Exercise Sheet 3

Solutions due: 30.06.2025

Exercise 1 Incompleteness

Complete the proof that \mathbf{KvB} is a normal modal logic by showing that it is closed under uniform substitution. *Hint:* Show by induction on formulae that the extension of every formula in a model over \mathfrak{F}_{ω} is either finite and does not contain ω , or cofinite and does contain ω . The actual proof of closure under uniform substitution will then require a substitution lemma as discussed in the lecture; it will otherwise be analogous to the standard proof of soundness of uniform substitution for satisfaction over frames.

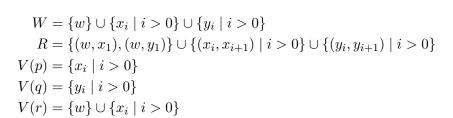
Exercise 2 Smallest and Largest Filtrations 5 points

Show that the smallest and the largest filtration as defined in the lecture are indeed filtrations.

Exercise 3 Filtration: Examples

1. Consider the model $\mathfrak{M} = (W, R, V)$

given by



 y_2

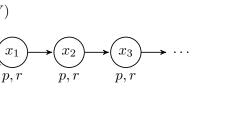
Let $\Gamma = \{ \Diamond p, \Diamond q, \Diamond r, p, q, r \}$. Compute \sim_{Γ} and use this relation to find

 y_1

• the smallest filtration of \mathfrak{M} through Γ , and

w

- the largest filtration of \mathfrak{M} through Γ .
- 2. Prove that for all models \mathfrak{M} based on a symmetric frame and all sets Γ of formulae,



 y_2

7 points

8 points

- (a) the largest filtration of \mathfrak{M} through Γ does *not* necessarily have a symmetric relation.
- (b) the smallest filtration of \mathfrak{M} through Γ has a symmetric relation.

To prove Item (a), it suffices to find a counterexample. Use Item (b) to show that satisfiability and validity are decidable in \mathbf{B} are decidable.