Towards Generalizing Probability Monads

Nico Wittrock

Oberseminar at Chair for Theoretical Computer Science,
University of Erlangen-Nuremberg,

27 August 2024



Table of contents

Markov Categories
Probability Monads
Weak Products
Markov Categories: Definitions, Additional Properties
De Finetti's Theorem

Imprecise Probability
What's that?
Towards Imprecise Probability Monads

Non-Commutative Probability Theory
What's that?
Towards Non-Commutative Probability Monads

1/35



Markov Categories
Probability Monads
Weak Products
Markov Categories: Definitions, Additional Properties
De Finetti's Theorem

What's that?
Towards Imprecise Probability Monads

What's that?
Towards Non-Commutative Probability Monads

2/35



Discrete Monads

» power-set monad

P : Set — Set
X — {5 C X}
» distribution monad
D : Set — Set

X +— {finite distributions on X}

10° ).
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Continuous Monads

» Giry monad

G : Meas — Meas
(X, X) — ({probability-measures on X}, Linit)

—_— S

» variations thereof:

Glpol : Pol — Pol on polish spaces

Radon monad R : CHaus — CHaus on cpct. Hausdorff sp.
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Kleisli Categories

consider monad 7 : D — D

Kleisli cat.

K| objects: Obj,, := Objp
4 morphisms: Homg (A, B) := Homp(A, T B)
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Kleisli Categories

consider monad 7 : D — D

Kleisli cat.
kLD s Kly objectéz Objy,. := Objp
morphisms: Homg (A, B) := Homp(A, T B)
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Kleisli Categories
Example (Power-Set Monad)
» maps in Set: > maps in Klp:

f:A—= X f:A—=PX
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Kleisli Categories
Example (Power-Set Monad)
» maps in Set:

f:A—= X

GO

Example (Giry Monad)

> maps in Meas:

f:A=>X

> |

> maps in Klp:

f:A—PX

@D

> maps in Kilg:

f:A=>X

AN
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Symmetric Monoidal Kleisli Categories

We consider monad 7 : D — D.
» D is cartesian monoidal

» T is commutative, i.e., comes with “zipper map”

V)gyiTXXTY—)T(XX Y)

Kl7 is symmetric monoidal via ®

on objects: X® Y :=XxY
on morphisms f : A — T X,
g:B—>TY

Fog:XxY P& TXxTY 2% T(X x Y)
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Symmetric Monoidal Kleisli Categories
We consider monad 7 : D — D.

» D is cartesian monoidal

» T is commutative, i.e., comes with “zipper map”

V)gyiTXXTY—)T(XX Y)

K¢ : D — Kl preserves tensor products
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Symmetric Monoidal Kleisli Categories

Example (Power-Set Monad)
P : Set — Set

Vx’yi']DXXPY—)’P(XX Y)
(5,T)—»SXxTCXxY
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Symmetric Monoidal Kleisli Categories

Example (Power-Set Monad)
P : Set — Set

Vxy :PXxPY = P(X x Y)
(5,T)—»SxTCXxY

Example (Giry monad)
G : Meas — Meas

Vxy :GX xGY = G(X x Y)
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Symmetric Monoidal Kleisli Categories: Giry

— > —
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Symmetric Monoidal Kleisli Categories: Giry

AN

feg
AxB

Ty —
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Probability Monads

A—e—— B

AR B S8 XY
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Probability Monads

Definition
A probability monad is a monad T : D — D such that

A—&b& B

» D is cartesian monoidal
Kt Kt
» 7 is commutative monad f
o A9B ‘& XY
» [l : D — Kly preserves projections:
. Ri iI@WR
in Kl commutes

B—g—>Y
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Probability Monads

Definition
A probability monad is a monad T : D — D such that

A—&b& B

» D is cartesian monoidal
Kt Kt
» 7 is commutative monad f
o A9B ‘& XY
» [l : D — Kly preserves projections: i i
R e R
in Kl commutes "

B—g—>Y

Example

Giry monad G, Radon monad R, distribution monad D.
Power-set monad P is no probability monad.
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Weak Products

Consider probability monad 7 : D — D with K/ : D — Kly.
» D has products:
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Weak Products

Consider probability monad 7 : D — D with K/ : D — Kly.

» Kl has weak products:

f

S e

A—KA L AgAE L xey

K f’%R i’%R
A — Y
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Markov Categories

g
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Markov Categories

Lol T

— X

N AN

Definition
A Markov Category is cat. with weak products and chosen
morphisms (f, g) as in (2), such that

x

—
3
L

®
-<
S

H
3
o

~.<

» they canonically induce a symmetric monoidal structure
» diagrams (1), (2) coincide: (f®g) o (id,id) = (f, g)
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Markov Categories

» Symmetric monoidal cat.s have graphical notation

f: X—=Y =

(id,id): X > X® X =

o XeY o X

x—fl-y
x4

X

y —°

X
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Markov Categories

» Symmetric monoidal cat.s have graphical notation

fFrX=Y = y—fl-y
(idid): X 5 X®X = X‘(X

L'XxXey > X

X

y —°

X

» |eads to usual definition of Markov cat.s

> more explicit [Fri20]
> generalization: CD-cat.s (Cho and Jacobs [CJ19])
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Markov categories

Example

Kleisli cat.s of probability monads.
In particular: cartesian monoidal cat.s.
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Deterministic Morphisms

Definition
Morphism f : A — X in Markov cat. is deterministic, if

Example

1. In Kleisli cat. Klp of distribution monad: deterministic
morphisms are of the form
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Deterministic Morphisms

Definition
Morphism f : A — X in Markov cat. is deterministic, if

Example

1. In Kleisli cat. Klp of distribution monad: deterministic
morphisms are of the form

2. In Kleisli cat. Kl all Kl(f) are deterministic
18/35



Representable Markov Categories

Consider Markov cat. C.

Lemma
Deterministic morphisms form subcategory Cyer C C.
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Definition
Kleisli cat. Kly of probability monad 7 : D — D is representable, if
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Representable Markov Categories

Consider Markov cat. C.

Lemma
Deterministic morphisms form subcategory Cyer C C.

Definition
Kleisli cat. Kly of probability monad 7 : D — D is representable, if

(KlT)det =D
Example

1. Kleisli cat. Klp of distribution monad is representable.

2. Kleisli cat. Klg of Giry monad is not.

19/35



Polish Spaces

Klg of Giry monad is not representable.
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Polish Spaces

Klg of Giry monad is not representable.
But: restriction to Polish spaces Pol C Meas

B = g‘po| : Pol — Pol

has representable Kleisli cat. Klg =: BorelStoch:
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Polish Spaces

Klg of Giry monad is not representable.
But: restriction to Polish spaces Pol C Meas

B = g‘po| : Pol — Pol

has representable Kleisli cat. Klg =: BorelStoch:
Pol(A, BX) —=2— Kig(A, X)

2l |
BorelStochget (A, BX) BorelStoch(A, X)

idgx ——— [sampy : BX — X]
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Countable Products

Lemma

BorelStoch has inverse limits

XN = lim xen
neN

with projections (" : XN — X®" depicted as

XN

X

(n)

" X

tx

X
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De Finetti’'s Theorem

Theorem

For a morphism p : | — XN in BorelStoch, it is equivalent:

1. p is invariant under finite permutations:

forallne N andi < n

X

<H

()

<H

()
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De Finetti’'s Theorem

Theorem
For a morphism p : | — XN in BorelStoch, it is equivalent:

1. p is invariant under finite permutations:
forallne Nandi<n

X X
PHA X = <%W(n)<><x
N\ \fX

X X

2. there is a (unique) morphism p : | — BX such that

X
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Flip a 2€ Coin

Q>
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Flip a 2€ Coin

Probability theory is too “fine-grained”.

Do
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What is Imprecise Probability?

Many different uncertainty frameworks available:

26/35



What is Imprecise Probability?

Many different uncertainty frameworks available:

» Dempster-Schafer belief functions
» super-additive measures
» non-additive measures

> ...
Do they have probability monads?
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Towards Imprecise Probability Monads

a—(f— [ fda)
R \J_7RZO]7RZO]IM «—— Cont

(A—w(la))+w

a—~(f—d fda)
Gr - Rd ——— Cont
~_

(A—w(1a))+w
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Towards Super-Additive Measures

L
Gr ; Rd ——  Cont
1 1

[, R>o], R>0l22  [[~,Rx0],R>0]

super-additive measures on X: 77 restrict w : [X,R>0] = R>o

a: PX —[0,1] w(l)él
. W(AF) = Aw(F)
a(f) =0 |
a(AUB) > a(A) + a(B) f<g=w(f) <w(g)
—a(ANB) :
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An ltalian Flag




Further Work

» Further restrictions on Rd s.th.

» Rd is monad
» Gr are Dempster-Shafer belief functions / ...
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Further Work

» Further restrictions on Rd s.th.

»> Rd is monad
> Gr are Dempster-Shafer belief functions / ...

» Is Gr a commutative monad? (Probably not)

» What does that mean for its Kleisli cat.?

> It is not monoidal.
» But premonoidal? A monoidal effectful cat.?

» Results from Markov cat.s?

v

Relation to (other) Markov cat.s of imprecise probability
(So far: "just” special cases)
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Probability Monads

Weak Products
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What is Non-Commutative Probability?

» Probabilistic Gelfand duality [FJ15, Eq. (1.1)]:
R

QA

CH —:> (CCstarMIU)Op

e o

U(R) (CCStaer)Op

new
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What is Non-Commutative Probability?

» Probabilistic Gelfand duality [FJ15, Eq. (1.1)]:
R

QA

CH —:> (CCstarMIU)Op

e o

M(R) (CCStaer)Op

new

» (Subcategories of) C*-algebras!
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Towards Non-Commutative Probability Monads

> Are C*-algebras dual Markov cat.?
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Towards Non-Commutative Probability Monads

> Are C*-algebras dual Markov cat.?
- NO!
» Generalizations to
» involutive Markov cat.s in [FL24]
» quantum Markov cat.s in [Par20]
» Do they come from “quantum probability monads”?
— probably!
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Thank You!

Questions?
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