \wedge \psi)$	\forall	$\{(\boldsymbol{c},\phi),(\boldsymbol{c},\psi)\}$	0
$(c, \mu x. \phi), (c, x)$	3	$\{(c,\phi)\}$	$2 \cdot ad(x) - 1$
$(c, \nu x. \phi), (c, x)$	\forall	$\{(c,\phi)\}$	$2 \cdot ad(x) - 2$
$(c,\Box\phi)$	3	$\{(D,\phi) \gamma(c)\in \llbracket\Box rbracket(D)\}$	0
(D,ϕ)	\forall	$\{(c,\phi) c\in D\}$	0

- \bullet The priority for ν is always even
- ullet Only u occurring in formula o Eloise wins all infinite games
- ullet Ordering of u nesting not relevant

Random Models

- Formula dependent on reachable nodes and degree distribution
 - No using typical random graphs e.g.
 - Erdoes Renje Models
 - Barabasi Albert Models
- Custom graph generation
 - Generate simple structure (path, tree, circle)
 - Add random edges up to defined outdegree
 - Add predicates and transition labels
 - For Multigraphs / Markov chains add weights / probabilities
- Comparisons
 - Same node
 - None bisimilar node of same graph
 - Formula of minimized graph

Runtime

Runtime

Future Work

- Optimize formula generation
- Safety games instate parity games
- Use fixpoint model checker to calculate satisfying set of states
- Scaling of small formalas on large graphs

sources

- Marti, J., Venema, Y.: Lax extensions of coalgebra functors and their logic. J. Comput. Syst. Sci. 81(5), 880–900 (2015)
- Ulrich Dorsch, Stefan Milius, Lutz Schröder, Thorsten Wissmann: Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages.

Runtime

Runtime formula generation

