Exercise Sheet 2

Solutions due: 11.06.2025

Exercise 1 The K Axiom as a Proof Rule

Let Λ be a modal logic.

1. Show that Λ is normal iff Λ is closed under proof rule

$$(RK) \ \frac{\phi_1 \wedge \dots \phi_n \to \phi_0}{\Box_i \phi_1 \wedge \dots \Box_i \phi_n \to \Box_i \phi_0} \ (n \ge 0, i \in I).$$

2. Conclude that every normal modal logic is closed under replacement of equivalents, i.e. under the rule

$$(RPE) \ \frac{\phi \leftrightarrow \psi}{\Box_i \phi \leftrightarrow \Box_i \psi}.$$

Exercise 2 Hilbert-style Proofs

(Blackburn et al., Ex. 1.6.1 and 1.6.3.)

1. Give proofs of the formulae

$$(\Box p \land \Diamond q) \to \Diamond (p \land q)$$
$$\Diamond (p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

in \mathbb{K} .

2. Recall that **S5** is defined by the axioms $\Box p \to p$, $\Box p \to \Box \Box p$, $p \to \Box \Diamond p$. Give a proof of the formula

$$\Diamond \Box p \to \Box p$$

in **S5**.

Exercise 3 Provability in K

(Blackburn et al., Ex. 1.6.2.)

Given a modal formula ϕ , write ϕ^- for the propositional formula obtained by erasing all modalities from ϕ (preserving the bracketing, of course). Give an explicit definition of ϕ^- by structural recursion on formulae. Show by induction on derivations that whenever $\phi \in \mathbf{K}$, then ϕ^- is a propositional tautology. Conclude that \mathbf{K} is consistent.

Exercise 4 Canonical models

We consider the normal modal logic \mathbf{KF} that is generated by the axiom

(F)
$$\Box p \leftrightarrow \Diamond p$$
.

Find a suitable class of frames $S_{\mathbf{KF}}$ for which \mathbf{KF} is sound and complete; in detail:

- 1. Show that **KF** is sound with respect to your candidate $S_{\mathbf{KF}}$, that is, *prove* that indeed $S_{\mathbf{KF}} \models (\mathbf{F})$.
- 2. Use the canonical model construction to show that **KF** is complete with respect to your candidate $S_{\mathbf{KF}}$; that is, show that the canonical **KF**-model is in your class $S_{\mathbf{KF}}$.