
A coincidence of partial and total correctness:
Intrinsically Correct Sorting with a slice of Cubical

Agda

Cass Alexandru1 Vikraman Choudhury2 Jurriaan Rot3

Niels van der Weide3

1RPTU Kaiserslautern-Landau

2University of Bologna & INRIA OLAS

3Radboud University Nijmegen

Certified Programs and Proofs 2025

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 1 / 22

Motivation

“Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Bialgebraic semantics (Turi and Plotkin 1997)

Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 2 / 22

Motivation

“Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Bialgebraic semantics (Turi and Plotkin 1997)

Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 2 / 22

Motivation

“Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Bialgebraic semantics (Turi and Plotkin 1997)

Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 2 / 22

Motivation

“Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Bialgebraic semantics (Turi and Plotkin 1997)

Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 2 / 22

Motivation

“Sorting with Bialgebras and Distributive Laws” (Hinze et al. 2012)

Bialgebraic semantics (Turi and Plotkin 1997)

Intrinsic Correctness: Type and specification (predicates), program and
proof are intertwined, Cubical Agda: Dependent Types & Path types

Contribution: intrinsic verification of business logics & setting in which
correctness of the dual algorithms follows

Key idea: Index data by the multiset of their elements

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 2 / 22

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 3 / 22

Sorting as an Index-Preserving Map

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 4 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?

“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Sorting as an Index-Preserving Map

Specification of Sorting

Totally ordered Carrier Set A

sort : List A → List A ?

sort : List A → Ordered List A?
“The output should be a permutation of the input”

“Mapping a list to the multiset of its elements is invariant under sorting”

List A Ordered List A

Multiset A
elements

sort

elements

Intrinsically: “Sorting is an index-preserving map between lists and
ordered lists indexed by the finite multiset of their elements”

{g : FMSet A} → EIList g → OEIList g

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 5 / 22

Distr Laws as Business Logics

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 6 / 22

Distr Laws as Business Logics Base Functors

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 7 / 22

Distr Laws as Business Logics Base Functors

Base Functors of Recursive Datatypes

Recursive datatypes have a shape given by a base functor 𝐹
E.g. Natural numbers: (1 + −). Lists of element type 𝐴: (1 + 𝐴 × −).
Recursive datatype is given by fixpoint of composition of base functor
𝐹 with itself

Least fixpoint (𝜇𝐹): Inductive datatype. Greatest (𝜈𝐹): coinductive –
not neccessarily well founded

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 8 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 9 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

Rec F → Rec G

Algebraically: fold alg where alg : F (Rec G) → Rec G

Coalgebraically: unfold coalg where coalg : Rec F → G (Rec F)

A way that gives us both…

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 10 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

Rec F → Rec G

Algebraically: fold alg where alg : F (Rec G) → Rec G

Coalgebraically: unfold coalg where coalg : Rec F → G (Rec F)

A way that gives us both…

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 10 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

Rec F → Rec G

Algebraically: fold alg where alg : F (Rec G) → Rec G

Coalgebraically: unfold coalg where coalg : Rec F → G (Rec F)

A way that gives us both…

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 10 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Maps Between Recursive Datatypes

Rec F → Rec G

Algebraically: fold alg where alg : F (Rec G) → Rec G

Coalgebraically: unfold coalg where coalg : Rec F → G (Rec F)

A way that gives us both…

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 10 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort
(Hinze et al. 2012)

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

-- aliasing

O = L
pattern _≤∶∶_ x xs = x ∶∶ xs

swap : ∀ {x } → L (O x) → O (L x)
swap [] = []
swap (a ∶∶ []) = a ≤∶∶ []
swap (a ∶∶ (b ≤∶∶ r)) with a ≤?≥ b

…| inl a≤b = a ≤∶∶ (b ∶∶ r)
…| inr b≤a = b ≤∶∶ (a ∶∶ r)

insertSort = fold (unfold (swap ∘ L₁ out))
bubbleSort = unfold (fold (O₁ in ∘ swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 11 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort
(Hinze et al. 2012)

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

-- aliasing

O = L
pattern _≤∶∶_ x xs = x ∶∶ xs

swap : ∀ {x } → L (O x) → O (L x)
swap [] = []
swap (a ∶∶ []) = a ≤∶∶ []
swap (a ∶∶ (b ≤∶∶ r)) with a ≤?≥ b

…| inl a≤b = a ≤∶∶ (b ∶∶ r)
…| inr b≤a = a ≤∶∶ (b ∶∶ r)

insertSort = fold (unfold (swap ∘ L₁ out))
bubbleSort = unfold (fold (O₁ in ∘ swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 11 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort
(Hinze et al. 2012)

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

-- aliasing

O = L
pattern _≤∶∶_ x xs = x ∶∶ xs

swap : ∀ {x } → L (O x) → O (L x)
swap [] = []
swap (a ∶∶ []) = []
swap (a ∶∶ (b ≤∶∶ r)) with a ≤?≥ b

…| inl a≤b = a ≤∶∶ (a ∶∶ r)
…| inr b≤a = a ≤∶∶ (b ∶∶ r)

insertSort = fold (unfold (swap ∘ L₁ out))
bubbleSort = unfold (fold (O₁ in ∘ swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 11 / 22

Distr Laws as Business Logics Bialgebraic Semantics

Insertion- / Bubble Sort
(Hinze et al. 2012)

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

-- aliasing

O = L
pattern _≤∶∶_ x xs = x ∶∶ xs

swap : ∀ {x } → L (O x) → O (L x)
swap [] = []
swap (a ∶∶ []) = []
swap (a ∶∶ (b ≤∶∶ r)) with a ≤?≥ b

…| inl a≤b = a ≤∶∶ (a ∶∶ r)
…| inr b≤a = a ≤∶∶ (b ∶∶ r)

insertSort = fold (unfold (swap ∘ L₁ out))
bubbleSort = unfold (fold (O₁ in ∘ swap))

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 11 / 22

Totally Correct Sorting from a Distr. Law

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 12 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 13 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type
(Choudhury and Fiore 2023)

data FMSet (A : Type ℓ) : Type ℓ where
[] : FMSet A
∶∶ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ {x y xs} → x ∶∶ y ∶∶ xs ≡ y ∶∶ x ∶∶ xs
trunc : isSet (FMSet A)

1 ∶∶ 2 ∶∶ 3 ∶∶ [] ≡⟨ cong (1 ∶∶_) comm ⟩ 1 ∶∶ 3 ∶∶ 2 ∶∶ []

pattern []ℳ = []
pattern _∶∶ℳ_ x xs = x ∶∶ xs

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 14 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type
(Choudhury and Fiore 2023)

data FMSet (A : Type ℓ) : Type ℓ where
[] : FMSet A
∶∶ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ {x y xs} → x ∶∶ y ∶∶ xs ≡ y ∶∶ x ∶∶ xs
trunc : isSet (FMSet A)

1 ∶∶ 2 ∶∶ 3 ∶∶ [] ≡⟨ cong (1 ∶∶_) comm ⟩ 1 ∶∶ 3 ∶∶ 2 ∶∶ []

pattern []ℳ = []
pattern _∶∶ℳ_ x xs = x ∶∶ xs

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 14 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

The Finite Multiset Quotient Inductive Type
(Choudhury and Fiore 2023)

data FMSet (A : Type ℓ) : Type ℓ where
[] : FMSet A
∶∶ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ {x y xs} → x ∶∶ y ∶∶ xs ≡ y ∶∶ x ∶∶ xs
trunc : isSet (FMSet A)

1 ∶∶ 2 ∶∶ 3 ∶∶ [] ≡⟨ cong (1 ∶∶_) comm ⟩ 1 ∶∶ 3 ∶∶ 2 ∶∶ []

pattern []ℳ = []
pattern _∶∶ℳ_ x xs = x ∶∶ xs

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 14 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

data L (r : FMSet A → Type) : FMSet A → Type where
[] : L r []ℳ
∶∶ : ∀ {g} → (x : A) → (r g) → L r (x ∶∶ℳ g)

data O (r : FMSet A → Type) : FMSet A → Type where
[] : O r []ℳ
≤∶∶ : ∀ {g} (x : A) → (r g) → All (x ≤_) g → O r (x ∶∶ℳ g)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 15 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

data L (r : FMSet A → Type) : FMSet A → Type where
[] : L r []ℳ
∶∶ : ∀ {g} → (x : A) → (r g) → L r (x ∶∶ℳ g)

data O (r : FMSet A → Type) : FMSet A → Type where
[] : O r []ℳ
≤∶∶ : ∀ {g} (x : A) → (r g) → All (x ≤_) g → O r (x ∶∶ℳ g)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 15 / 22

Totally Correct Sorting from a Distr. Law FMSet QIT

Base Functors for (Ordered) Element-Indexed Lists

data L (r : Type) : Type where
[] : L r
∶∶ : A → r → L r

data L (r : FMSet A → Type) : FMSet A → Type where
[] : L r []ℳ
∶∶ : ∀ {g} → (x : A) → (r g) → L r (x ∶∶ℳ g)

data O (r : FMSet A → Type) : FMSet A → Type where
[] : O r []ℳ
≤∶∶ : ∀ {g} (x : A) → (r g) → All (x ≤_) g → O r (x ∶∶ℳ g)

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 15 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 16 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure
L-coalgebras are well founded

pattern _∶∶_^_ x xs g = _∶∶_ {g = g} x xs

unfoldL : {r : FMSet A → Type} →
(∀ {g𝑟 } → (r g𝑟) → L r g𝑟) → (∀ {g} → (r g) → EIList g)

unfoldL grow {_} seed with grow seed

unfoldL grow .{[]ℳ} _ | [] =

[]

unfoldL grow .{x ∶∶ℳ g’ } _ | x ∶∶ seed′ ^ g’ =

x ∶∶ unfoldL grow {g’ } seed′

Index-preservation forces index of seed and grow seed to coincide
with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index
Index of recursive argument is smaller

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 17 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure
L-coalgebras are well founded

pattern _∶∶_^_ x xs g = _∶∶_ {g = g} x xs

unfoldL : {r : FMSet A → Type} →
(∀ {g𝑟 } → (r g𝑟) → L r g𝑟) → (∀ {g} → (r g) → EIList g)

unfoldL grow {_} seed with grow seed

unfoldL grow .{[]ℳ} _ | [] =

[]

unfoldL grow .{x ∶∶ℳ g’ } _ | x ∶∶ seed′ ^ g’ =

x ∶∶ unfoldL grow {g’ } seed′

Index-preservation forces index of seed and grow seed to coincide

with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index
Index of recursive argument is smaller

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 17 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure
L-coalgebras are well founded

pattern _∶∶_^_ x xs g = _∶∶_ {g = g} x xs

unfoldL : {r : FMSet A → Type} →
(∀ {g𝑟 } → (r g𝑟) → L r g𝑟) → (∀ {g} → (r g) → EIList g)

unfoldL grow {_} seed with grow seed
unfoldL grow .{[]ℳ} _ | [] =

[]

unfoldL grow .{x ∶∶ℳ g’ } _ | x ∶∶ seed′ ^ g’ =

x ∶∶ unfoldL grow {g’ } seed′

Index-preservation forces index of seed and grow seed to coincide
with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index

Index of recursive argument is smaller

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 17 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

The FMSet Index as a Termination Measure
L-coalgebras are well founded

pattern _∶∶_^_ x xs g = _∶∶_ {g = g} x xs

unfoldL : {r : FMSet A → Type} →
(∀ {g𝑟 } → (r g𝑟) → L r g𝑟) → (∀ {g} → (r g) → EIList g)

unfoldL grow {_} seed with grow seed
unfoldL grow .{[]ℳ} _ | [] = []

unfoldL grow .{x ∶∶ℳ g’ } _ | x ∶∶ seed′ ^ g’ =

x ∶∶ unfoldL grow {g’ } seed′

Index-preservation forces index of seed and grow seed to coincide
with-abstraction: Pattern matching refines earlier arguments,
propagates information about the indexee back to the index
Index of recursive argument is smaller

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 17 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

Define a family of maps indexed by FMSet A by well founded induction
on the length of the index

length defined by eliminating from FMSet A as the free commutative
monoid to (ℕ , +) by λ a → 1

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 18 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

Define a family of maps indexed by FMSet A by well founded induction
on the length of the index

length defined by eliminating from FMSet A as the free commutative
monoid to (ℕ , +) by λ a → 1

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 18 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

Well Founded Recursion

Syntactic termination checking based on dot-patterns of HITs
inconsistent (Pitts 2020)

Define a family of maps indexed by FMSet A by well founded induction
on the length of the index

length defined by eliminating from FMSet A as the free commutative
monoid to (ℕ , +) by λ a → 1

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 18 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A → Type} {g : FMSet A} →
L (O r) g → O (L r) g

swap [] = []
swap (a ∶∶ []) = (a ≤∶∶ []) []-A
swap (a ∶∶ (b ≤∶∶ r) a≤#r) with a ≤?≥ b
…| inl a≤b = (a ≤∶∶ (b ∶∶ r)) $ a≤b ≤∶∶# a≤#r
…| inr b≤a = (b ≤∶∶ (a ∶∶ r)) $ b≤a ∶∶-A a≤#r €
subst (O (L _)) comm

Evaluation of subst …?

transpX-O (λ n → …) i0 … (Cavallo and Harper 2019)

Discard index with toList : {g : FMSet A} → OEIList g → List A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 19 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A → Type} {g : FMSet A} →
L (O r) g → O (L r) g

swap [] = []
swap (a ∶∶ []) = (a ≤∶∶ []) []-A
swap (a ∶∶ (b ≤∶∶ r) a≤#r) with a ≤?≥ b
…| inl a≤b = (a ≤∶∶ (b ∶∶ r)) $ a≤b ≤∶∶# a≤#r
…| inr b≤a = (b ≤∶∶ (a ∶∶ r)) $ b≤a ∶∶-A a≤#r €
subst (O (L _)) comm

Evaluation of subst …?

transpX-O (λ n → …) i0 … (Cavallo and Harper 2019)

Discard index with toList : {g : FMSet A} → OEIList g → List A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 19 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A → Type} {g : FMSet A} →
L (O r) g → O (L r) g

swap [] = []
swap (a ∶∶ []) = (a ≤∶∶ []) []-A
swap (a ∶∶ (b ≤∶∶ r) a≤#r) with a ≤?≥ b
…| inl a≤b = (a ≤∶∶ (b ∶∶ r)) $ a≤b ≤∶∶# a≤#r
…| inr b≤a = (b ≤∶∶ (a ∶∶ r)) $ b≤a ∶∶-A a≤#r €
subst (O (L _)) comm

Evaluation of subst …?

transpX-O (λ n → …) i0 … (Cavallo and Harper 2019)

Discard index with toList : {g : FMSet A} → OEIList g → List A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 19 / 22

Totally Correct Sorting from a Distr. Law FMSet for Termination

swap, Revisited

swap : {r : FMSet A → Type} {g : FMSet A} →
L (O r) g → O (L r) g

swap [] = []
swap (a ∶∶ []) = (a ≤∶∶ []) []-A
swap (a ∶∶ (b ≤∶∶ r) a≤#r) with a ≤?≥ b
…| inl a≤b = (a ≤∶∶ (b ∶∶ r)) $ a≤b ≤∶∶# a≤#r
…| inr b≤a = (b ≤∶∶ (a ∶∶ r)) $ b≤a ∶∶-A a≤#r €
subst (O (L _)) comm

Evaluation of subst …?

transpX-O (λ n → …) i0 … (Cavallo and Harper 2019)

Discard index with toList : {g : FMSet A} → OEIList g → List A

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 19 / 22

Conclusion & Future Work

Outline

1 Sorting as an Index-Preserving Map

2 Recap of “Sorting with Bialgebras and Distributive Laws”
Base Functors
Bialgebraic Semantics

3 Correct Sorting using Distributive Laws
Base Functors for Element-Indexed (Ordered) Lists
The FMSet Index as a Termination Measure

4 Conclusion & Future Work

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 20 / 22

Conclusion & Future Work

Conclusion

Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

Intrinsically correct algorithms from correct distr. law

For verified quick/treesort & heapsort following (Hinze et al. 2012),
semantics via slice category → see paper

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 21 / 22

Conclusion & Future Work

Conclusion

Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

Intrinsically correct algorithms from correct distr. law

For verified quick/treesort & heapsort following (Hinze et al. 2012),
semantics via slice category → see paper

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 21 / 22

Conclusion & Future Work

Conclusion

Indexing by FMSet allowed expressing orderedness,
element-preservation & acted as termination measure

Intrinsically correct algorithms from correct distr. law

For verified quick/treesort & heapsort following (Hinze et al. 2012),
semantics via slice category → see paper

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 21 / 22

Conclusion & Future Work

Future Work

Conditions under which coalgebras are recursive in an indexed/fibered
setting

More algorithms to verify with a distributive law as business logic

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 22 / 22

Conclusion & Future Work

Future Work

Conditions under which coalgebras are recursive in an indexed/fibered
setting

More algorithms to verify with a distributive law as business logic

Alexandru et al. (RPTU & UniBo & RU) Correct Sorting in Cubical Agda CPP 2025 22 / 22

Ordered List

Well-foundedness of 𝑂-Coalgebras

𝑐 ∶ (𝑋, 𝑔) → 𝑂(𝑋, 𝑔)
𝑐𝑛 ∶ 𝑋 → 1 + 𝑋
𝑐0(𝑥) ≔ inr(𝑥)

𝑐𝑛+1(𝑥) ≔ {
inl(⋆) 𝑐𝑛(𝑥) = inl(⋆)
𝑐(𝑦) 𝑐𝑛(𝑥) = inr(𝑦)

𝑋

ℳ(𝐴)

𝑂𝑋

𝑐

𝑔

[∅,∪∘(𝜂×𝑔)]

𝑐 well-founded: ∀𝑥 ∈ 𝑋. ∃𝑛. 𝑐𝑛(𝑥) = inl(⋆)
Idea: Use 𝑔 as a ranking function into well-order (ℳ(𝐴), ⊂)
Case 𝑐(𝑥) = inr(𝑎, 𝑟): 𝑔(𝑥) = 𝜂(𝑎) ∪ 𝑔(𝑟) ⇒ 𝑔(𝑟) ⊂ 𝑔(𝑥)

Cass Alexandru Intrinsically correct sorting using bialgebras 2023-10-04 14 / 26

Modular Functors

Slice Topos over a Monoid object

𝐿elt(𝑋, 𝑔):

1 + 𝐴 × 𝑋

1 + 𝐴 × ℳ(𝐴)

ℳ(𝐴)

𝐿𝑔

[∅,∪∘(𝜂×id)]

1 ⊕ 𝐴 ⊗ 𝑋

ℳ(𝐴)2

ℳ(𝐴)

∅

𝜂 𝑔

∪

̂1, ̂𝐴 ∶ Set/ℳ(𝐴)
̂1 ≔ (1, ∅)
̂𝐴 ≔ (𝐴, 𝜂)

𝐿elt(𝑔) ≃ ̂1 ⊕ ̂𝐴 ⊗ 𝑔

⊕ ∶ (Set/ℳ(𝐴))2 → Set/ℳ(𝐴)
𝑔 ⊕ ℎ ≔ [𝑔, ℎ]

⊗ ∶ (Set/ℳ(𝐴))2 → Set/ℳ(𝐴)
𝑔 ⊗ ℎ ≔ ∪ ∘ (𝑔 × ℎ)

Cass Alexandru Intrinsically correct sorting using bialgebras 2023-10-04 20 / 26

