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Abstract

Modal logics are an important tool for talking about relational structures and have many
applications, for example, in computer science, philosophy, and linguistics. This course is
an introduction to “pure” modal logic covering many fundamental topics such as modal
expressiveness, completeness, and computational complexity.
Prerequisites: an acquaintance with the basics of propositional and first-order logic is
expected. Some knowledge in complexity theory will also be helpful.
The first three blocks of this course are for the most part based on a previous lecture on
modal logics by Prof. Carsten Lutz at the University of Bremen; otherwise, the course is
largely based on the standard textbook by Blackburn, de Rijke, and Venema (2001).
The early editions of the course have been designed by Daniel Hausmann. The first
versions of the script have been typeset by Johannes Schilling and Daniel Hausmann.
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Chapter 1

Semantic Introduction

Some slogans to outline the meaning of modal logics in sciences:

• Language for talking about relational structures (graphs).

• Family of logics “between” propositional logic and first order logic.

• Family of logics with attractive computational properties.

• Success story in computer science, philosophy, mathematics, linguistics,. . .

1.1 Basic Definitions

Definition 1.1 (Modal language, modal formulae). Let A be a countably infinite set of
propositional letters. A modal language is based on a non-empty set of modal indices I.
The set F(I) of modal formulae over I is given by the rule

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ψ | □iϕ

where p ∈ A and i ∈ I.

We use several abbreviations:

• ⊤ for ¬⊥

• ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ),

• ϕ → ψ for ¬ϕ ∨ ψ,

• ϕ ↔ ψ for ϕ → ψ ∧ ψ → ϕ,

• ♢iϕ for ¬□i¬ϕ.

The operators □i and ♢i are jointly referred to as modalities. If |I| = 1, then F(I) is
called the uni-modal language, otherwise a multi-modal language. In the case of uni-
modal languages, we drop the indices on modalities. To save brackets, we give the unary
operators □i,♢i,¬ the highest priority, followed by ∧, then ∨, then →,↔.

Example 1.2. Diamonds and boxes obtain various meanings depending on the applica-
tion. The original understanding of □ is as necessarily (So □ϕ says that ϕ is somehow
‘forced’ to be true, to distinguish from the situation where ϕ just somehow ‘happens’ to
be true.) Many further readings have bee established subsequently:
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Logics of knowledge or belief □xϕ is read“Agent x knows/believes that ϕ is true.”.

• What is the meaning of ♢x in this case?

• What would presumably be the axiomatic difference between knowledge and belief?

• How would you axiomatize positive introspection (“I know what I know”) and neg-
ative introspection (“I know what I do not know”)?

Temporal logic ♢ϕ is read“at some point in the future, ϕ is true.” Correspondingly,
□ϕ is read “at all points in the future, ϕ is true.” (Briefly, ♢ϕ is read ‘eventually ϕ’ and
□ϕ is read ‘always ϕ’.)

• What is the meaning of ♢□p?

• What is the meaning of □♢p?

• One can additionally introduce past operators ♢−, □− read ‘at some point in the
past’ / ‘at all points in the past’. Can you think of formulae relating past and future
that you expect to be valid?

Description logic (DL) Modalities are indexed by roles that represent relations be-
tween individuals. For instance, ♢hasPartϕ is read “the present object has some part that
satisfies ϕ.” Correspondingly, □hasPartϕ is read“all parts of the present object satisfy ϕ.”
A formula such as □hasPart♢hasPartFragile then says that “all parts of the present object
contain a fragile part.”

Deontic logic □ϕ is read “ϕ is obligatory’.

• What would be your understanding of ♢ϕ?

Definition 1.3 (Worlds, Frames, Models). A frame for a set of modal indices I is a tuple

F = (W, (Ri)i∈I)

where W is a non-empty set of worlds or states, and Ri ⊆ W ×W for each i ∈ I.
A model for I is a pair

M = (F, V )

where F is a frame for I and V is a valuation assigning a set V (p) ⊆ W to each p ∈ A.

If M = ((W, (Ri)i∈I), V ), then we say that M is based on the frame (W, (Ri)i∈I), and
usually write M = (W, (Ri)i∈I , V ). For historical reasons, models are also called Kripke
structures or Kripke models; similarly, frames are also called Kripke frames.

Example 1.4. As examples of uni-modal frames, consider the following:

1. A full binary tree of depth 42.

2. The natural numbers with the standard successor relation.
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3. The rational numbers with standard strict order“<”.

Definition 1.5 (Satisfaction of Formulae). Let M = (W, (Ri)i∈I , V ) and w ∈ W . We
inductively define satisfaction of formulae ϕ in M at w as follows:

M, w ̸|= ⊥
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w ̸|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= □iϕ iff for all w′ ∈ W s.t. (w,w′) ∈ Ri, we have M, w′ |= ϕ.

If M, w |= ϕ, then we say that ϕ is satisfied or true in M at w, and that M, w is a model
of ϕ. If M, w |= ϕ for all w ∈ W , then we write M |= ϕ and say that ϕ is globally true
in M.
We generalize these notions to (possibly infinite) sets Φ of formulae in the obvious way,
reading sets as big conjunctions. For instance, M, w |= Φ if M, w |= ϕ for all ϕ ∈ Φ.

It is easy to derive semantics for the defined symbols ∨,→,♢, etc. In particular M, w |= ♢iϕ
iff there is w′ ∈ W such that (w,w′) ∈ Ri and M, w′ |= ϕ.

Example 1.6. Consider the uni-modal frame F = ({w1, w2, w3, w4, w5}, R) consisting of
five worlds and the relation R that is defined by putting (wi, wj) ∈ R iff j = i + 1 or
i = j = 3. Also consider the valuation V (p) = {w1, w3}, V (q) = {w1, w2, w3, w4, w5},
V (r) = ∅. The model (M, R, V ) can be visualized as follows:

w1

p

w2

q

w3

p, q

w4

q

w5

q

We observe that the following statements regarding the satisfaction of formulae are true:

• M, w1 |= ♢□p,

• M, w2 ̸|= ♢□p,

• M, w1 ̸|= ♢(□p → p) (notice the higher binding of modal operators),

• M, w2 |= ♢(□p → p) ,

• M, w4 |= ♢□⊥,

• M |= q → □q.

When dealing with modal formulae, we shall often restrict ourselves to certain classes of
frames and models.

Example 1.7. We consider some examples of classes of frames that are suitable for
particular logics:

1. In description logics, the relation for the ♢hasPart modality should be transitive:

Consider the formula ♢hasPart♢hasPartFragile and the following model:
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car engine

Fragile?
electronics

Fragile

hasPart hasPart

hasPart

The diagram indicates that an engine is a part of a car and the electronics are a
fragile part of the engine. Thus an engine contains a fragile part while it is not
necessarily fragile itself; however, we should obtain that a car also contains a fragile
part. In other words, the relation RhasPart should be transitive. Formally, we require
in this example that,

♢hasPart♢hasPartFragile → ♢hasPartFragile.

Note. For description logics, worlds symbolize objects in the real world and formu-
lae denote properties of such objects.

2. In temporal logic, we want at least irreflexivity, antisymmetry and transitivity, as
can be seen by the following example. Assume that we have five points in time,
named 1pm up to 5pm, where i + 1pm is in the future of ipm as indicated by the
solid arrows in the following diagram:

1pm

rain

3pm

rain

2pm 4pm

sun

5pm

sun

Notice how we have V (rain) = {1pm, 3pm} and V (sun) = {4pm, 5pm}. Now
consider the following formulae:

ψ1 = rain → ♢sun ψ3 = rain ∧ ♢□sun
ψ2 = rain → □sun ψ4 = rain ∧ ♢rain

As ♢ϕ has the intuition that “at some point in the future, ϕ holds”, ψ1 should be
satisfied at 1pm, as it rains at 1pm and the sun shines at 4pm. To obtain that indeed
1pm |= rain → ♢sun, we have to take the transitive closure of the solid arrows in
the above diagram, that is, we have to add the dashed transitions, so that e.g. 4pm
is defined to be in the future of 1pm. On the other hand, we do not normally want
symmetry (e.g. the dotted transitions should not be added to the model) as this
would be at odds with the directedness of time, i.e. the distinction between past
and future.
For instance, we may choose the set of all linear orders as our class of frames for
temporal logics. Other classes are dense linear orders, right-unbounded linear orders,
etc.
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Note. In temporal logics, worlds represent points in time and propositional letters
denote time-dependent propositions.

3. Consider the following formula in the logic of knowledge and belief:

♢xp ∧ □x♢y¬p,

with the intuitive reading that “agent x cannot exclude p and knows that agent y
cannot exclude ¬p”. In this setting, worlds are possible states of affairs in the real
world, and the transition relation for agent x represents epistemic alternative,

Definition 1.8 (Satisfiability and validity in frames). A frame F satisfies a formula ϕ
(notation: F |= ϕ) if M |= ϕ for every model M based on F. Then, ϕ is valid over a
class S of frames if F |= ϕ for every F ∈ S. Dually, ϕ is satisfiable over S if there exist
a model M based on a frame F ∈ S and a world w of M such that M, w |= ϕ. More
generally, a set Φ of formulae is satisfiable over S if there is a model M based on a frame
F ∈ S and a world w of M such that M, w |= Φ.

Example 1.9. For instance,

• The formula ♢□p is satisfiable in the class of all frames; for instance we have

M, x |= ♢□p,

where M is given by the following diagram:

x y

p

• On the other hand, ♢p ∧ □¬p is not satisfiable in the class of all frames: If ♢p is
satisfied at some world x, then x has a successor world at which p is satisfied, and
this world is a counterexample to x satisfying □¬p.

x

y

¬p

z

p

 

• The formula ♢♢p ∧ □¬p is satisfiable in the class of all frames, but not in the class
of transitive frames: The solid arrows in the diagram

x y

¬p

z

p

constitute a non-transitive model for the formula; on the other hand, by adding the
dashed transitive arrow, we obtain a transitive model, in which however the formula
is no longer satisfied at x.
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1.2 Relation to First-Order-Logic (FOL)

Assume I = N and A = {p1, p2, p3, . . . }. Obviously, each model M = (W, (Ri)i∈I , V ) can
be viewed as a FOL-structure:

(W,R1, R2, R3, . . .︸ ︷︷ ︸
Ri⊆W×W

,

=P1︷ ︸︸ ︷
V (p1),

=P2︷ ︸︸ ︷
V (p2),

=P3︷ ︸︸ ︷
V (p3), . . .︸ ︷︷ ︸

V (pi)⊆W

),

where the Ri are binary predicates and the V (pi) are unary predicates.

Definition 1.10 (Standard translation). Let x be a first-order variable. The standard
translation STx takes modal formulae to FOL-formulae and is defined inductively:

• STx(pi) = Pi(x)

• STx(¬ϕ) = ¬STx(ϕ)

• STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

• STx(□iϕ) = ∀y.Ri(x, y) → STy(ϕ), where y is distinct from x.

We can derive that

• STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ)

• STx(♢iϕ) ≡ ∃y.Ri(x, y) ∧ STy(ϕ).

(and most of the time we assume that the translation of ♢i is defined in the above
equivalent way).

Example 1.11. The formula ♢(□p → q) translates to FOL as follows:

STx(♢(□p → q)) = ∃y1. R(x, y1) ∧ STy1(□p → q)
= ∃y1. R(x, y1) ∧ (STy1(□p) → STy1(q))
= ∃y1. R(x, y1) ∧ ((∀y2. R(y1, y2) → STy2(p)) → Q(y1))
= ∃y1. R(x, y1) ∧ ((∀y2. R(y1, y2) → P (p2)) → Q(y1))

Note. Modal formulae are translated to FOL-formulae with exactly one free variable.

Proposition 1.12 (Relation to FOL). Let ϕ ∈ F(I) and let |=FOL denote the satisfaction
relation of FOL. Then

1. for all models M and all worlds w of M, we have:

M, w |= ϕ iff M, η |=FOL STx(ϕ) where η = [w/x].

2. for all models M, we have:

M |= ϕ iff M |=FOL ∀x. STx(ϕ)

Proof. 1. The proof is left as an exercise.
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2. We note that

M |= ϕ iff ∀w ∈ W.M, w |= ϕ

iff ∀w ∈ W.M, η |=FOL STx(ϕ) where η = [w/x]
iff M |=FOL ∀x. STx(ϕ),

where the second equivalence is by item 1.

This allows us to transfer some results on FOL to modal logic.

Compactness. FOL has the compactness property: If Φ is a set of FOL-formulae, and
every finite subset of Φ is satisfiable, then the whole set Φ is satisfiable.
We observe that by Proposition 1.12, modal logic also has the compactness property: For
sets Φ of modal formulae, put

STx(Φ) = {STx(ϕ) | ϕ ∈ Φ}.

Let ΦML be a set of modal formulae such that every finite subset of ΦML is satisfiable. Then
for each Φf ⊆ ΦML, STx(ΦML) and STx(Φf ) are sets of FOL-formulae with STx(Φf ) ⊆
STx(ΦML). As Φf is satisfiable, there is a model M and a world w of M such that M, w |= ϕ
for all ϕ ∈ Φf . By Proposition 1.12, for all ϕ ∈ Φf , M, η |=FOL STx(ϕ), where η = [w/x],
showing that STx(Φf ) is satisfiable. By compactness of FOL, STx(ΦML) is satisfiable as
well so that there is a model M′ and a world w′ of M ′ such that M′, η |=FOL STx(ΦML),
where η = [w′/x]. Using the backwards direction of Proposition 1.12, we obtain that
M′, w |= ΦML, showing that modal logic has the compactness property.

Löwenheim-Skolem Property. FOL has the Löwenheim-Skolem property: If a set of
formulae Φ is satisfiable, then Φ has a countable model.
Again, by Proposition 1.12, modal logic has this property:
Let ΦML be satisfiable. As FOL has the Löwenheim-Skolem property, STx(ΦML) has a
countable model M containing a world w, with M, η |=FOL STx(ΦML) for η = [w/x]. By
Proposition 1.12, extended to sets of formulae, M, w |= ΦML, i.e. ΦML has a countable
model.

Also this brings some “modal flavour” to FOL:

1. FOL-formulae that can be obtained by translating modal formulae are of restricted
shape:

• existential quantifiers appear only in the form ∃y.Ri(x, y) ∧ ϕ(y)
• universal quantifiers appear only in the form ∀y.Ri(x, y) → ϕ(y)

This observation gives rise to the guarded fragment of FOL, which is – in contrast
to full FOL – decidable.
Is every guarded FOL-formula equivalent to a modal formula? No, e.g. the guarded
FOL-formula

∃x.R(y, x) ∧R(x, x)

is not equivalent to a modal formula.
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2. We can modify the standard translation so that it uses only two variables: simply
alternate when “going down” in the induction, e.g. the modal formula ♢(□p → q)
is translated to ∃y1. R(x, y1) ∧ (∀x. (R(y1, x) → P (x)) → Q(y1)). Note that x is
shadowed inside the universal quantifier.
The two-variable fragment of FOL is also decidable.
Is every two-variable FOL-formula equivalent to a modal formula? No, e.g. the
two-variable FOL-formula

∃x.R(y, x) ∧R(x, y)

is not equivalent to (the standard translation of) a modal formula. We will see why.
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Chapter 2

Modal Expressivity

What is the expressive power of modal logic? What is “expressive power”? One possible
characterization: find a condition that describes when two worlds in two Kripke structures
cannot be distinguished by modal formulae.

Definition 2.1. Let M,M′ be models, w a world of M , w′ a world of M′. The type of w
in M is defined as

TM(w) := {ϕ ∈ Form(I) | M, w |= ϕ}

If TM(w) = TM′(w′), then we say w and w′ are modally equivalent and denote this by
M, w ≡ML M′, w′. We will omit mention of M,M′ when these are clear from the context.

2.1 Invariance Results

We introduce three important ways of constructing new models from old ones, which leave
the type of worlds unchanged. These basic constructs are very useful for proving various
results. For simplicity, we consider uni-modal logic.

2.1.1 Disjoint Unions

Definition 2.2. Two models are called disjoint if their sets of worlds are disjoint. For a
family of pairwise disjoint models Mj = ((Wj, Rj, Vj))j∈K their disjoint sum is the model

⊎
j∈K

Mj := (W,R, V )

where W = ⋃
j∈KWj, R = ⋃

j∈K Rj, V (p) = ⋃
j∈K Vj(p) for each p ∈ A. Of course, we can

make any two given models disjoint by just renaming their worlds; we understand the
disjoint sum of any two models as arising by the above construction applied to suitably
renamed models in this sense. (Of course, the disjoint sum is then, again, only determined
up to renaming the worlds.)

Example 2.3. The following diagram depicts two individual models M1 and M2 and
their disjoint union M1

⊎
M2:
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M1

x

y z

M2

a

b

M1 ⊎ M2

x

y z

a

b

Proposition 2.4. Let Mj = (Wj, Rj, Vj))j∈K be a family of pairwise disjoint models. For
each j ∈ K and all worlds w ∈ Wj, we have

Mj, w ≡ML (
⊎
j∈K

Mj), w.

Proof. Exercise. Use structural induction on formulae.

Note. Not all classes of frames/models are closed under disjoint unions, e.g. the class of
linear orders is not, as e.g. <N ⊎ <Q is not a linear order.

Example 2.5. We consider the extension of the basic modal language by a “global dia-
mond” Eϕ whose semantics is

M, w |= Eϕ iff M, w′ |= ϕ for some w′ ∈ W.

Its dual, the “global box” is defined as Aϕ = ¬E¬ϕ, i.e.

M, w |= Aϕ iff M, w′ |= ϕ for all w′ ∈ W

iff M |= ϕ

E and A add a “global flavour” to modal logic. Can E and A be defined in the basic modal
language like ∨ or □, or do they extend it? Answer: These operators can not be defined
inside the basic modal language:
Suppose there is a modal formula α(p) s.t. for every model M, we have

M, w |= α(p) iff M |= p.

Then take two models M1 and M2 s.t. M1 |= p and M2 |= ¬p. Let w be a world of
M1. We have M1, w |= α(p) and thus by Proposition 2.4, M1

⊎
M2, w |= α(p). This is in

contradiction to M1
⊎
M2, w

′ |= ¬p for all w′ of M2.

In general, invariance results are suitable for showing undefinability

2.1.2 Generated Submodels

Disjoint unions are useful for constructing bigger models from smaller ones. Generated
submodels address the converse direction (picking out smaller models from existing bigger
ones).

Definition 2.6. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. M′ is called
a submodel of M, if

1. W ′ ⊆ W

14



2. R′ = R ∩ (W ′ ×W ′)

3. V ′(p) = V (p) ∩W ′ for all p ∈ A.

M′ is a generated submodel of M, if it is a submodel of M and also satisfies the closure
condition that w ∈ W ′ and (w,w′) ∈ R implies w′ ∈ W ′.
Example 2.7. Consider the following three models M, M′ and M′′. While M′ is a
generated submodel of M, M′′ lacks the generatedness property, i.e. M′′ is missing the
world z to which y has a transition in M so that M′′ is a submodel of M, but not a
generated submodel of M.

M

w

x y

z

M′

x y

z

M′′

x y

Proposition 2.8. Let M be a model, M′ a generated submodel of M, and consider w
be a world of M′. Then

M, w ≡ML M′, w.

Proof. The proof is by structural induction over formulae (Exercise).

2.1.3 p-Morphisms (also known as bounded morphisms)

Disjoint union and generated submodels are rather “brute force” methods for constructing
new models. p-morphisms are a more subtle concept that generalizes both of them.
Definition 2.9. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. A mapping
f : W → W ′ is a p-morphism from M to M′ if it satisfies the following properties, for all
w,w′ ∈ W :

1. w ∈ V (p) iff f(w) ∈ V ′(p) for all p ∈ A,

2. if (w,w′) ∈ R, then (f(w), f(w′)) ∈ R′,

3. if (f(w), v′) ∈ R′, then there is a v ∈ W s.t. (w, v) ∈ R and f(v) = v′.
Example 2.10. The following diagram depicts two models M and M′ and a p-morphism
f from M to M′:

M

xq

yp

zp

M′

a q

b p

f
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Notice how we have f(x) = a, f(y) = f(z) = b, as indicated by the dashed arrows. It is
easily checked that f indeed fulfils the three properties of p-morphisms.
Proposition 2.11. Let M and M′ be models s.t. there is a p-morphism f from M to
M′. Then we have that for all worlds w of M,

M, w ≡ML M′, f(w).

Proof. Exercise. Use structural induction on formulae.

As an example application of p-morphisms, let us prove that every satisfiable formula has
a tree-shaped model.
Definition 2.12. A model M = (W ,R,V) is a tree-model for ϕ iff the frame (W ,R) is
a tree with root w such that M, w |= ϕ.
For multi-modal languages, we demand that (W ,

⋃
i∈I Ri) is a tree.

Proposition 2.13. Every satisfiable modal formula has a tree-model.

Proof. Let ϕ be a satisfiable formula, M = (W ,R,V) a model, and w a world of M with
M, w |= ϕ. Define a new model M′ = (W ′,R′,V ′) by unravelling M at w:

• W ′ consists of all finite sequences (w, u1, . . . , un) such that

– n ≥ 0,
– (w, u1) ∈ R if n > 0,
– (ui, ui+1) ∈ R for 1 ≤ i ≤ n.

• R′ = {(w, u1, . . . , un), (w, u1, . . . , un, v) | (un, v) ∈ R}.

• V ′(p) = {(w, u1, . . . , un) | un ∈ V(p)} for all p ∈ A.

Clearly, (W ′,R′) is a (potentially infinite) tree with root (w). The mapping

f : (w, u1, . . . , un) 7→ un

is easily seen to be a p-morphism from M to M′ (Exercise: prove this). By Proposi-
tion 2.11, M, w |= ϕ implies M′, f(w) |= ϕ.
Example 2.14. The following diagram shows a model M and its unravelling at a:

M

a q

b pc

q

d

M′

q(a)

p(a, b)

q(a, b, c)

p(a, b, c, b)

q(a, b, c, b, c)

...

(a, b, d)

(a, b, c, b, d)
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Note. If a logic has the property formulated in Proposition 2.13, we say it has the tree
model property (TMP). This property is useful for proving decidability and complexity
results.

2.2 Bisimulations

Recall that p-morphisms are functions from one model into another. To characterize
modal equivalence adequately, we need a relation between sets of worlds.

Definition 2.15. Let M = (W ,R,V) and M′ = (W ′,R′,V ′) be two models. A relation
Z ⊆ W × W ′ is a bisimulation between M′ and M if whenever wZw′, then the following
conditions hold:

• w and w′ satisfy the same propositional letters;

• whenever (w, v) ∈ R, then there exists a v′ ∈ W ′ such that vZv′ and (w′, v′) ∈ R′

(forth condition).

• whenever (w′, v′) ∈ R′, then there exists a v ∈ W such that vZv′ and (w, v) ∈ R
(back condition).

We write M, w ≃ M′, w′ if there exists a bisimulation Z between M and M′ with wZw′.

Example 2.16. The following diagram depicts two models M, M′ and a bisimulation Z
between M and M′:

M

ap

bp

c

dq

M′

w p

x

y q

z q

Z

Notice how we have Z = {(a, w), (b, w), (c, x), (d, y), (d, z)}, as indicated by the dashed
lines. It is easily checked that Z indeed fulfils the three properties of bisimulations. It is
also worth noticing that we can neither define a p-morphism from M to M′ nor define a
p-morphism from M′ to M.

It is intuitively helpful to develop a game-based view of bisimilarity, as follows. The
bisimilarity game on models M1 = (W1, (R1

i )i∈I , V1), M2 = (W2, (R2
i )i∈I , V2) is played

between two players Abelard (∀) and Eloise (∃); Eloise aims to show that two given
worlds are bisimilar, while Abelard aims to refute this. The game is defined as follows:

• Positions: Pairs (w1, w2) ∈ W1 ×W2.
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• Moves: The game proceeds in rounds; in each round, starting at a current position
(w1, w2), ∀ first picks one of the models, say M1, and then selects i ∈ I and w′

1 ∈ W1
such that w1R

1
iw

′
1. Then ∃ has to reply with a world w′

2 ∈ W2 such that w2R
2
iw

′
2.

The game then continues from the new position (w′
1, w

′
2). (N.B.: ∀ may pick a

different side in each round.)

• Winning conditions:

– ∀ wins as soon as a position (w1, w2) is reached such that for some p ∈ A,
either w1 ∈ V1(p) and w2 /∈ V2(p) or w1 /∈ V1(p) and w2 ∈ V2(p).

– Any player who cannot move (because the required successor worlds do not
exist), loses.

– Infinite plays are won by ∃.

While we keep formal definitions of game-theoretic notions mostly implicit, relying instead
on standard intuitions, we emphasize the following points:

• We distinguish terminologically between the game, defined by its positions, moves
etc. as above, and a play of the game; a play is an actual sequence of positions
reached according to the decisions made by the players.

• We only care about perfect play, that is, when we say that a player wins a game,
we mean that he or she has a winning strategy, i.e. can choose moves so that he or
she wins the play no matter what the opponent does.

• We gloss over issues of determinacy, i.e. we take it for granted that one of the players
will always have a winning strategy. (This is problematic only for infinite games; in
our present case, this is not actually a problem because all infinite games are won
by the same player.)

The game characterizes bisimilarity in the following sense:

Lemma 2.17. Let M1, M2 be models. Worlds w1 ∈ W1, w2 ∈ W2 are bisimilar iff ∃ wins
the position (w1, w2) in the bisimilarity game on M1, M2.

Proof. Exercise: Use the principle of describing winning strategies by positional invari-
ants.

Importantly, modal logic is invariant under bisimilarity:

Lemma 2.18. Let ϕ be a modal formula. If M, w ≃ M′, w′, then M, w and M′, w′ agree
on ϕ, i.e. M, w |= ϕ iff M′, w′ |= ϕ.

Proof. Induction on ϕ. The steps for Boolean constructs (⊥, ¬, ∧) are trivial; for instance,
in the inductive step for negation, we have M.w |= ¬ϕ iff M.w ̸|= ϕ iff (by the inductive
hypothesis) M′, w′ ̸|= ϕ iff M′, w′ |= ¬ϕ. The inductive step for propositional letters is
immediate from the first clause in the definition of bisimulation. We do the inductive step
for the modality □i, using the fact that D wins the position (w,w′) in the bisimilarity
game on M, M′. By symmetry, it suffices to prove one implication of the inductive claim.
So suppose that M, w |= □iϕ. We have to show that M′, w′ |= □iϕ. So let w′R′

iv
′; we

have to show v′ |= ϕ. Now S can move from v to v′ in the bisimilarity game; let v be the
winning response of D. Then D wins (v, v′. Since wRiv, we have v |= ϕ; by the inductive
hypothesis, it follows that v′ |= ϕ are required.
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The question thus arises whether bisimulation characterizes modal equivalence, i.e. whether
the converse implication is true: does M, w ≡ML M,′ w′ imply M, w ≃ M′, w′? Indeed,
this is not true in general:

Example 2.19. Let M be a tree-model with |N| paths, where the k-th path has length k,
and let w be the “root” world of M. Let M′ be a similar model, just with one more
path, which is of infinite length, and let w′ be the “root” world of M′, as indicated by the
following diagrams:

M
w

. . .

M′

w′

. . . v′
0

v′
1

v′
2

...

Then M, w ≡ML M′, w′ (why?). On the other hand, M, w and M′, w′ fail to be bisimilar
(why?).

However, the converse of Lemma 2.18 does hold if we restrict the class of models, disabling
the above counterexample:

Definition 2.20. A model M = (W ,R,V) is image-finite if for every w ∈ W , the set

R(w) = {w′ ∈ W | (w,w′) ∈ R}

is finite. In particular, every finite model is image-finite.

Theorem 2.21 (Hennessy-Milner). Let M and M′ be image-finite models such that there
exists a bisimulation between M and M′. Then, for each w ∈ W and w′ ∈ W ′, we have

M, w ≃ M′, w′ iff M, w ≡ML M′, w′.

Proof. • ‘only if’ : by Lemma 2.18.

• ‘if’ : We prove that the relation ≡ML is a bisimulation. So let M, w ≡ML M′, w′.
We check the conditions of the definition:

– Agreement on propositional letters: Trivial.
– Forth condition: Let and (w, v) ∈ R. To the contrary of what is to be shown,

assume that there is no v′ in M′ such that (w′, v′) ∈ R′ and M, v ≡ML M′, v′.
Let s′ = {u′ ∈ W ′ | (w′, u′) ∈ R}; since M is finitely branching, we may write
s′ = {v′

1, . . . , v
′
n}, with n ≥ 0. For every v′

i ∈ s′, we have, by assumption and
using negation if needed, a formula ψi such that M, v |= ψi but M′, v′

i ⊭ ψi. It
follows that
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M, w |= ♢(ψ1 ∧ · · · ∧ ψn) and M′, w′ ̸|= ♢(ψ1 ∧ · · · ∧ ψn),
which contradicts M, w ≡ML M′, w′.

– Back condition: analogous to the forth condition.

Bisimulation can help understand the “modal fragment” of FOL. We have already seen
that there are FOL-formulae with one free variable that are not equivalent to the standard
translation of a modal formula, e.g.

∃y.(R(x, y) ∧R(y, x)).

How can we describe the class of FOL-formulae that are equivalent (the translation of) a
modal formula?

Definition 2.22. Let ϕ(x) be a first-order formula with one free variable in the signature
(R,A). Then ϕ(x) is invariant for bisimulations if, for all models M and M′, all states w
of M and v of M′, and all bisimulations Z between M and M′ such that wZv, we have

M, η |=FOL ϕ iff M′, ρ |=FOL ϕ,

where η = [w/x] and ρ = [v/x].

Theorem 2.23 (van Benthem). Let ϕ(x) be a first-order formula with one free variable
in the signature (R,A). Then ϕ(x) is invariant for bisimulations iff it is equivalent to the
standard translation of a modal formula.

Proof. Out of the scope of this lecture.
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Chapter 3

The Syntactic View

We have introduced modal logic using a relational semantics and viewed it as a fragment
of FOL. But this is not always appropriate:
For example, in logics of knowledge and belief, it is not always immediately clear which
frame class should be used. Such logics are usually defined by saying which statements
should be true:

• □ϕ → ϕ for all formulae ϕ: if the agent knows ϕ, then ϕ is true.

• □ϕ → □□ϕ for all formulae ϕ: if the agent knows ϕ then he knows that he knows
ϕ (positive introspection).

• ¬□ϕ → □¬□ϕ for all formulae ϕ: if the agent does not know ϕ then he knows that
he does not know ϕ (negative introspection).

Using this approach, how can the semantics be defined?

3.1 Modal logics and normal modal logics

The following definition of modal logics is inspired by Hilbert-style proof systems:

Definition 3.1. A modal logic (or logic, for short) Λ is a set of modal formulae that

1. contains all propositional tautologies,

2. is closed under modus ponens (MP), i.e.

if ϕ ∈ Λ and ϕ → ψ ∈ Λ, then ψ ∈ Λ,

3. and is closed under uniform substitution, i.e. if ϕ ∈ Λ and ψ can be obtained from ϕ
by uniformly replacing propositional letters with arbitrary formulae, then ψ ∈ Λ.

If ϕ ∈ Λ, we say that ϕ is theorem of Λ and write ⊢Λ ϕ.

Definition 3.2. Let ϕ be a formula, F a frame, and S a class of frames. Then ϕ is valid
in

• F (written |=F ϕ) iff M, w |= ϕ for every model M based on F and every world w
of F ,
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• S (written |=S ϕ) iff |=F ϕ for every frame F ∈ S.

We write |= ϕ if ϕ is valid in the class of all frames and we use ΛS to denote the set of all
formulae valid in S, i.e. we put ΛS = {ϕ | |=S ϕ}.

Example 3.3. We consider the following statements about validity of formulae:

• |= ♢(p ∨ q) → ♢p ∨ ♢q

• |=K4 □p → □□p, where K4 is the class of all transitive frames.

Note. • For all formulae ϕ, we have |=S ϕ iff ¬ϕ is unsatisfiable in S.

• Validity is defined on the level of frames, whereas global truth is defined on the level
of models. More precisely: |=F ϕ implies M |= ϕ if M is based on F (but not vice
versa).

Example 3.4. Some examples for modal logics:

1. The set of all formulae is a logic, the inconsistent logic.

2. Let PC be the smallest set containing all propositional tautologies that is closed
under uniform substitution. PC is a logic.

3. Let S be a class of frames. Then ΛS is a logic. It is easily checked (exercise!) that
each propositional tautology is valid in every frame and that validity is preserved by
modus ponens and uniform substitution (e.g. if |=S ϕ and |=S ϕ → ψ then |=S ψ).

4. If M is a class of models, then

ΛM = {ϕ | M |= ϕ for all M ∈ M}

need not be a logic. Consider a class M of models containing only one model M
with V(p) = W and V(q) ̸= W . Then p ∈ ΛM , but q ̸∈ ΛM implying that ΛM is not
closed under uniform substitution.

The third example shows that there is a close connection between modal logics and validity
in classes of frames, whereas the fourth example shows that we cannot work on the level
of models.

What does the logic ΛS of a class of frames S “look like”?

Definition 3.5. A modal logic Λ is called normal if it contains the formulae

(K) □(p → q) → (□p → □q),
(Dual) ♢p ↔ ¬□¬p,

and is closed under generalization, i.e. ⊢Λ ϕ implies ⊢Λ □ϕ.

Example 3.6. We consider some examples of normal modal logics:

1. The inconsistent logic is a normal modal logic.

2. PC is not a normal logic (since (K) ̸∈ PC).
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3. If {Λi | i ∈ I} is family of normal logics, then ∩i∈IΛi is a normal logic.

4. If S is any class of frames, then ΛS is a normal logic.

It is convenient to think of modal logics in terms of Kripke structures, but the second
and the fourth examples imply that there exist (non-normal!) modal logics Λ such that
Λ ̸= ΛS for all classes of frames S. Thus not all modal logics can be understood in terms
of Kripke structures.

Definition 3.7. Let Γ be a set of formulae (called axioms in this context). Due to Exam-
ples 3.6.1 and 3.6.3, there is for each Γ a unique smallest normal modal logic containing
Γ. This logic is called the normal modal logic generated by Γ. The normal modal logic
generated by ∅ is called K.

Example 3.8. Consider the following important axioms for the generation of normal
modal logics:

(M) or (T) p → ♢p (reflexivity)
(4) ♢♢p → ♢p (transitivity)
(B) p → □♢p (symmetry)
(D) □p → ♢p (seriality)

(L) or (G) □(□p → p) → □p (Löb-axiom)

We note that dual representations of axioms that involve implications can be obtained by
considering their contrapositive, e.g. for the transitivity axiom, we observe that

♢♢p → ♢p = ¬(♢♢p) ∨ ♢p

= □□¬p ∨ ¬□¬p
= □¬p → □□¬p.

The notion of normal modal logics is appropriate for describing modal logics of classes of
frames:

1. It is not too strong by Example 3.6.4

2. As we will see, the minimal normal logic K comprises precisely the formulae valid
in the class of all frames.

We now introduce the fundamental concepts linking the syntactic and the semantic per-
spectives.

Definition 3.9 (Soundness). Let S be a class of frames. A modal logic Λ is sound with
respect to S if, for all formulae ϕ, ⊢Λ implies |=S ϕ, i.e. if Λ ⊆ ΛS.

Soundness proofs for generated modal logics are often simple: suppose that we want to
show that a normal modal logic generated by some axiom A is sound w.r.t. some class of
frames S. Since we know (from Examples 3.4.3 and 3.6.4) that

• (K), (Dual) and all propositional tautologies are valid in S, and

• modus ponens, uniform substitution and generalization preserve validity,
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it suffices to show that |=S A.

Lemma 3.10. The following logics are sound w.r.t. the respective class of frames:

Logic generating axioms is sound for the class of
K ∅ all frames

K4 {(4)} transitive frames
T {(T)} reflexive frames
B {(B)} symmetric frames
S4 {(T), (4)} reflexive, transitive frames
S5 {(T), (4), (B)} reflexive, transitive, symmetric frames

Proof. The proof is left as exercise!

Definition 3.11. Let S be a class of frames. A modal logic Λ is complete w.r.t. S, if, for
all formulae ϕ, |=S ϕ implies ⊢Λ ϕ, i.e. if ΛS ⊆ Λ.

Completeness proofs are usually much harder than soundness proofs.

3.2 The canonical model for K

We use the method of canonical models to show that K is complete w.r.t. the class of all
frames. It is convenient to do this based on consistency.

Definition 3.12. Let Λ be a logic. Then

• a formula ϕ is said to be Λ-consistent if ��⊢Λ¬ϕ, and Λ-inconsistent otherwise.

• a set of formulae Γ is Λ-consistent if, for all finite subsets {ψ1, . . . , ψn} ⊆ Γ, the
formula ψ1 ∧ · · · ∧ ψn is Λ-consistent, and Λ-inconsistent otherwise.

Proposition 3.13. Let Λ be a logic and S a class of frames. Then

1. Λ is sound w.r.t. S iff every formula that is satisfiable in S is Λ-consistent.

2. Λ is complete w.r.t. S iff every Λ-consistent formula is satisfiable in S.

Proof. Exercises!

Definition 3.14 (Λ-MCS). A set of formulae Γ is maximal Λ-consistent if Γ is Λ-
consistent, and any set of formulae properly containing Γ is inconsistent.

Lemma 3.15 (Consistency). Let Λ be a logic, ϕ a formula and Γ be a Λ-consistent set
of formulae. Then Γ ∪ {ϕ} is Λ-consistent or Γ ∪ {¬ϕ} is Λ-consistent.

Proof. Assume both sets are Λ-inconsistent. Then there must be formulae ψ1, . . . , ψm ∈ Γ
and ψ′

1, . . . , ψ
′
n ∈ Γ s.t. both ψ1 ∧ · · · ∧ ψm ∧ ϕ and ψ′

1 ∧ · · · ∧ ψ′
n ∧ ¬ϕ are Λ-inconsistent,

i.e.

⊢Λ ¬(ψ1 ∧ · · · ∧ ψm ∧ ϕ) (1)
⊢Λ ¬(ψ′

1 ∧ · · · ∧ ψ′
n ∧ ¬ϕ) (2)

We have ⊢Λ ¬(a ∧ b) → (¬(a′ ∧ ¬b) → ¬(a ∧ a′)), as this is a tautology. Substitute
a 7→ (ψ1 ∧ · · · ∧ ψm), a′ 7→ (ψ′

1 ∧ · · · ∧ ψ′
n), b 7→ ϕ. By (1) and (2) in combination with

modus ponens (twice), ⊢Λ ¬(ψ1 ∧· · ·∧ψm∧ψ′
1 ∧· · ·∧ψ′

n) which contradicts Λ-consistency
of Γ.
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Proposition 3.16 (Hintikka properties). Let Λ be a logic, Γ be a Λ-MCS. Then

1. for all formulae ϕ, we have that ϕ ∈ Γ or ¬ϕ ∈ Γ, but not both

2. for all formulae ϕ and ψ, we have ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

3. Γ is closed under modus ponens, i.e. {ϕ, ϕ → ψ} ⊆ Γ implies ψ ∈ Γ.

4. Λ ⊆ Γ.

Proof : Exercises!

Lemma 3.17 (Lindenbaum’s Lemma). Let Λ be a logic and let Σ be a Λ-consistent set
of formulae. Then there is a Λ-MCS Σ+ s.t. Σ ⊆ Σ+.

Proof : Let ϕ0, ϕ1, . . . be an enumeration of all formulae. We define Σ+ as follows:

Σ0 = Σ

Σn+1 =

Σn ∪ {ϕn} if this set is consistent,
Σn ∪ {¬ϕn} otherwise

Σ+ =
⋃

0≤n
Σn

Clearly, Σ ⊆ Σ+. The following properties imply that Σ+ is a Λ-MCS:

1. Σ+ is Λ-consistent: Assume Σ+ is Λ-inconsistent. Then a finite subset Γ ⊆ Σ+ is
Λ-inconsistent. But then Γ ⊆ Σn for some n, which is a contradiction since all Σn

are Λ-consistent by Lemma 3.15.

2. Σ+ is maximal: Let ϕ /∈ Σ+ and ϕ = ϕn. Since ϕn /∈ Σ+ ⊇ Σn+1,Σn ∪ {ϕn} is
Λ-inconsistent. Thus so is Σ+ ∪ {ϕn}.

Definition 3.18. The canonical model MΛ for a normal modal logic Λ is the triple
(WΛ, RΛ, V Λ), where

1. WΛ is the set of all Λ-MCS,

2. RΛ is defined by

(w, u) ∈ RΛ iff, for all formulae ϕ, ϕ ∈ u implies ♢ϕ ∈ w.

3. V Λ(p) =
{
w ∈ WΛ

∣∣∣ p ∈ w
}
.

Note. There are two very important properties of canonical models:

1. MΛ, w |= ϕ iff ϕ ∈ w (see Truth Lemma below).

2. Since MΛ consists of all Λ-MCSs, by Lindenbaum’s Lemma, every Λ-consistent set
of formulae Γ is true in some world of MΛ. This is why MΛ is called canonical.

Lemma 3.19. For every normal modal logic Λ and for all formulae ϕ, ψ1, . . . , ψn we have

1. ⊢Λ ϕ → ψ implies ⊢Λ □ϕ → □ψ, and

2. ⊢Λ (□ψ1 ∧ · · · ∧ □ψn) → □(ψ1 ∧ · · · ∧ ψn).
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Proof. Follows from a more general statement proved as an exercise.

Lemma 3.20 (Existence Lemma). For all normal modal logics Λ and all worlds w ∈ WΛ,
if ♢ϕ ∈ w, then there is a world v ∈ WΛ s.t. (w, v) ∈ RΛ and ϕ ∈ v.

Proof. Let ♢ϕ ∈ w. Put u := {ϕ} ∪ {ψ | □ψ ∈ w}. We first show that u is Λ-consistent.
Assume that this is not the case, i.e. that for some ψ1, . . . , ψn ∈ u, we have

⊢Λ ¬(ψ1 ∧ · · · ∧ ψn).

Then we also have
⊢Λ ψ1 ∧ · · · ∧ ψn → ¬ϕ

and therefore, by the rule (RK) derived in the exercises,

⊢Λ (□ψ1 ∧ · · · ∧ □ψn) → □¬ϕ (∗)

Further, □ψ1, . . . ,□ψn ∈ w implies by Item 2. of Proposition 3.16 that □ψ1 ∧· · ·∧□ψn ∈
w, which in turn implies by Items 3. and 4. of Proposition 3.16 together with (∗) that
□¬ϕ ∈ w. Then we have

⊢Λ ♢ϕ → ¬□¬ϕ ((Dual) + subst.) (1)
⊢Λ □¬ϕ → ¬♢ϕ (prop.taut. + subst. + MP on (1)) (2)

which implies by Items 3. and 4. of Proposition 3.16 that ¬♢ϕ ∈ w which is – by Item 2.
of Proposition 3.16 – a contradiction to ♢ϕ ∈ w. Hence u is consistent.
By Lindenbaum’s Lemma, it follows that u ⊆ v for some Λ-MCS v. It remains to show
that (w, v) ∈ RΛ. Assume (w, v) /∈ RΛ. Then by definition of RΛ, ψ ∈ v and ♢ψ /∈ w
for some ψ. It follows by Item 1. of Proposition 3.16 that ¬♢ψ ∈ w which implies by
(Dual) that □¬ψ ∈ w. Hence by definition of u and v, ¬ψ ∈ v which is by Item 1. of
Proposition 3.16 a contradiction to ψ ∈ v. Thus (w, v) ∈ RΛ.

Lemma 3.21 (Truth Lemma). For all normal modal logics Λ, all formulae ψ and all
worlds in w ∈ WΛ,

MΛ, w |= ψ iff ψ ∈ w.

Proof. We proceed by structural induction on ψ.

Base cases

• ψ = ⊥ or ψ = ⊤: Trivial.
• If ψ = p, then MΛ, w |= p iff p ∈ w by definition of V Λ(p).

Inductive step Assume as induction hypothesis that for all i ∈ {1, 2} and all v ∈ WΛ,

MΛ, v |= ψi iff ψi ∈ v.

• If ψ = ψ1∧ψ2, then MΛ, w |= ψ1∧ψ2 iff MΛ, w |= ψ1 and MΛ, w |= ψ2 iff (by the
induction hypothesis) ψ1 ∈ w and ψ2 ∈ w iff (by Item 2. of Proposition 3.16)
ψ1 ∧ ψ2 ∈ w.

• If ψ = ¬ψ1, then MΛ, w |= ¬ψ1 iff MΛ, w��|=ψ1 iff (by the induction hypothesis)
ψ1 /∈ w iff (by Item 1. of Proposition 3.16) ¬ψ1 ∈ w.
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• ψ = ♢ψ1: For the forth direction, note that MΛ, w |= ♢ψ1 iff ∃v ∈ WΛ.(w, v) ∈
RΛ and MΛ, v |= ψ1, by induction hypothesis iff ∃v ∈ WΛ.(w, v) ∈ RΛ and
ψ1 ∈ v and by definition of RΛ, only if ♢ψ1 ∈ w. For the backwards direction,
let ♢ψ1 ∈ w. By the above equivalences it suffices to find a Λ-MCS v s.t.
(w, v) ∈ RΛ and ψ1 ∈ v. Such a v exists by the Existence Lemma.

Theorem 3.22. K is complete w.r.t. the class of all frames.

Proof. By Proposition 3.13, it suffices to show that every K-consistent formula is satis-
fiable. So let ϕ be K-consistent. We have to find a model M (based on any frame) and
a world w of M s.t. M, w |= ϕ. Simply choose MK and let Γ be a K-MCS with ϕ ∈ Γ
(such a Γ exists by Lindenbaum’s Lemma). By the Truth Lemma, MK,Γ |= ϕ.

3.3 Other frame classes

Observe that all relevant Lemmas in the preceding section have been established for every
normal modal logic, not only for K. Thus, (some) other completeness results are now
simple:

Theorem 3.23. K4 is complete w.r.t. the class of all transitive frames.

Proof. Let ϕ be a K4-consistent formula. We need to find a model M = (W,R, V ) s.t.
M, w |= ϕ for some w ∈ W and R is transitive. By Lindenbaum’s Lemma, there is a
K4-MCS Γ with ϕ ∈ Γ. By the Truth Lemma, MK4,Γ |= ϕ. It thus remains to show
that RK4 is transitive.
Let w, v, u ∈ WK4 s.t. {(u, v), (v, w)} ⊆ RK4. We have to show that (u,w) ∈ RK4.
Let ψ ∈ w. It remains to show that ♢ψ ∈ u. Now (v, w) ∈ RK4 yields ♢ψ ∈ v and
(u, v) ∈ RK4 yields ♢♢ψ ∈ u. Since u is a K4-MCS, ♢♢ψ → ♢ψ ∈ u and u is closed
under modus ponens (by Proposition 3.16), ♢ψ ∈ u.

Two observations

• The proof strategy is simple: just show that the canonical model has the desired
property.

• The proof that RK4 is transitive only uses the fact that ♢♢ψ → ♢ψ ∈ K4. Hence
the canonical frame of any logic containing (4) is also transitive.

Lemma 3.24. Let Λ be a normal modal logic. If (4) ∈ Λ, then MΛ is based on a transitive
frame.

Proof. See proof of Theorem 3.23.

Lemma 3.25. Let Λ be a normal modal logic. If (T) ∈ Λ / (B) ∈ Λ, then MΛ is based
on a reflexive/symmetric frame.

Proof.

• Let w ∈ WΛ and ϕ ∈ w. Since w is Λ-MCS and (T) ∈ Λ, ϕ → ♢ϕ ∈ w. By modus
ponens we get ♢ϕ ∈ w. Thus (w,w) ∈ RΛ.
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• Let w, v ∈ WΛ, (w, v) ∈ RΛ and let ϕ ∈ w. As ϕ → □♢ϕ ∈ w, ϕ ∈ w implies by
modus ponens that □♢ϕ ∈ w which implies by (w, v) ∈ RΛ and the Truth Lemma
that ♢ϕ ∈ v. By definition of RΛ, ϕ ∈ w and ♢ϕ ∈ v imply (v, w) ∈ RΛ.

Theorem 3.26. The logics T, B and S4 are complete w.r.t. the class of reflexive, sym-
metric and reflexive-transitive frames, respectively. The logic S5 is complete w.r.t. the
class of frames (W,R) with R equivalence relation.

Proof. Proceed as in the proof of Theorem 3.23, using Lemma 3.24 and Lemma 3.25.

Note. There exist natural and complete (normal) modal logics for which the above ap-
proach does not work. Such logics are referred to as non-canonical logics. One example
of a non-canonical logic is provability logic, i.e. the logic L that is generated by {(L)}
(where (L) denotes the Löb-axiom □(□p → p) → □p).

Example 3.27. Coming back to the logic of knowledge and belief, note that for every
normal modal logic Λ,

□p → p ∈ Λ iff p → ♢p ∈ Λ (T)
□p → □□p ∈ Λ iff ♢p → ♢♢p ∈ Λ (4)

¬□p → □¬□p ∈ Λ iff ♢p → □♢p ∈ Λ (5)

For logics of knowledge and belief, we are thus interested in the class of reflexive and
transitive frames, or even in frames based on equivalence relations.

3.4 Incompleteness

In Section 3.1, we have seen that, for every class of frames S, the logic ΛS is normal.
Conversely, is every normal modal logic the logic of some class of frames? Unfortunately
this is not the case!

Definition 3.28. Let Fω be the frame (W,R) with

1. W = N ∪ {ω, ω + 1}

2. (x, y) ∈ R iff

(a) x ̸= ω + 1 and y < x or
(b) x = ω + 1 and y = ω

The following diagram depicts Fω:

Fω

1 2 3
. . .

ω ω + 1
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Now let Sω be the class of models M = (Fω, V ) s.t. for each p ∈ A, either

1. V (p) is finite and ω /∈ V (p) or

2. V (p) is co-finite (i.e. W \ V (p) is finite) and ω ∈ V (p).

KvB is the set of formulae that are globally true in all models in Sω.

Theorem 3.29. KvB is a normal modal logic.

Proof. Closure under modus ponens and necessitation and containment of all proposi-
tional tautologies and the K axiom are clear, as these are all sound for satisfaction in
models. Closure under substitution (which in general is sound only for satisfaction in
frames) is shown in the exercises.

Our aim is to show that for all classes of frames S, KvB ̸= ΛS. The following formulae
play an important role:

ϑ = □♢⊤ → □(□(□p → p) → p)
χ = □♢⊤ → □⊥

Lemma 3.30. ϑ ∈ KvB and χ /∈ KvB.

Proof. “ϑ ∈ KvB”: Let M ∈ Sω; we have to show that M |= ϑ. Observe that M, v |=
□♢⊤ iff v ∈ {0, ω+1}. In case v = 0, we are done immediately since 0 has no successors. It
remains to show that M, ω+ 1 |= □(□(□p → p) → p), i.e. that M, ω |= □(□p → p) → p.
So suppose that M, ω |= □(□p → p). Then M, n |= □p → p for all n ∈ N. We claim that

M, n |= p for all n ∈ N. (∗)

From (∗), we conclude that M, ω |= p, as required: Since (∗) implies that V (p) is not
finite, it follows from the definition of Sω that ω ∈ V (p).
We prove (∗) by course-of-values induction on n, i.e. in the step for n we assume as the
inductive hypothesis that the claim already holds for all k < n. Since these k are precisely
the successors of n, it follows that M, n |= □p, so M, n |= p since M, n |= □p → p.
“χ /∈ KvB”: Since ω is the only successor of ω + 1, we have M, ω + 1 ̸|= χ for all
M ∈ Sω.

Lemma 3.31. For any frame F, |=F ϑ implies |=F χ.

Proof. Let F = (W,R) such that |=F ϑ. Let M = (F, V ) and w ∈ W . We have to show
that M, w |= χ. So suppose that M, w |= □♢⊤; we have to show that M, w |= □⊥.
Assume the contrary, i.e. there is v ∈ W such that (w, v) ∈ R. Take a new model M′ =
(F, V ′), where V ′(p) = W \ {v} and V ′(q) = V (q) for q ̸= p. Since M, w |= □♢⊤, we have
M′, w |= □♢⊤. Thus M′, w |= □(□(□p → p) → p), and hence M′, v |= □(□p → p) → p.
Since M′, v ̸|= p it follows that M′, v ̸|= □(□p → p). Hence there is u ∈ W such that
(v, u) ∈ R and M′, u ̸|= □p → p, i.e. M′, u |= □p but M′, u ̸|= p. Since V ′(p) = W \ {v},
the latter implies u = v and thus (u, u) ∈ R. Since M′, u ̸|= p, we have a contradiction to
M, u |= □p.

Theorem 3.32. KvB is a normal, consistent modal logic that is not complete w.r.t. any
class of frames.

Proof. • KvB is normal by Theorem 3.29.
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• KvB is consistent since Sω is non-empty and M ̸|= ⊥ for every model M ∈ Sω.
Hence ⊥ /∈ KvB.

• Suppose KvB is complete w.r.t. a class of frames S. By Lemma 3.31, we have
|=S ϑ → χ. By Lemma 3.30 and since modal logics are closed under modus ponens,
we have ̸⊢KvB ϑ → χ, which is a contradiction to the completeness of KvB w.r.t. S.

3.5 Frame-definability

We have seen that some modal formulae correspond to first-order properties of frames.
For instance, the modal formula ♢♢p → ♢p corresponds to transitivity of frames, i.e. to
the first-order formula ∀x, y, z.((R(x, y) ∧R(y, z) → R(x, z)))). Is this the case for every
modal formula? No, in general modal formulae correspond to second-order properties of
frames.

Definition 3.33. Let ϕ be a formula, S a class of frames. We say that ϕ defines S if, for
all frames F,

F ∈ S iff |=F ϕ.

Example 3.34. We note that

• (T) defines the class of reflexive frames,

• (4) defines the class of transitive frames,

• (L) defines the class of frames (W,R) with R finite transitive tree. We refer to this
class as FTT .

Definition 3.35. Let ϕ be a formula, F a frame and w a world of F. We write F, w |= ϕ
if M, w |= ϕ for all models M that are based on F.

1. Let α(x) be a FOL-formula with one free variable x. Then α(x) locally corresponds
to a modal formula ϕ if for all frames F and worlds w of F,

F, w |= ϕ iff F, η |=FOL α, where η = [w/x].

2. Let β(x) be a second-order formula (MSO). Then β(x) locally corresponds to ϕ if
for all frames F and worlds w of F,

F, w |= ϕ iff F, η |=MSO β, where η = [w/x].

Example 3.36.

The axiom (T) (i.e. p → ♢p) locally corresponds to R(x, x):

Frame F is reflexive iff |=F (T )
iff ∀w ∈ W.F, w |= (T )
iff ∀w ∈ W.F, η |=FOL R(x, x) for η = [w/x]
iff F |=FOL ∀x.R(x, x)
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The axiom (4) (i.e. ♢♢p → ♢p) locally corresponds to the FOL-formula

∀y, z.((R(x, y) ∧R(y, z)) → R(x, z)).

The class of frames (W,R) with R finite transitive tree (FTT) is not first-order definable:
Lemma 3.37. There is no FOL-formula that locally corresponds to (L).

Proof. The proof makes uses of compactness of FOL and is left as exercise.
Definition 3.38. Let ϕ be a modal formula that mentions n propositional atoms p1, . . . , pn.
The second-order translation of ϕ is given as

∀P1. . . . .∀Pn. STx(ϕ).

Proposition 3.39. Let ϕ be a modal formula. Then for all frames F = (W,R) and all
worlds w ∈ W ,

1. F, w |= ϕ iff F, η |=MSO ∀P1. . . . .∀Pn. STx(ϕ) for η = [w/x]

2. F |= ϕ iff F |=MSO ∀P1. . . . .∀Pn.∀x. STx(ϕ).

Proof. Similar to the proof of Proposition 1.6, left as exercise.
Example 3.40. The second-order translations of (T) and (L) are

(T): ∀P.STx(p → ♢p) = ∀P.P (x) → ∃y.R(x, y) ∧ P (y)

(L): ∀P.STx(□(□p → p) → □p) =
∀P.∀y.R(x, y) → ((∀z.R(y, z) → P (z)) → P (y)) → (∀y.R(x, y) → P (y))

We now consider a fragment of modal logic that consists of formulae that define first-order
properties of frames: The Sahlqvist fragment of modal logic.
Definition 3.41. Let ϕ be a formula. A propositional atom p is positive/negative in ϕ
if every occurrence of p in ϕ is under an even/odd number of negations. A formula ϕ is
positive/negative if all propositional atoms that occur in ϕ are positive/negative in ϕ.
A boxed atom is a formula of the shape □ . . .□︸ ︷︷ ︸

k times

p where k ≥ 0.

Definition 3.42. A Sahlqvist antecedent is a formula built from ⊥,⊤, boxed atoms and
negative formulae, using ∧,∨ and ♢. A Sahlqvist implication is an implication ϕ → ψ in
which ψ is positive. A Sahlqvist formula is a formula that is built up from Sahlqvist impli-
cations, using □ and ∧, and using ∨ only between formulae that do not share propositional
atoms.
Example 3.43. (T), (4), (B) are Sahlqvist formulae, (L) is not:

(T) p → ♢p

(4) ♢♢p︸ ︷︷ ︸
Sahlqvist antecedent

→ ♢p

(L) □(□p → p)︸ ︷︷ ︸
not a Sahlqvist antecedent

→ □p

Theorem 3.44. Let χ be a Sahlqvist formula. Then χ locally corresponds to a first-order
formula cχ(x) on frames. Moreover, cχ is effectively computable from χ.

Proof. This proof is out of scope of the lecture.
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Chapter 4

Decidability and complexity

Decidability of satisfiability and validity of formulae is, of course, a desirable property of
(modal) logics. The following reduction allows us to restrict attention to satisfiability of
formulae:

|=S ϕ iff ¬ϕ is unsatisfiable in S.

Hence decidability of satisfiability implies decidability of validity, and complexity bounds
can be transferred.
In this section, we will only consider normal modal logics that are sound and complete
w.r.t. some class of frames, namely the classes considered in Section 3.1. The frames from
these classes are called Λ-frames, e.g. we will call a frame an S4-frame if it is reflexive
and transitive. We say that a formula is Λ-satisfiable iff it is satisfiable w.r.t. the class of
Λ-frames and write

• SAT(Λ) to denote the satisfiability problem of Λ,

• VAL(Λ) to denote the validity problem of Λ.

4.1 Finite models

Many (but not all) modal logics have the finite model property (FMP), which is formulated
as follows.

If a formula is Λ-satisfiable, then it is satisfiable in a finite model based on a
Λ-frame.

The FMP often allows to prove decidability in a straight-forwarded way.

4.1.1 Filtration

Filtration is one of the most important techniques to convert an infinite model into a
finite one.

Definition 4.1. Let M = (W,R, V ) be a model and Γ a set of formulae. We define a
relation ∼Γ⊆ W × W by putting w ∼Γ v iff for all ϕ ∈ Γ, M, w |= ϕ iff M, v |= ϕ. We
write [w]Γ for the equivalence class of w w.r.t. ∼Γ, omitting the subscript Γ if understood
from the context.
A model Mf = (W f , Rf , V f ) is called a filtration of M through Γ if the following conditions
hold:
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(i) W f = {[w] | w ∈ W},

(ii) for all w, v ∈ W , if (w, v) ∈ R, then ([w], [v]) ∈ Rf ,

(iii) for all w, v ∈ W and ♢ϕ ∈ Γ, if ([w], [v]) ∈ Rf and M, v |= ϕ, then M, w |= ♢ϕ,

(iv) V f (p) = {[w] | w ∈ V (p)}.

Example 4.2. The following diagram depicts a model M and a filtration Mf of M
through a set Γ. Without defining Γ explicitly, we assume that we have 1 ∼Γ 3 ∼Γ 5 and
2 ∼Γ 6 and the three equivalence classes [1]Γ, [2]Γ and [4]Γ. The dashed arrows in the
diagram indicate the identification of worlds that takes place.

M

1

2

3

4

5

6

Mf

[1]

[2]

[4]

Why is it allowed that there is no loop at [4] in the filtration? Why is it allowed that
there is no transition from [4] to [1]? Are all of the existing transitions in the filtration
required, or could we omit some of them?

Theorem 4.3. Let Γ be a finite set of formulae that is closed under taking subformulae,
let M be a model and let Mf be a filtration of M through Γ. Then

1) Mf contains at most 2|Γ| worlds,

2) for all ϕ ∈ Γ and worlds w of M, we have

M, w |= ϕ iff Mf , [w] |= ϕ.

Proof.

1) Easy by definition of filtration (every world may or may not satisfy any formula
from Γ: 2|Γ| possibilities).

2) By structural induction on ϕ (left as exercise).
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There is, by definition, no unique filtration of a model, but rather we have some freedom
to choose Rf . Let us describe the most prominent choices:

1. The smallest filtration is defined by

Rf := {([w], [v]) | ∃w′ ∈ [w] and v′ ∈ [v] s.t. (w′, v′) ∈ R} .

2. The largest filtration is defined by

Rf := {([w], [v]) | ∀♢ϕ ∈ Γ.M, v |= ϕ implies M, w |= ♢ϕ} .

It is easily checked (exercise!) that the two choices satisfy the second and third property
of filtrations.

Example 4.4. The following diagram depicts a model M and two filtrations of M through
a set Γ. Without defining Γ explicitly, we assume ∼Γ identifies the nodes 1, 2 and 3 as
well as the nodes 4 and 5. The dashed arrows in the diagram indicate the identification
of worlds that takes place. The atom p is intended to be satisfied only where indicated
explicitly; we have emphasized satisfaction of ¬p only where particularly relevant. Two
filtrations are depicted by Mf : The solid arrows in Mf constitute (together with the
nodes in Mf ) the smallest filtration of M through Γ while the model that is obtained by
also adding the dotted transitions is the largest filtration of M through Γ.

M

1p

2p

3p

4

5

6¬p

Mf

[1] p

[4]

[6] ¬p

Regarding the largest filtration, we assume that the only ♢-formula in Γ is ♢p so that
all the depicted dotted transitions are allowed (also, we assume that Γ is closed under
subformulae, in particular contains p). Notice that there is not even a dotted transition
from [6] to [1] since M, 1 |= p but M, 6 ̸|= ♢p,

We now use filtration to prove that K has the FMP. Let |ϕ| denote the length of a
formula ϕ, i.e. the number of symbols used to write it.

Theorem 4.5. Every satisfiable formula ϕ has a model containing at most 2|ϕ| worlds.
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Proof. Let ϕ be a satisfiable formula, M a model of ϕ and w a world of M s.t. M, w |= ϕ.
Let Γ be the set of all subformulae of ϕ and let Mf be a filtration of M through Γ. By
Theorem 4.3, Mf has at most 2|Γ| worlds and Mf , [w] |= ϕ. It is easily checked that
|Γ| ≤ |ϕ|.

Note. Since Theorem 4.5 gives an explicit bound on the number of worlds, the established
model property is also called bounded model property (BMP). BMP implies FMP, but not
vice-versa!
Theorem 4.5 can be used to prove decidability of SAT(K).

Lemma 4.6 (Model checking for K). Given a model M = (W,R, V ), a world w ∈ W
and a formula ϕ, it is decidable in time O(|ϕ| · (|W | + |R|), whether M, w |= ϕ.

Proof. Let ψ1, . . . , ψk be the subformulae of ϕ, listed in order of length. Then ψk = ϕ and
if ψi is subformula of ψj, then i < j. To decide whether M, w |= ϕ, for each i = 1, . . . , k,
label each world v ∈ W with ψi or ¬ψi, depending on whether M, v |= ψi or not. Finally,
return “yes” if w is labelled with ϕ and “no” otherwise.
The algorithm needs at most |ϕ| rounds. In each round, it has to check |W | worlds.
Checking formulae ⊤,⊥, p,¬ψ and ψ ∧ ϑ is trivial. To check formulae ♢ψ, we need to
visit all successors of the currently considered world, at most |R|.

Theorem 4.7. SAT(K) and VAL(K) are decidable.

Proof. By Theorem 4.5, to check satisfiability of a formula ϕ, it suffices to

1) enumerate all models of size up to 2|ϕ|, and

2) for each such model M, check whether M, w |= ϕ for some world w of M (which is
decidable by Lemma 4.6).

Since only propositional letters used in ϕ are relevant, there are only finitely many such
models, i.e. the algorithm terminates.

4.1.2 Selection

Assume that we are interested in the class of frames whose relation is a partial function,
henceforth called functional frames. This occurs e.g. when modal logics are used for
reasoning about programs where functionality corresponds to determinism. We call the
logic of this class of frames KCD; it is generated by the axiom

(CD) ♢p → □p

Here, filtration does not work. To establish the FMP for KCD, we use a different tech-
nique: selection.

Theorem 4.8. If a formula ϕ is KCD-satisfiable, then it is satisfiable in a model based
on a KCD-frame (W,R) such that |W | ≤ |ϕ|.

Proof. Let M = (W,R, V ) be a model of ϕ. We construct a selection function s that
assigns to each world w of M and each subformula ψ of ϕ a set s(ψ,w) of worlds; s is
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defined by recursion on ψ as follows.

s(⊥, w) = {w}
s(p, w) = {w}

s(¬ψ,w) = s(ψ,w)
s(ψ ∧ ϑ,w) = s(ψ,w) ∪ s(ϑ,w)
s(♢ψ,w) = {w} ∪

⋃
{v|(w,v)∈R}

s(ψ, v)

Intuitively, s(ψ,w) selects (at most) the worlds that are relevant for evaluating ψ at w.
Now let M′ be the model (W ′, R′, V ′) defined by

W ′ = s(ϕ,w)
R′ = R ∩W ′ ×W ′

V ′(p) = V (p) ∩W ′ for all p ∈ A.

It is easily proved (exercise!) by structural induction that for all subformulae ψ of ϕ and
all w ∈ W ′, if s(ψ,w) ⊆ W ′, then

M, w |= ψ iff M′ |= ψ.. (∗)

Let w ∈ W s.t. M, w |= ϕ. By (*), we obtain M′, w |= ϕ, noting that s(ϕ,w) ⊆ W ′ by
construction. Since (W,R) is functional, it is easy to see that the number of worlds in
s(ϕ,w) is bounded by the number of diamond-subformulae of ϕ. Hence the number of
worlds of M′ is bounded by |ϕ|. Finally, R′ is obviously functional.

Corollary 4.9. SAT(KCD) and VAL(KCD) are decidable.

Proof. Analogous to the proof of Theorem 4.7.

4.2 NP

For some modal logics, the satisfiability problem is in NP, i.e. not harder than satisfiability
of propositional logic.

Theorem 4.10. SAT(KCD) is NP-complete.

Proof. “in NP”: By Theorem 4.8, it suffices to look for models up to size |ϕ|, to decide
satisfiability of a formula ϕ. Hence a nondeterministic Turing-Machine may

1) “guess” a model of size at most ϕ, and
2) check whether

a) (W,R) is functional
b) M, w |= ϕ for some world w ∈ W .

Then return “sat” if both conditions are satisfied, “unsat” otherwise.

By Lemma 4.6, the resulting algorithm is in NP.

“NP-hard”: Propositional satisfiability can trivially be reduced to satisfiability in KCD.
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The most prominent example of an NP-complete modal logic is S5. Recall that S5 is
sound and complete w.r.t. the class of frames based on equivalence relations. However,
S5is also sound and complete w.r.t. another interesting class of frames: The class of
universal frames (W,R) with R = W ×W .

Theorem 4.11. A uni-modal formula ϕ is satisfiable w.r.t. the class of frames based on
equivalence relations iff it is satisfiable w.r.t. the class of universal frames.

Proof. “⇒”: Let M = (W,R, V ) be a model of ϕ with R equivalence relation and let
w ∈ W s.t. M, w |= ϕ. Define a new model M′ = (W ′, R′, V ′) by putting

W ′ = {w′ ∈ W | (w,w′) ∈ R}
R′ = R ∩W ′ ×W ′

V ′(p) = V (p) ∩W ′ for all p ∈ A.

Since R is an equivalence relation, R′ is universal and M′ is a generated submodel
of M (that is, the inclusion M′ ↪→ M is a functional bisimulation). Thus by Propo-
sition 2.8, M′, w |= ϕ.

“⇐”: This direction is trivial since every universal frame is based on an equivalence
relation.

We can now show that S5 has a BMP:

Theorem 4.12. A uni-modal formula ϕ is satisfiable w.r.t. the class of universal frames
iff ϕ is satisfiable in a model M based on a universal frame (W,R) such thath |W | ≤ |ϕ|.

Proof. “⇒”: Let M = (W,R, V ) be a model such that R is universal, and let w ∈ W
such that M, w |= ϕ. Let Dϕ be the set of all subformulae ♢ψ of ϕ s.t. M, w |= ♢ψ.
For each ♢ψ ∈ Dϕ, fix a world wψ ∈ W such that M, wψ |= ψ. Define a new model
M′ = (W ′, R′, V ′) (where R′ is again universal) as follows:

W ′ = {w} ∪ {wψ | ♢ψ ∈ Dϕ}
R′ = R ∩ (W ′ ×W ′) = W ′ ×W ′

V ′(p) = V (p) ∩W ′ for all p ∈ A.

It is easily seen that |W ′| ≤ ϕ. We show by structural induction that, for all w′ ∈ W ′

and all subformulae ϑ of ϕ, M, w′ |= ϑ iff M′, w′ |= ϑ. We only consider the modal
case.

“⇒”: Assume M, w′ |= ♢ψ. Then M, w |= ♢ψ since R is universal and thus
♢ψ ∈ Dϕ and M, wψ |= ψ. By the induction hypothesis, M′, wψ |= ψ. Since R′

is universal, (w′, wψ) ∈ R′. Thus M′, w′ |= ♢ψ.
“⇐”: Now assume M′, w′ |= ♢ψ. Then there is a v ∈ W ′ such that (w′, v) ∈ R′

and M′, v |= ψ. By the induction hypothesis, M, v |= ψ and since (W,R) is
universal, (w′, v) ∈ R. Thus M, w′ |= ♢ψ.

“⇐”: This direction is again trivial.

Corollary 4.13. SAT(S5) is NP-complete (and VAL(S5) is co-NP-complete).

Proof. Analogous to the proof of Theorem 4.10.
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4.3 PSPACE

The NP-completeness results from the previous section relied on a BMP that provided
us with polynomial-sized (in fact: linear-sized) models. In other logics, however, we can
enforce much larger models.

4.3.1 Size of Models

In Theorem 4.5 we have seen that for K, every satisfiable formula ϕ has a model with at
most 2|ϕ| worlds. The next theorem tells us that we cannot do any better.

Theorem 4.14. For each logic Λ ∈ {K,T,B,K4,S4} and each n ∈ N, there is a formula
ϕn s.t.

1) |ϕn| ∈ O(n2),

2) ϕn is Λ-satisfiable,

3) for all models M = (W,R, V ) of ϕn, we have |W | ≥ 2n.

Proof. Idea: Construct formulae ϕn whose models are full binary trees of depth n. The
proof is left as exercise (Sheet 3, Exercise 4).

4.3.2 PSPACE-Hardness

The prototypical PSpace-hard (and PSpace-complete) problem is truth of quantified
boolean formulae.

Definition 4.15. A quantified boolean formula (QBF) is of the form

Q1q1. . . . .Qnqn.ϕ(q1, . . . , qn)

where Qi ∈ {∃,∀} and ϕ is a propositional formula using only the variables q1 to qn.

Truth of QBFs is defined by induction over the length of the quantifier prefix:

Definition 4.16. A QBF Q1q1. . . . .Qnqn.ϕ(q1, . . . , qn) is true iff

i) Q1 = ∃: Q2q2. . . . .Qnqn.ϕ[⊤/q1] or
Q2q2. . . . .Qnqn.ϕ[⊥/q1] is true,

ii) Q1 = ∀: Q2q2. . . . .Qnqn.ϕ[⊤/q1] and
Q2q2. . . . .Qnqn.ϕ[⊥/q1] is true.

Example 4.17. Consider the quantified boolean formula Q = ∀q1.∃q2.∀q3.(q1 → (q2∨q3)).
We note that Q is true and has a so-called quantifier tree.

Note. A QBF Q = Q1q1. . . . .Qnqn.ϕ(q1, . . . , qn) is true iff it has a quantifier tree s.t.

• level i of the tree corresponds to the quantifier Qi,

• in ∀-levels i, each node has two successors, one for qi = ⊤ and one for qi = ⊥,

• in ∃-levels i, each node has one successor: it suffices to explore only one of the
possibilities,
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• at every leaf, ϕ evaluates to ⊤.

Theorem 4.18. The truth of QBF is PSpace-complete.

Proof. This proof is out of scope of this lecture, but we note that deciding the truth of a
QBF ϕ is equivalent to answering the question whether ϕ has a quantifier tree; quantifier
trees in general have exponential size so that an algorithm cannot just “guess” a tree t
and verify in polynomial time that t is a quantifier tree for ϕ.

Theorem 4.19 (Ladner). SAT(Λ) is PSpace-hard for each Λ ∈ {K,K4,T,B,S4}.

Proof. Idea: For a QBF Q, construct a formula ϕQ defining a quantifier tree for Q, s.t. ϕQ
is satisfiable iff Q is true. The details of the construction are similar to the construction
from the proof of Theorem 4.14 and are left as an exercise.

4.3.3 A PSPACE-algorithm for K

Let us collect some ideas for a PSpace decision procedure for SAT(K).

1) By Proposition 2.13, it suffices to check for the existence of tree models.

2) We can assume that the branching width of trees is bounded by the number of
♢ψ-subformulae of the input formula ϕ (i.e. that the branching width is bounded
by |ϕ|).

3) We will see that it suffices to consider trees whose depth is linear in |ϕ|.

4) The number of nodes in such trees is exponential, but the number of nodes in each
path is polynomial (in fact: linear) in |ϕ|.

Thus while computing, we keep only paths of the tree in memory. This is achieved by
constructing the trees in a depth-first manner.
Let us fix the set of formulae that are “relevant” for a given input:

Definition 4.20. Let ϕ be a formula. We define the closure of ϕ as

cl(ϕ) = {ψ,¬ψ | ψ is subformula of ϕ}

and observe that |cl(ϕ)| ≤ 2 · |ϕ|.

Definition 4.21. The tableau-rules for K are defined as follows (for all sets of formulae
Γ, all formulae ϕ1, . . . , ϕn, ψ, ϕ and all p ∈ A):

(⊥)
Γ,⊥

( )
Γ, p,¬p

(¬¬)
Γ,¬¬ψ

Γ, ψ

(∧)
Γ, ϕ ∧ ψ

Γ, ϕ, ψ
(¬∧)

Γ,¬(ϕ ∧ ψ)
Γ,¬ϕ Γ,¬ψ

(♢i)
Γ,¬♢iϕ1, . . . ,¬♢iϕn,♢iϕ

¬ϕ1, . . . ,¬ϕn, ϕ

where the (♢i)-rule comes with the side-condition that Γ contains no ¬♢ϕj-formula.
A rule matches a set of formulae Λ, if Λ is the premise of the rule.
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Algorithm 4.22 (Decide K-satisfiability of ϕ).

1. initialize ∆ = {ϕ}.

2. return sat(∆),

where the procedure sat(∆) is defined recursively as follows:

procedure sat(∆)
if ∆ = ∅ then return “false”
for each rule that matches ∆ and has conclusion Σ {

if for each ∆i ∈ Σ, sat(∆i) returns “false” then return “false” }
return “true”

Note: This constructs a tree with nodes that have labels ∆ ⊆ cl(ϕ), i.e. trees of size at
most 2O(|ϕ|).

Theorem 4.23. Algorithm 4.22 returns “true” on input ϕ iff ϕ is K-satisfiable; fur-
thermore, the algorithm can be implemented to run in exponential time but using only
polynomial space.

Proof. The correctness proof consists of two directions:

“⇐”: Let ϕ be K-satisfiable, i.e. let ϕ have a (tree) model M = (W,R, V ) with
w ∈ W s.t. M, w |= ϕ. We show that for all ∆ ⊆ cl(ϕ) and all v ∈ W ,
if ∆ ⊆ TM(v), then sat(∆) returns “true”. Let m(∆) denote the number of
diamond-operators in ∆ and let pr(∆) denote the number of propositional
operators in ∆. The proof is by lexicographic induction over (m(∆), pr(∆)),
considering all rules that match ∆. We have to show that each such rule has
a conclusion ∆i s.t. sat(∆i) returns “true”.
We consider just the base case and two cases for the inductive step:
Base case: m(∆) = 0 and pr(∆) = 0. Then ∆ consists only of propositional

atoms and Box-formulae. Since ∆ ⊆ TM(v) and there is no p ∈ A s.t.
M, v |= p ∧ ¬p, we know that for each p ∈ A, ∆ does not contain p and
¬p at the same time. Thus no rule matches ∆ and sat(∆) returns “true”.

Inductive step: If the (∧)-rule matches ∆, then ∆ = Γ, ϕ ∧ ψ for some
Γ, ϕ and ψ and the rule has the conclusion Γ, ϕ, ψ. As m(Γ, ϕ, ψ) =
m(∆) and pr(Γ, ϕ, ψ) = pr(∆) − 1 and as Γ, ϕ, ψ ⊆ TM(v) follows from
∆ ⊆ TM(v), the induction hypothesis implies that sat(Γ, ψ, ϕ) returns
“true”.

If the (♢i)-rule matches ∆, then ∆ = Γ,¬♢iϕ1, . . . ,¬♢iϕn,♢iψ for some
number n and some Γ, ϕ1, . . . , ϕn and ψ and the rule has the conclusion
{¬ϕ1, . . . ,¬ϕn, ψ}. Then m({¬ϕ1, . . . ,¬ϕn, ψ}) < m(∆) and as ∆ ⊆
TM(v), M, v |= ♢iψ and M, v ̸|= ♢iϕi, i.e. M, v |= □i¬ϕi for all 1 ≤ i ≤
n so that there is a world u ∈ R(v) with M, u |= ¬ϕ1 ∧ · · · ∧ ¬ϕn ∧ ψ,
i.e. the induction hypothesis again implies that sat({¬ϕ1, . . . ,¬ϕn, ψ})
returns “true”.

“⇒”: It is easily possible to extract a model for ϕ from the tableau (i.e. the tree)
that is constructed by a successful run of the algorithm. The details of the
model extraction are left as an exercise to the reader.
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PSpace: To see that the algorithm uses only a polynomial amount space, notice the
recursive style in which the algorithm is formulated. Using a depth-first approach,
the algorithm maintains a recursion stack that contains the path in the tableau that
leads from the root of the tableau to the current node. Such paths have length at
most |ϕ|. Each node has size at most |ϕ|. Thus the algorithm can be implemented to
run in space O(|ϕ|2) (and in time 2O(n)), showing that the problem of K-satisfiability
is in PSpace.

As a corollary of Theorem 4.19 and Theorem 4.23, we obtain the following:

Theorem 4.24. SAT(K) and VAL(K) are PSpace-complete.

Note. We can adapt the algorithm to obtain PSpace upper bounds for e.g. K4, T, B
and S4.
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Chapter 5

Propositional Dynamic Logic

Programs α, β, . . . and (PDL) formulae ϕ, ψ, . . . are defined by mutual recursion:

α, β ::= a | ϕ? | α ∪ β | α; β | α∗

ϕ, ψ ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ranges over propositional letters as usual, and a ranges over atomic (or basic)
programs. Regular PDL is the language without the test construct ϕ?.

Semantics Given relations Ra ⊆ W × W , programs α are interpreted as relations
Rα ⊆ W ×W and formulae are interpreted by a satisfaction relation as usual. These data
are defined by mutual recursion by the clauses

Rϕ? = {(w,w) | w |= ϕ

Rα∪β = Rα ∪Rβ

Rα;β = Rα;Rβ

Rα∗ = (Rα)∗.

for programs, and the usual clauses for satisfaction of formulae, with [α] being a box
modality for the relation Rα. Models where the relations are defined according to the
above clauses are called regular PDL-models/frames; we will have occasion to consider
non-regular models.
We are mostly interested only in regular PDL, except in exercises and examples.

Axioms Normal modal logic generated by

[ϕ?]ψ ↔ (ϕ → ψ)
[α ∪ β]ψ ↔ ([α]ψ ∧ [β]ψ)

[α; β]ψ ↔ [α][β]ψ
[α∗]ψ ↔ (ψ ∧ [α][α∗]ψ)

[α∗](p → [α]p) → p → [α∗]p

The last axioms is Segerberg’s induction axiom; soundness is shown in the exercises.
Exercise: In regular PDL, the last four axioms define the regular PDL-frames.

Fischer-Ladner closure Restrict to regular PDL from now on.
A set Σ of formulae is Fischer-Ladner closed if it is closed under subformulae, and more-
over
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1. if [α; β]ψ ∈ Σ, then [α][β]ψ ∈ Σ

2. if [α ∪ β]ψ ∈ Σ, then [α]ψ, [β]ψ ∈ Σ

3. if [α∗]ψ ∈ Σ, then [α][α∗]ψ ∈ Σ.

Write FL(ϕ) for the least Fischer-Ladner closed set containing ϕ. FL(ϕ) is finite, and of
linear cardinality in |ϕ| (see exercises).
We write ¬FL(ϕ) for the closure of FL(ϕ) under single negation; that is, ¬FL(ϕ) consists
of all formulae in FL(ϕ) and additionally all formulae ¬ψ where ψ ∈ FL(ϕ) is not of the
form ¬ψ′. It is easy to see that ¬FL(ϕ) is still Fischer-Ladner closed, and indeed closed
under sigle negations.

Definition 5.1. An atom is a maximally consistent subset of ¬FL(ϕ).

Lemma 5.2 (Lindenbaum). Every consistent subset of ¬FL(ϕ) is contained in an atom.

Proof?

Lemma 5.3 (Hintikka properties). Let A be an atom. Then

1. if ¬ψ ∈ ¬FL(ϕ), then ¬ψ ∈ A iff A /∈ A

2. if ψ ∧ χ ∈ (¬)FL(ϕ), then ψ ∧ χ ∈ A iff ψ, χ ∈ A

3. if [α; β]ψ ∈ (¬)FL(ϕ), then [α; β]ψ ∈ A iff [α][β]ψ ∈ A

4. if [α ∪ β]ψ ∈ (¬)FL(ϕ), then [α ∪ β]ψ ∈ A iff [α]ψ, [β]ψ ∈ A

5. if [α∗]ψ ∈ (¬)FL(ϕ), then [α∗]ψ ∈ A iff ϕ, [α][α∗]ψ ∈ A.

At(ϕ) = set of all atoms in FL(ϕ). Note we can describe a set D ⊆ At(ϕ) by the formula

δ =
∨
D∈D

D̂

The following lemma is effectively needed in the proof of the inclusion Sα ⊆ Rα as stated
later, see handwritten notes on StudOn:

Lemma 5.4. 1. For A ̸= B ∈ At(ϕ), Â ∧ B̂ is inconsistent (i.e. ⊢ ¬(Â ∧ B̂)).

2. PDL ⊢ ∨
A∈At(ϕ) Â

3. For D ⊆ At(ϕ) and δ = ∨
D∈D D̂,

PDL ⊢ ¬δ ↔
∨

E∈At(ϕ)\D
Ê.

Proof. 1. Immediate from the Hintikka property for negation.

2. The formula ∧
¬ϕ∈¬FL(ϕ)

ϕ ∨ ¬ϕ

is clearly derivable. Taking its DNF and removing the PDL-inconsistent conjunctive
clauses yields PDL-derivability of ∨

A∈At(ϕ) Â.
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3. Immediate from the first two claims.

Small canonical model Mϕ:

1. Worlds: At(ϕ)

2. Valuation: V ϕ(p) = {A ∈ At(ϕ) | p ∈ A}

3. Relations: Sϕα:
ASϕα B iff Â ∧ ⟨α⟩B̂ consistent

where Â = ∧
ψ∈A ψ for A ∈ At. (In particular, if ⟨α⟩ψ ∈ FL(ϕ), then ASϕα B and

ψ ∈ B imply ⟨α⟩ψ ∈ A; why?)

This model in general fails to be regular, so we generate a regular model from it, with
relations Rϕ

α:

Rϕ
a := Sϕa

Rϕ
α;β := Rϕ

α;Rϕ
β

Rϕ
α∪β := Rαϕ ∪Rϕ

β

Rϕ
α∗ = (Rϕ

α)∗

• Existence lemma for small canonical model; needs to be proved by selection process.

• Lemma: Sα∗ ⊆ (Sα)∗ (Proof: Express reachable atoms by finite formula δ, prove δ →
[α∗]δ by Segerberg)

• Conclude inclusions Sα ⊆ Rα by induction.

– Sequential composition α; β: Have Â ∧ ⟨α⟩⟨β⟩B̂ consistent. Define formula δ
describing atoms C s.t. Ĉ ∧ ⟨β⟩B̂ consistent. Suffices Â ∧ ⟨α⟩δ consistent, else
Â → [α]¬δ, then ¬δ ∧ ⟨β⟩B̂ consistent, contradiction.

• Conclude existence lemma for Rα.

• Truth lemma: Remains to prove “easy” direction for diamonds; induction on pro-
grams, using unfolding and induction on paths in the step for ∗.
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Chapter 6

Modal fixpoint logics

Many modal logics can only express properties that talk about a fixed number of worlds.
By adding fixpoint operators to modal logic, one obtains modal fixpoint logics; such logics
often are more expressive than the respective basic modal logic, e.g. they may allow to
express the situation that a property holds after any number of transitions.
For instance let p be a propositional atom and consider a model M with root w and, for
each n ∈ N, exactly one path that starts at w, that reaches – after n transition steps – a
node vn satisfying p, and that loops through vn afterwards. Also consider models Mi, for
each i ∈ N, where Mi is as M with the only difference being that p is not satisfied at vi
on the i-th path in the model Mi. Can we distinguish M from all Mi by use of a single
formula? No: we cannot distinguish infinitely many worlds using finite formulae. E.g. for
the formula

ϑ = p ∨ □(p ∨ □(. . . (p ∨ □(︸ ︷︷ ︸
j times

p ∨ ⊥) . . .))),

we have M, w |= ϑ and Mj+1, w |= ϑ. Adding a fixpoint operator AF p (with the intuitive
meaning that “on all paths, p holds finally”) to the basic modal language, we will obtain
that

M, w |= AF p but Mi, w ̸|= AF p for all i ∈ N.

6.1 Computation Tree Logic (CTL)

Definition 6.1. The syntax of CTL is defined by the following grammar:

ψ, ϕ := p | ⊤ | ¬ψ | ψ ∧ ϕ | ♢ϕ | A(ϕUψ) | E(ϕUψ)

where p ∈ A.

The formula A(ϕUψ) comes with the intuition that “on all paths, ϕ holds until eventually
ψ holds” while the formula E(ϕUψ) comes with the intuition that “there is a path on
which ϕ holds until eventually ψ holds”.
CTL-formulae are interpreted over serial models (i.e. models (W,R, V ) with the property
that ∀x.∃y.R(x, y)).

Definition 6.2. Let M = (W,R, V ) be a serial model. The satisfaction relation |=CTL
that relates worlds of M and CTL-formulae (where we omit the subscript, if no confusing
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arises) is defined as follows (for all w ∈ W and all p ∈ A):

M, w |= ⊤
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w ̸|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ♢ϕ iff there is a w′ ∈ W s.t. (w,w′) ∈ Ri and M, w′ |= ϕ.

M, w |= A(ϕUψ) iff for all R-paths w1Rw2R . . . with w1 = w,

∃i.M, wi |= ψ and ∀j < i,M.wj |= ϕ.

M, w |= E(ϕUψ) iff there is an R-path w1Rw2R . . . with w1 = w,

∃i.M, wi |= ψ and ∀j < i,M.wj |= ϕ.

We abbreviate:

AF ϕ = A(⊤Uϕ) AG ϕ = ¬EF¬ϕ A(ϕR ψ) = ¬E(¬ϕU¬ψ)
EF ϕ = E(⊤Uϕ) EG ϕ = ¬AF¬ϕ E(ϕR ψ) = ¬A(¬ϕU¬ψ),

Here, the formula AF ϕ comes with the intuition that “on all paths, ϕ holds finally”,
AG ϕ comes with the intuition that “on all paths, ϕ holds globally” and the release-
formula A(ϕR ψ) has the intuition that “on all paths, ψ holds globally unless ϕ holds
eventually”.
We observe that CTL-formulae can express safety properties (e.g. AG ¬deadlock) as well
as liveness properties (e.g. AF finish_computation).

6.2 Fixpoints

To be able to define the semantics of the µ-calculus, we first have to introduce several
basic concepts from the theory of fixpoints.
Definition 6.3. Let X be a set and let f : P(X) → P(X). Then f is called monotone
w.r.t. set inclusion if for all A,B ⊆ X,

A ⊆ B implies f(A) ⊆ f(B).

A set A ⊆ X is a prefixpoint of f if f(A) ⊆ A and a postfixpoint of f if A ⊆ f(A). The
set A is a fixpoint of f if f(A) = A. We denote the sets of prefixpoints, postfixpoints
and fixpoints of f by PRE(f), POST (f) and FIX(f), respectively. If FIX(f) has a least
(greatest) element, this element if denoted as LFP(f) ( GFP(f) ).
Theorem 6.4 (Knaster-Tarski). Let f : P(X) → P(X) be monotone w.r.t. set inclusion.
Then f has both a least and a greatest fixpoint and these are given as

LFP(f) =
⋂

PRE(f)
GFP(f) =

⋃
POST (f).

Proof. We consider the least fixpoint case and note that the proof of the greatest fixpoint
case is analogous. Put Q := ⋂ PRE(f) so that we have Q ⊆ Z for all Z ∈ PRE(f). By
monotonicity of f , we have f(Q) ⊆ f(Z) for all Z ∈ PRE(f) and hence by definition of
prefixpoints f(Q) ⊆ Z for all Z ∈ PRE(f). Thus f(Q) ⊆ Q, i.e. Q is a prefixpoint of f .
It remains to show that Q is also a postfixpoint of f , i.e. that Q ⊆ f(Q). Since Q ⊆ Z
for all Z ∈ PRE(f), it suffices to show that f(Q) ∈ PRE(f), i.e. that f(f(Q)) ⊆ f(Q).
But this follows by monotonicity from f(Q) ⊆ Q.
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Note. For any set X and any function g : P(X) → P(X), put

g0(X) = X

gn+1(X) = g(gn(X)).

For a finite set X and a function f : P(X) → P(X) that is monotone w.r.t. set inclusion,
we use Kleene’s fixpoint theorem to obtain the following alternative characterization of
the least and greatest fixpoints:

LFP(f) = fn(∅)
GFP(f) = fm(X),

where n is the first number s.t. fn(∅) = fn+1(∅), where m is the first number s.t.
fm(X) = fm+1(X), and where n ≤ |X| and m ≤ |X|.

Definition 6.5. Let X be a set. The complement of some set A ⊆ X is defined as

A = X \ A.

Let f : P(X) → P(X). A function g : P(X) → P(X) is complementary to f , if for all
A ⊆ X,

f(A) = g(A).

Notice that for all A,B ⊆ X, we have that A = A, that A = B implies A = B and that
A ⊆ B implies A ⊇ B.
Least and greatest fixpoints are dual concepts in the following sense:

Lemma 6.6. Let f : P(X) → P(X) be monotone w.r.t. set inclusion and let g be
complementary to f . Then

LFP(f) = GFP(g)
GFP(f) = LFP(g).

Proof. First note that since f is monotone and g is complementary to f , g is monotone
as well. We consider only the least fixpoint case, the proof of the greatest fixpoint case is
analogous. We show that GFP(g) is a fixpoint of f that is contained in each prefixpoint
of f . Since g is complementary to f and since GFP(g) is a fixpoint of g, we have

f(GFP(g)) = g(GFP(g)) = g(GFP(g)) = GFP(g),

which shows that GFP(g) is a fixpoint of f . Now let Z be a prefixpoint of f so that
f(Z) ⊆ Z. Then

g(Z) = f(Z) = f(Z) ⊇ Z,

i.e. Z is a postfixpoint of g so that Z ⊆ GFP(g). But then Z ⊇ GFP(g), as required.
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6.3 The modal µ-calculus

The µ-calculus extends CTL by providing general fixpoint operators.
Definition 6.7. Let Var be a set of fixpoint variables. The syntax of the modal µ-calculus
is defined as follows:

ψ, ϕ := ⊤ | ⊥ | p | ¬p | ψ ∧ ϕ | ψ ∨ ϕ | ♢iψ | □iψ | X | µX.ψ | νX.ψ,

where p ∈ A, i ∈ I, X ∈ Var . For µX. ψ and νX. ψ, X is bound in ψ and we require that
all formulae are closed, that is, we require that formulae do not contain variables that are
not bound by an enclosing fixpoint operator.
Definition 6.8. Let M = (W, (Ri)i∈I , V ) be a model, let i ∈ I and let ϵ denote the empty
substitution. The extension (or truth-set) of a µ-calculus formula ϕ in M is defined as
[[ϕ]]ϵ, where for all substitutions σ : Var → P(W ) and all µ-calculus formulae ϕ, ψ,

[[X]]σ = σ(X)
[[⊤]]σ = W

[[⊥]]σ = ∅
[[p]]σ = V (p)

[[¬p]]σ = W \ V (p)
[[ψ ∧ ϕ]]σ = [[ψ]]σ ∩ [[ψ]]σ
[[ψ ∨ ϕ]]σ = [[ψ]]σ ∪ [[ψ]]σ

[[♢iψ]]σ = {w ∈ W | ∃v ∈ Ri(w).v ∈ [[ψ]]σ}
[[□iψ]]σ = {w ∈ W | ∀v ∈ Ri(w).v ∈ [[ψ]]σ}

[[µX. ψ]]σ = LFP([[ψ]]Xσ )
[[νX. ψ]]σ = GFP([[ψ]]Xσ ),

and where for all A ⊆ W ,

[[ψ]]Xσ (A) = [[ψ]]σ[A/X].

The syntax in Definition 6.7 does not contain explicit negation so that X is by definition
positive in ψ; thus the function [[ψ]]Xσ is monotone w.r.t. set inclusion and hence has a
least and a greatest fixpoint so that the above indeed constitutes a definition.
We write M, w |= ϕ if w ∈ [[ϕ]]ϵ in M.

We can define the negation ¬ϕ of a µ-calculus formula ϕ as follows:

¬X = X

¬⊤ = ⊥
¬⊥ = ⊤

¬(p) = ¬p
¬(¬p) = p

¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ

¬(♢iψ) = □i¬ψ
¬(□iψ) = ♢i¬ψ

¬(µX. ψ) = νX. ¬ψ
¬(νX. ψ) = µX. ¬ψ
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Notice that we define ¬X = X so that in e.g. ¬(µX. ψ) = νX. ¬ψ, X is positive in both
ψ and ¬ψ.

Lemma 6.9. For all µ-calculus formulae ψ,

[[ψ]]σ = [[¬ψ]]σ.

Proof. The proof is by induction over ψ, using Lemma 6.6 to obtain

[[µX. ψ]]σ = [[νX. ¬ψ]]σ and
[[νX. ψ]]σ = [[µX. ¬ψ]]σ.

The details of the proof are left as exercise to the reader.

Example 6.10. Consider the µ-calculus formula µX. p∨□X. As LFP(f) = f(LFP(f)),
we have

[[µX. p ∨ □X]]ϵ = LFP[[p ∨ □X]]Xϵ
= [[p ∨ □X]]Xϵ (LFP[[p ∨ □X]]Xϵ )
= [[p ∨ □X]]Xϵ ([[µX. p ∨ □X]]ϵ)
= [[p ∨ □(µX. p ∨ □X)]]ϵ
= [[(p ∨ □X)[(µX. p ∨ □X)/X]]]ϵ.

The above derivation shows that unfolding of fixpoint formulae does not change their
semantics. We can iterate this process and obtain for all j ∈ N that

[[µX. p ∨ □X]]ϵ = [[p ∨ □(p ∨ □(. . . (p ∨ □(︸ ︷︷ ︸
j times

µX. p ∨ □X)) . . .))]]ϵ.

If we restrict the models M and Mi from the beginning of this chapter to have a fixed
number of paths n, then we obtain by Kleene’s fixpoint theorem that

[[µX. p ∨ □X]]ϵ = ([[p ∨ □X]]Xϵ )m(∅)
= [[p ∨ □(p ∨ □(. . . (p ∨ □(︸ ︷︷ ︸

m times

⊥)) . . .))]]ϵ

for some finite number m so that w ∈ [[µX. p ∨ □X]]ϵ in M but w /∈ [[µX. p ∨ □X]]ϵ in
Mi.

As the previous example suggests, CTL is just a fragment of the µ-calculus:

Definition 6.11. The embedding function e that maps CTL-formulae to µ-calculus for-
mulae is defined inductively as follows:

e(⊤) = ⊤
e(¬ψ) = ¬e(ψ)
e(p) = p

e(ψ ∧ ϕ) = e(ψ) ∧ e(ϕ)
e(♢ψ) = ♢e(ψ)

e(A(ψUϕ)) = µX. e(ϕ) ∨ (e(ψ) ∧ □X)
e(E(ψUϕ)) = µX. e(ϕ) ∨ (e(ψ) ∧ ♢X)
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Notice how CTL-formulae translate to µ-calculus formulae that use only the single fixpoint
variable X. Thus CTL is even a fragment of the single-variable µ-calculus.

Lemma 6.12. Let M be a serial model and let w be a world of M. Then for all CTL-
formulae ψ, we have

M, w |= ψ iff w ∈ [[e(ψ)]]ϵ in M.

Proof. The proof is by induction over ψ, where the fixpoint operator cases demand par-
ticular attention. The details of the proof are left as exercise.

6.4 Model checking for fixpoint logics

Recall that the model checking problem consists in deciding, whether M, w |= ϕ, for a
given model M, a given world w ∈ M and a given formula ϕ. Model checking for fixpoint
logics is considerably more involved than model checking for basic modal logics such as
K. In fact, we will see that the problem of model checking for the µ-calculus is equivalent
to the problem of solving so-called parity games.

Definition 6.13 (Parity games). A game arena (V,E) consists of a set of nodes V =
V∃ ⊎ V∀, where each node belongs to either ∃loise (V∃) or ∀belard (V∀) and a set of edges
E ⊆ V × V . The edges encode the allowed moves and can be seen as the rules of the
game arena. A parity game G = (V,E, α) consists of a game arena (V,E) and a priority
function α : V → N that assigns priorities α(v) to nodes v ∈ V . A play ρ = v0v1v2 . . .
is a (possibly infinite) sequence of nodes vi ∈ V that adheres to the rules of the game in
the sense that for all i ≥ 0, we have viEvi+1. A (history-free) strategy for ∃loise (∀belard)
is a function s : V∃ → V ( s : V∀ → V ) that assigns a move s(v) to each node v ∈ V∃ (
v ∈ V∀ ). A play ρ adheres to a strategy s, if for all j ≥ 0, ρj ∈ V∃ ( ρj ∈ V∀ ) implies
that ρj+1 = s(ρj). ∃loise (∀belard) wins an infinite play ρ, if the highest priority that
occurs infinitely often in ρ is even (odd), or more formally, if max{inf(α ◦ ρ)} is even
(odd). A finite play ending in a node v ∈ V∃ (v ∈ V∀) is won by ∀belard (∃loise). A
winning strategy at v ∈ V for ∃loise (∀belard) is a strategy s s.t. ∃loise (∀belard) wins
every play that starts at v and adheres to s. Solving a parity game amounts to computing
the winning regions for ∃loise and ∀belard, i.e. the sets of nodes win∃ and win∀ for which
the respective player has a winning strategy.

Example 6.14. Consider the following example of a parity game:

Theorem 6.15 (Jurdzinski). The problem of solving parity games is in UP ∩ Co-UP.

Proof. This proof is out of the scope of this lecture.

In more detail, the partition V = win∃ ⊎ win∀ of the set of nodes of a parity game
G = (V,E, α) can be computed in deterministic time nO(k), where n = |V | and k =
max{α(v) | v ∈ V }.

Note. Parity games with n nodes and a fixed number of priorities k can hence be solved
in deterministic polynomial time. However, the question, whether parity games with
unbounded number of priorities can also be solved in time polynomial in n and k is a
long-standing open problem.
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Definition 6.16. The alternation depth ad(ψ) of a µ-calculus formula ψ is the maximum
number of nestings of “entangled” least and greatest fixpoint formulae (i.e. fixpoint
formulae using common variables) in ψ, starting with 0 for greatest fixpoint operators
and with 1 for least fixpoint operators.

For instance we have

ad(νX. p ∧ ♢X) = 0 ad(µX. p ∨ □X) = 1
ad(νX.νY. p ∨ □(X ∧ Y )) = 0 ad(µX.µY. p ∨ □(X ∧ Y )) = 1

ad(νX.µY. (p ∧ □X) ∨ (¬p ∧ □Y )) = 2 ad(µX.νY. (p ∧ □X) ∨ (¬p ∧ □Y )) = 1

Theorem 6.17. Model checking for the µ-calculus is linear time equivalent to solving
parity games.

Proof. (Sketch) First, we reduce model checking to parity games. So, let M be a model,
let w a world of M and let ψ be a µ-calculus formula. To decide, whether M, w |= ψ,
construct the parity game G = (V,E, α) where V = cl(ψ) × W . We put (ϕ, v) ∈ V∃ if
ϕ = ψ1 ∨ ψ2, if ϕ = ♢iψ1, if ϕ = p and v /∈ V (p) or if ϕ = ¬p and v ∈ V (p); in all other
cases, we put (ϕ, v) ∈ V∀. For all v and all w ∈ R(v), define E by putting

(ψ1 ∨ ψ2, v)E(ψ1, v) (ψ1 ∨ ψ2, v)E(ψ2, v)
(ψ1 ∧ ψ2, v)E(ψ1, v) (ψ1 ∧ ψ2, v)E(ψ2, v)

(♢iψ1, v)E(ψ1, w) (□iψ1, v)E(ψ1, w)
(µX. ψ1, v)E(ψ1[µX. ψ1/X], v) (νX. ψ1, v)E(ψ1[νX. ψ1/X], v).

If ϕ is a fixpoint formula, i.e. if ϕ is of the shape µX. ψ1 or νX. ψ1, for some X ∈ Var
and some µ-calculus formula ψ1, then put α(ϕ, v) = ad(ϕ); otherwise put α(ϕ, v) = 0.

Notice that the game G can be constructed from M and ψ in linear time. One can show
that ∃loise has a winning strategy at (w,ψ) in the constructed game G iff M, w |= ψ.

To reduce parity games to model checking, one proceeds in a similar manner and con-
structs a model and a formula from a given parity game and shows that again ∃loise wins
a node in the given parity game iff the according world in the constructed model satisfies
the constructed formula.

Corollary 6.18. The model checking problem of the µ-calculus is in UP ∩ Co-UP. The
model checking problem of CTL is in P.

Proof. The first statement follows directly from Theorem 6.15 and Theorem 6.17, while
the proof of the second statement requires the additional observation that the embedding
function e translates CTL-formulae to single-variable µ-calculus formulae and that the
model checking problem of CTL thus is (again by Theorem 6.17) equivalent to the problem
of solving parity games with just two priorities 0 and 1 (as the alternation depth of single-
variable µ-calculus formulae is at most 1).

6.5 Satisfiability solving for fixpoint logics

We note that the µ-calculus (and hence also CTL) has the FMP:

Theorem 6.19 (Kozen, 1988). Let ψ be a satisfiable µ-calculus formula. Then ψ is
satisfiable in a finite model.
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Proof. The proof of this theorem is out of scope of the lecture; it involves the use of
so-called quasi-well orders to construct finite models.

In fact, the µ-calculus even has a BMP, as one can show that every satisfiable µ-calculus
formula is satisfiable in a model of size at most 2O(nk logn). Thus the satisfiability and
validity problems of CTL and the µ-calculus are decidable. Furthermore, these problems
are ExpTime-complete:

Theorem 6.20 (Fischer, Emerson, Halpern, Jutla). The satisfiability (and validity) prob-
lems of CTL and the µ-calculus are ExpTime-complete.

Proof. (Ideas:)

1. ExpTime-hardness is shown by reducing polynomial-space alternating Turing-machines
to CTL-formulae.

2. To see containment in ExpTime, construct a tableau using the tableau-rules from
Definition 4.21, extended with the following two rules that unfold fixpoint formulae:

(ν)
Γ, νX. ψ

Γ, ψ[νX. ψ/X]
(µ)

Γ, µX. ψ
Γ, ψ[µX. ψ/X]

Due to the presence of these two rules, the resulting tableau is a (cyclic) graph. In
a second step, construct a parity game that traces fixpoint formulae through this
graph; for CTL, the resulting game has two priorities, for the µ-calculus, it has an
unbounded number of priorities. The described algorithm runs in time 2O(n2k2 logn),
where k denotes the alternation-depth of the input formula and where n denotes
the length of the input formula.

6.6 Expressivity of fixpoint logics

We have seen that fixpoint logics are more expressive than basic modal logics. But “how
expressive” are fixpoint logics in detail?

Definition 6.21. Let M and M′ be two models and let w and w′ be worlds of M and
M′, respectively. Put

M, w ≡µ M, w′ iff T µM(w) = T µM′(w′),

where T µM(w) = {ψ | ψ is µ-calculus formula with M, w |= ψ}.

Lemma 6.22. If M and M′ are image-finite models, then for all worlds w of M and all
worlds w′ of M′,

M, w ≃ M′, w′ iff M, w ≡µ M′, w′.

Proof. See proof of Theorem 2.21.

It turns out that we can embed the µ-calculus into monadic second-order logic (MSO):
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Definition 6.23. The standard translation STµ
x(ψ) of a µ-calculus formula ψ is defined

to be STx(ψ), if ψ is not of the shape µX. ψ1 or νX. ψ1 and as

STµ
x(µX. ψ1) = ∀X.(∀y.(STµ

x(ψ1) → X(y))) → X(x)
STµ

x(νX. ψ1) = ∃X.(∀y.(X(y) → STµ
x(ψ1))) ∧X(x)

otherwise.

Lemma 6.24. For all µ-calculus formulae ψ, all models M and all worlds w of M,

M, w |= ψ iff M, η |=MSO STµ
x(ψ) for η = [w/x].

Proof. The proof of this lemma is similar to the proof of Proposition 1.12, but requires
special attention in the fixpoint cases.

The µ-calculus is the bisimulation-invariant fragment of MSO:

Theorem 6.25. Let ψ(x) be a MSO-formula with one free variable in the signature
(R,P,Var). Then ψ(x) is invariant for bisimulations (see Definition 2.22) iff it is equivalent
to the standard translation of a µ-calculus formula.

Proof. Out of scope.
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Chapter 7

Coalgebraic modal logic

In the previous chapters we have considered various logics and have shown expressivity,
decidability and complexity results for some individual logics. The framework of coalge-
braic modal logic generalizes the concept of modal logics and allows for obtaining generic
results for all coalgebraic modal logics at once. We consider the approach to coalgebraic
logics that was established by D. Pattinson and L. Schröder in which the semantics of
modal operators is defined by means of so-called predicate liftings. Genericity is added
w.r.t. to two concepts:

1. the kind of models over which formulae are interpreted, and

2. the semantics of modal operators.

Genericity in 1. is obtained by taking coalgebras that are parametrized by functors as
models; genericity in 2. is obtained by defining semantics of modal operators using the
flexible concept of so-called predicate liftings.
Example 7.1. The following are examples of logics that are covered by the coalgebraic
framework.

1. K, KD and their multi-modal versions, coming with the standard modalities ♢iϕ
for i ∈ I, having the intuition that “there is an i-successor at which ϕ holds.”

2. Graded modal logic (GML), having modal operators ♢n, for n ∈ N, where ♢nϕ
comes with the intuition that “there are at least n successors in which ϕ holds”.

3. Probabilistic modal logic (PML), having modal operators Lp, for p ∈ [0, 1] ∩ Q,
where Lpϕ comes with the intuition that “with probability at least p, ϕ holds in the
next step”.

4. Neighbourhood logic, having the modal operators ♢ and □ which however come
with a different semantics; here ♢ϕ has the intuition that “there is a neighbourhood
in which ϕ holds somewhere”.

5. Coalition logic, having a fixed set of n agents N = {1, . . . , n} and modal operators
□D (also written [D]), for each coalition D ⊆ N , where □Dϕ comes with the intuition
that “coalition D has a strategy to enforce that ϕ holds in the next step”.

6. Conditional logic, coming with the binary modal operator ⇒, where ϕ ⇒ ψ has the
intuition that “if ϕ then usually ψ”.

However, the standard coalgebraic approach fails for e.g. the logic S4, as transitivity and
symmetry do not allow for a straightforward coalgebraic representation.

54



7.1 Category theoretical notions

In order to be able to define the semantics of coalgebraic modal logic, we first have to
introduce some basic concepts from category theory.

Definition 7.2. A category consists of a collection C of objects and a collection of mor-
phisms, where we require that there is – for each object A ∈ C – the identity mor-
phism idA and that we have associative composition of morphisms (i.e. that we have
(h ◦ g) ◦ f = h ◦ (g ◦ f) for any three compatible morphisms). For instance, Set, the
category of sets, has sets as objects and functions as morphisms. Given two categories C
and D, a (covariant) functor T : C → D maps objects A ∈ C to objects TA ∈ D and
morphisms f : A → B from C to morphisms Tf : TA → TB in D s.t.

• for each object X ∈ C,

T (IdX) = IdTX ,

• for all morphisms f : X → Y and g : Y → Z,

T (g ◦ f) = Tg ◦ Tf

If C = D, then T : C → D is called endo-functor.

Definition 7.3. Let C be a category and let T : C → C be an endo-functor on C. A
T -coalgebra C = (W, γ) consists of an object W ∈ C (the carrier of the coalgebra) and a
morphism γ : W → TW (the structure of the coalgebra). A T -coalgebra-homomorphism
from T -coalgebra C = (W1, γ1) to T -coalgebra D = (W2, γ2) is a morphism h : W1 → W2
s.t. the following diagram commutes

W1
h //

γ1
��

W2

γ2
��

TW1
Th // TW2

i.e. s.t. γ2 ◦ h = Th ◦ γ1.

Note. The category Coalg(T ) has T -coalgebras as objects and T -coalgebra-homomorphisms
as morphisms. Exercise: show that Coalg(T ) indeed is a category.

Example 7.4. Consider the following exemplary coalgebras:

• Let T = P , where P is the powerset (Set endo-)functor with

P(X) = {Y | Y ⊆ X}
(Pf)(B) = f [B],

where f [B] = {f(b) | b ∈ B} is the image of B under f . P-coalgebras are Kripke
frames. For instance we have the P-coalgebra C = (W, γ), where γ : W → P(W )
and

W = {a, b, c} γ(a) = {a, b}
γ(b) = {a} γ(c) = {b}
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• P(A × Id)-coalgebras are Labelled transition systems: Consider the P(A × Id)-
coalgebra C = (W, γ), where γ : W → P(A×W ), A = {a, b} and

W = {1, 2, 3} γ(1) = {(a, 1), (a, 3)}
γ(2) = {(b, 2)} γ(3) = {(a, 2), (b, 2)}

Definition 7.5 (Predicate liftings). The contravariant powerset functor 2 is defined by
putting

2(X) = P(X)
2(f)(B) = f−1[B],

where f : X → Y , B ⊆ Y and f−1[B] = {b ∈ X | f(x) ∈ B} is the preimage of B under f .
Let ♡ be a modal operator. A predicate lifting (Pattinson, 2003) for a Set endo-functor
T : Set → Set is a natural transformation

[[♡]] : 2 → 2 ◦ T,

that is, [[♡]] denotes a family of mappings

([[♡]]X : P(X) → P(TX))X∈Set

s.t. the following diagram commutes for each f : X → Y :

P(X) [[♡]]X // P(TX) X

f

��
P(Y ) [[♡]]Y //

f−1

OO

P(TY )

(Tf)−1

OO

Y

Thus we require that for each f : X → Y ,

[[♡]]X ◦ f−1 = (Tf)−1 ◦ [[♡]]Y .

7.2 Coalgebraic modal logic

Definition 7.6. Let ∆ be a set of modal operators. The set of coalgebraic modal formulae
is defined by the following grammar:

ψ, ϕ := ⊤ | ψ ∧ ϕ | ¬ψ | ♡ψ (♡ ∈ ∆)

Note. Propositional variables can be modelled as nullary modal operators, see Exam-
ple 7.8 below.

Definition 7.7. Let C = (W, γ) be a T -coalgebra and let ∆ be a set of modal operators
coming with a T -predicate lifting [[♡]] for each ♡ ∈ ∆. The extension (or truth set) [[ψ]]C
of a coalgebraic modal formula ψ in C is defined inductively as follows:

[[⊤]]C = W

[[ψ ∧ ϕ]]C = [[ψ]]C ∩ [[ϕ]]C

[[¬ψ]]C = [[ψ]]C = W \ [[ψ]]C

[[♡ψ]]C = γ−1[[[♡]]W ([[ψ]]C)].
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Example 7.8. We consider several exemplary coalgebraic modal logics.

1. Let T = P , let ∆ = {♢,□} and recall that P-coalgebras are Kripke frames. Define
the following predicate liftings for all sets X and all B ⊆ X:

[[□]]X(B) = {A ∈ P(X) | A ⊆ B}
= {A ∈ P(X) | ∀v ∈ A.v ∈ B}

[[♢]]X(B) = {A ∈ P(X) | A ∩B ̸= ∅}
= {A ∈ P(X) | ∃v ∈ A.v ∈ B}

We observe that the resulting coalgebraic logic is exactly K (without propositional
atoms). As an example, consider the Kripke frame C = (W, γ) with W = {a, b, c, d}
and γ : W → PW , where

γ(a) = {a, b, c} γ(b) = ∅
γ(c) = {d} γ(d) = ∅.

We observe that

[[⊥]]C = [[¬⊤]]C = [[⊤]]C = W = ∅

and that hence

[[□⊥]]C = γ−1[[[□]]W ([[⊥]]C)]
= γ−1[[[□]]W (∅)]
= γ−1[{∅}]
= {w ∈ W | γ(w) ∈ {∅}}
= {b, d}.

Also we have

[[♢□⊥]]C = γ−1[[[♢]]W ([[□⊥]]C)]
= γ−1[[[♢]]W ({b, d})]
= γ−1[{ {b}, {d}, {b, d}, {d, c}, {b, c}, {a, b}, {a, d},

{a, b, d}, {a, b, c}, {a, c, d}, {b, c, d}, {a, b, c, d} }]
= {a, c}

2. For multi-modal logics with index set I, put T = P(I×Id) and ∆ = {♢i,□i | i ∈ I}
and define the following predicate liftings for all i ∈ I, all sets X and all B ⊆ X:

[[□i]]X(B) = {S ∈ TX | ∀(b, x) ∈ S.b = i → s ∈ B}
[[♢i]]X(B) = {S ∈ TX | ∃(b, x) ∈ S.b = i ∧ s ∈ B}

The obtained logic is multi-modal K (without propositional atoms).

3. To model the propositional atoms given as a set A, move from T to P(A) × T so
that P(A) × T -coalgebras C = (W, γ) assign pairs γ(x) = (Q, y) to states x ∈ W .
Then put [[p]]C = γ−1[[[p]]W ], where for all sets X and all p ∈ A,

[[p]]X = {(Q, y) ∈ P(A) × TX | p ∈ Q}.
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4. Probabilistic modal logic: Put ∆ = {Lp | p ∈ [0, 1] ∩ Q}. The finite distribution
functor Dω maps sets X to the set of probability distributions on X with finite
support. Dω-coalgebras are probabilistic type spaces (Markov-chains) with finite
branching degree. Put

[[Lp]]X(B) = {P ∈ Dω(X) | P (B) ≥ p},

where P (B) = ∑
b∈B

P (b).

5. As an example that moves away from relational semantics, consider coalition logic.
Let N = {1, . . . , n} be a set of agents. Coalitions D are subsets of N . Let ∆ =
{□D | D ⊆ N}. Define the functor

G(X) = {(S1, . . . , Sn, f) | ∅ ≠ Si ∈ Set, f :
∏
i∈N

Si → X},

assigning to a set X the set of all tuples consisting of n non-empty sets of allowed
moves Si of the agents i ∈ N and of an evaluation function f that evaluates tuples
of moves m1 ∈ S1, . . . ,mn ∈ Sn as f(m1, . . . ,mn) = x, where x ∈ X. G-coalgebras
are in one-to-one correspondence with so-called game-frames.
Put SD = ∏

i∈D
Si (so that e.g. S{1,3} = S1 × S3) and SD = ∏

i/∈D
Si; for mD ∈ SD

and mD ∈ SD, we have (mD,mD) ∈ ∏
i∈N

Si. For each coalition D ⊆ N , define the
predicate lifting

[[□D]]X(B) = {(S1, . . . , Sn, f) ∈ G(X) | ∃mD ∈ SD.∀mD ∈ SD.f(mD,mD) ∈ B}.

Consider the game-frame C = (W, γ) with N = {1, 2}, W = {x, y, z} and γ : W →
G(W ), where

γ(x) = { {l, r}, {u, d}, {((l, u), x), ((l, d), y), ((r, u), z), ((r, d), y)} }
γ(y) = { {l}, {d}, {((l, d), y)} }
γ(z) = { {l, r}, {d}, {((l, d), x), ((r, d), y)} }

We observe that

[[□{1}⊤]]C = γ−1[[[□{1}]]W (W )]
= γ−1[{γ(x), γ(y), γ(z)}]
= {x, y, z} = W

and that hence

x ∈ [[□{1,2}□{1}⊤]]C = γ−1[[[□{1,2}]]W ([[□{1}⊤]]C)]
= γ−1[[[□{1,2}]]W (W )]
= γ−1[{γ(x), γ(y), γ(z)}]
= {x, y, z} = W

Note. We take note of the following slogan (by Schröder and Pattinson, 2010):

“Rank-1 axiomatizable modal logics are coalgebraic.”
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7.3 Complexity and expressivity results

We gather a few results on coalgebraic modal logic. Notice that the upcoming results
are generic in the sense that they have to be proven only once and then instances of the
results follow for any logic to which the coalgebraic framework can be instantiated, e.g.
for all the logics considered in the previous section (with the exception of coalition logic,
for which the given predicate liftings fail to be expressive; in more detail: the obtained
coalition logic coincides with traditional coalition logic and is PSpace-complete, but it
does not characterize behavioural equivalence of game-frames).
To begin with, coalgebraic modal logic has the FMP:

Theorem 7.9 (Schröder, 2007). Let ψ be a satisfiable coalgebraic modal formula. Then
ψ is satisfiable in a finite coalgebra.

Proof. Out of scope.

Theorem 7.10 (Schröder and Pattinson, 2007). The satisfiability and validity problems
of coalgebraic modal logic are PSpace-complete (under the mild assumption of so-called
PSpace-tractability).

Proof. Out of scope.

The notion of bisimulation (≃) can be generalized from models to T -coalgebras. The
resulting general concept is called behavioural equivalence, written ≃T . Under the as-
sumption that the set of predicate liftings of a coalgebraic logic can be used to distinguish
any two states that are not behaviourally equivalent, behavioural equivalence character-
izes logical equivalence:

Theorem 7.11 (Schröder and Pattinson, 2007). Let ≡T denote logical equivalence w.r.t.
coalgebraic modal formulae. If the used set of predicate liftings is expressive, then for all
coalgebras C and D and all states w of C and w′ of D, we have

C,w ≃T D,w
′ iff C,w ≡T D,w

′.

A generalized Rosen-van Benthem Theorem has been recently proven (Schröder, Pattin-
son, Litak, 2015), stating that under mild assumptions, coalgebraic modal logic is the
behavioural-equivalence-invariant fragment of so-called coalgebraic predicate logic.

7.4 The coalgebraic µ-calculus

Similarly to basic modal logic, coalgebraic modal logic can be extended with fixpoint
operators:

Definition 7.12. Let ∆ be a set of modal operators. The coalgebraic µ-calculus is defined
by the following grammar:

ψ, ϕ := ⊤ | ⊥ | ψ ∧ ϕ | ψ ∨ ϕ | X | ♡ψ | µX. ψ | νX. ψ (X ∈ Var)

We require that each ♡ ∈ ∆ comes with a predicate lifting [[♡]] that is monotone w.r.t.
set inclusion and that for every ♡ ∈ ∆, there is a ♡ ∈ ∆ s.t. for all sets X and all
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B ⊆ X, [[♡]]X(B) = [[♡X(B)]]. Also let C = (W, γ) be a T -coalgebra. The extension of a
coalgebraic µ-calculus formula ψ is defined as [[ψ]]Cϵ , where for all substitutions σ,

[[⊤]]Cσ = W

[[⊥]]Cσ = ∅
[[ψ ∧ ϕ]]Cσ = [[ψ]]Cσ ∩ [[ϕ]]Cσ
[[ψ ∨ ϕ]]Cσ = [[ψ]]Cσ ∪ [[ϕ]]Cσ

[[♡ψ]]Cσ = γ−1[[[♡]]W ([[ψ]]Cσ )]
[[X]]Cσ = σ(X)

[[µX. ψ]]Cσ = LFP([[ψ]]Xσ )C

[[νX. ψ]]Cσ = GFP([[ψ]]Xσ )C ,

where for all A ⊆ W ,

([[ψ]]Xσ )C(A) = [[ψ]]Cσ[A/X].

Example 7.13. Consider the following instances of the coalgebraic µ-calculus:

• For T = P(I) × Id and the predicate liftings from Example 7.8, Item 2. and 3., we
obtain the standard relational µ-calculus (containing CTL as a fragment).

• For T = Dω and the predicate liftings from Example 7.8, Item 4., we obtain proba-
bilistic fixpoint logic.

• For T = G and the predicate liftings from Example 7.8, Item 5., we obtain the
alternating-time µ-calculus (AMC), containing Alternating-time temporal logic (ATL)
as a fragment. ATL has operators ⟨⟨D⟩⟩AϕUψ having the intuition that “coalition
D has a strategy to ensure that ϕ holds until eventually ψ holds.”

Theorem 7.14 (Cîrstea, Kupke, Pattinson, 2011). The satisfiability and validity prob-
lems of the coalgebraic µ-calculus are in ExpTime (under the relatively mild assumption
of ExpTime-tractability).

Proof. This proof is out of scope; it involves the use of parity games.

A fast algorithm to decide the satisfiability and validity problems of the alternation-
free fragment of the coalgebraic µ-calculus has been developed and recently implemented
(Hausmann, Schröder, Egger, 2016) as part of the Coalgebraic Ontology Logic Reasoner
(COOL):
http://www8.cs.fau.de/research:software:cool
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