Towards Generalizing Probability Monads

Nico Wittrock

Oberseminar at Chair for Theoretical Computer Science, University of Erlangen-Nuremberg,

27 August 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table of contents

Markov Categories

Probability Monads Weak Products Markov Categories: Definitions, Additional Properties De Finetti's Theorem

Imprecise Probability

What's that? Towards Imprecise Probability Monads

Non-Commutative Probability Theory

What's that? Towards Non-Commutative Probability Monads

Probability Monads Weak Products Markov Categories: Definitions, Additional Properties De Finetti's Theorem

Imprecise Probability

What's that? Towards Imprecise Probability Monads

Non-Commutative Probability Theory

What's that? Towards Non-Commutative Probability Monads

Discrete Monads

power-set monad

$$\mathcal{P}: \mathsf{Set} o \mathsf{Set}$$

 $X \mapsto \{S \subseteq X\}$

distribution monad

 $\mathcal{D}: \mathsf{Set} \to \mathsf{Set}$ $X \mapsto \{\mathsf{finite \ distributions \ on \ } X \}$ $\longmapsto \left\{ \fbox{\ } \mathsf{Finite \ distributions \ on \ } X \right\}$

Continuous Monads

Giry monad

$$\mathcal{G} : \mathsf{Meas} \to \mathsf{Meas}$$
$$(X, \Sigma) \mapsto (\{\mathsf{probability-measures on } X\}, \Sigma_{\mathsf{init}})$$
$$\longrightarrow \mapsto \left\{ \underbrace{\qquad \qquad }, \ldots \right\}$$

variations thereof:

$$\mathcal{G}|_{\mathsf{Pol}}: \mathsf{Pol} o \mathsf{Pol}$$
 on polish spaces
Radon monad $\mathcal{R}: \mathsf{CHaus} o \mathsf{CHaus}$ on cpct. Hausdorff sp.

consider monad $\mathcal{T}:\mathsf{D}\to\mathsf{D}$

Kleisli cat. $KI_{\mathcal{T}}\begin{cases} objects: Obj_{KI_{\mathcal{T}}} := Obj_{D} \\ morphisms: Hom_{KI_{\mathcal{T}}}(A, B) := Hom_{D}(A, \mathcal{T}B) \end{cases}$

consider monad $\mathcal{T}:\mathsf{D}\to\mathsf{D}$

$$\begin{split} & \mathsf{Kleisli\ cat.} \\ & \mathcal{K}\!\ell:\mathsf{D}\to\mathsf{Kl}_{\mathcal{T}} \begin{cases} \mathsf{objects:} \ \mathsf{Obj}_{\mathsf{Kl}_{\mathcal{T}}} \mathrel{\mathop:}=\mathsf{Obj}_\mathsf{D} \\ & \mathsf{morphisms:} \ \mathsf{Hom}_{\mathsf{Kl}_{\mathcal{T}}}(A,B) \mathrel{\mathop:}=\mathsf{Hom}_\mathsf{D}(A,\mathcal{T}B) \end{cases} \end{split}$$

Kleisli Categories

Example (Power-Set Monad)

▶ maps in Set:

$$f: A \to X$$

▶ maps in Kl_P:

$$f: A \to \mathcal{P}X$$

Kleisli Categories

Example (Power-Set Monad)

▶ maps in Set:

$$f: A \to X$$

▶ maps in Kl_P:

$$f: A \to \mathcal{P}X$$

- Example (Giry Monad)
 - ▶ maps in Meas:

 $f: A \rightarrow X$

 $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$

▶ maps in Kl_G:

$$f: A \to X$$

6 / 35

Symmetric Monoidal Kleisli Categories

We consider monad $\mathcal{T}: \mathsf{D} \to \mathsf{D}$.

- D is cartesian monoidal
- T is commutative, i. e., comes with "zipper map"

$$abla_{X,Y}: \mathcal{T}X imes \mathcal{T}Y o \mathcal{T}(X imes Y)$$

 $\begin{cases} \mathsf{KI}_{\mathcal{T}} \text{ is symmetric monoidal via } \otimes \\ \\ \mathsf{on objects: } X \otimes Y := X \times Y \\ \mathsf{on morphisms } f : A \to \mathcal{T}X, \\ g : B \to \mathcal{T}Y \\ f \otimes g : X \times Y \xrightarrow{f \times g} \mathcal{T}X \times \mathcal{T}Y \xrightarrow{\nabla_{X,Y}} \mathcal{T}(X \times Y) \end{cases}$

Symmetric Monoidal Kleisli Categories

We consider monad $\mathcal{T}: \mathsf{D} \to \mathsf{D}$.

- D is cartesian monoidal
- ▶ *T* is *commutative*, i. e., comes with "zipper map"

$$abla_{X,Y}:\mathcal{T}X imes\mathcal{T}Y o\mathcal{T}(X imes Y)$$

 $\mathcal{K}\!\ell: \mathsf{D} \to \mathsf{KI}_\mathcal{T}$ preserves tensor products

Symmetric Monoidal Kleisli Categories

```
Example (Power-Set Monad)
```

 $\mathcal{P}:\mathsf{Set}\to\mathsf{Set}$

$$abla_{X,Y}: \mathcal{P}X imes \mathcal{P}Y o \mathcal{P}(X imes Y)
onumber \ (S,T) \mapsto S imes T \subseteq X imes Y
onumber$$

Symmetric Monoidal Kleisli Categories Example (Power-Set Monad) $\mathcal{P}: \mathsf{Set} \to \mathsf{Set}$

$$abla_{X,Y}: \mathcal{P}X imes \mathcal{P}Y o \mathcal{P}(X imes Y)
onumber \ (S,T) \mapsto S imes T \subseteq X imes Y
onumber$$

Example (Giry monad)
$$\mathcal{G}: Meas \rightarrow Meas$$

Symmetric Monoidal Kleisli Categories: Giry

Symmetric Monoidal Kleisli Categories: Giry

Probability Monads

<ロ><回><回><日><日><日><日><日><日><日><日><日><日><日</td>12/35

Probability Monads

Definition

A probability monad is a monad $\mathcal{T}:\mathsf{D}\to\mathsf{D}$ such that

 D is cartesian monoidal
 T is commutative monad
 Kℓ : D → KI_T preserves projections: in KI_T commutes

Probability Monads

Definition

A probability monad is a monad $\mathcal{T}:\mathsf{D}\to\mathsf{D}$ such that

Example

Giry monad \mathcal{G} , Radon monad \mathcal{R} , distribution monad \mathcal{D} . Power-set monad \mathcal{P} is *no* probability monad.

Weak Products

 $\label{eq:consider} \begin{array}{l} \mbox{Consider probability monad} \ \mathcal{T}: D \to D \ \mbox{with} \ \mathcal{K} \ell: D \to KI_{\mathcal{T}}. \end{array}$

Weak Products

 $\text{Consider probability monad } \mathcal{T}:\mathsf{D}\to\mathsf{D}\text{ with }\mathcal{K}\ell:\mathsf{D}\to\mathsf{KI}_\mathcal{T}.$

 \blacktriangleright KI $_{\mathcal{T}}$ has weak products:

Definition

A Markov Category is cat. with weak products and chosen morphisms (f, g) as in (2), such that

- they canonically induce a symmetric monoidal structure
- diagrams (1), (2) coincide: $(f \otimes g) \circ (id, id) = (f, g)$

Symmetric monoidal cat.s have graphical notation

$$f: X \to Y \equiv \chi - f - Y$$

(id, id): $X \to X \otimes X \equiv \chi - \begin{pmatrix} X \\ X \end{pmatrix}$
 $\pi^{L}: X \otimes Y \to X \equiv \chi - \begin{pmatrix} X \\ X \end{pmatrix}$

Symmetric monoidal cat.s have graphical notation

$$f: X \to Y \equiv X - f Y$$

(id, id): $X \to X \otimes X \equiv X - X$
 $\pi^{L}: X \otimes Y \to X \equiv X - X$
 $\pi^{L}: X \otimes Y \to X \equiv X - X$

leads to usual definition of Markov cat.s

- more explicit [Fri20]
- generalization: CD-cat.s (Cho and Jacobs [CJ19])

Example

Kleisli cat.s of probability monads. In particular: cartesian monoidal cat.s.

Deterministic Morphisms

Definition

Morphism $f : A \rightarrow X$ in Markov cat. is *deterministic*, if

Example

1. In Kleisli cat. $\mathsf{KI}_{\mathcal{D}}$ of distribution monad: deterministic morphisms are of the form

Deterministic Morphisms

Definition

Morphism $f : A \rightarrow X$ in Markov cat. is *deterministic*, if

Example

1. In Kleisli cat. $\mathsf{KI}_{\mathcal{D}}$ of distribution monad: deterministic morphisms are of the form

2. In Kleisli cat. $Kl_{\mathcal{T}}$: all $\mathcal{K}\ell(f)$ are deterministic $\mathcal{P} \to \mathcal{P} \to \mathcal{P}$ $\mathcal{P} \to \mathcal{P}$

Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $\mathsf{C}_{\mathsf{det}} \subseteq \mathsf{C}.$

Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $C_{det} \subseteq C$.

Definition

Kleisli cat. Kl $_{\mathcal{T}}$ of probability monad $\mathcal{T}: \mathsf{D} \to \mathsf{D}$ is *representable*, if

 $(\mathsf{KI}_{\mathcal{T}})_{\mathsf{det}} \cong \mathsf{D}$

Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $C_{det} \subseteq C$.

Definition

Kleisli cat. Kl $_{\mathcal{T}}$ of probability monad $\mathcal{T}: \mathsf{D} \to \mathsf{D}$ is *representable*, if

 $(\mathsf{KI}_{\mathcal{T}})_{\mathsf{det}} \cong \mathsf{D}$

Example

- 1. Kleisli cat. $\mathsf{KI}_\mathcal{D}$ of distribution monad is representable.
- 2. Kleisli cat. $KI_{\mathcal{G}}$ of Giry monad is *not*.

Polish Spaces

 $KI_{\mathcal{G}}$ of Giry monad is *not* representable.

Polish Spaces

 $KI_{\mathcal{G}}$ of Giry monad is *not* representable. But: restriction to Polish spaces Pol \subseteq Meas

 $\mathcal{B} := \mathcal{G}|_{\mathsf{Pol}} : \mathsf{Pol} \to \mathsf{Pol}$

has representable Kleisli cat. $KI_{\mathcal{B}} =: BorelStoch:$

Polish Spaces

 $KI_{\mathcal{G}}$ of Giry monad is *not* representable. But: restriction to Polish spaces Pol \subseteq Meas

$$\mathcal{B} := \mathcal{G}|_{\mathsf{Pol}} : \mathsf{Pol} o \mathsf{Pol}$$

has representable Kleisli cat. $KI_{\mathcal{B}} =: BorelStoch:$

$$\begin{array}{c} \mathsf{Pol}(\mathcal{A},\mathcal{B}X) & \stackrel{\text{def}}{\longrightarrow} \mathsf{Kl}_{\mathcal{B}}(\mathcal{A},X) \\ & \stackrel{\geq}{\parallel} & \qquad \parallel \\ \mathsf{BorelStoch}_{\mathsf{det}}(\mathcal{A},\mathcal{B}X) & \quad \mathsf{BorelStoch}(\mathcal{A},X) \\ & \quad \mathsf{id}_{\mathcal{B}X} \longmapsto \mathsf{[samp}_{X} : \mathcal{B}X \to X] \end{array}$$

Countable Products

Lemma BorelStoch *has inverse limits*

$$X^{\mathbb{N}} := \varprojlim_{n \in \mathbb{N}} X^{\otimes n}$$

with projections $\pi^{(n)}: X^{\mathbb{N}} \to X^{\otimes n}$, depicted as

De Finetti's Theorem

Theorem

For a morphism $p: I \to X^{\mathbb{N}}$ in BorelStoch, it is equivalent:

1. *p* is invariant under finite permutations: for all $n \in \mathbb{N}$ and i < n

De Finetti's Theorem

Theorem

For a morphism $p: I \to X^{\mathbb{N}}$ in BorelStoch, it is equivalent:

1. *p* is invariant under finite permutations: for all $n \in \mathbb{N}$ and i < n

2. there is a (unique) morphism $\mu : I \rightarrow BX$ such that

Markov Categories

Probability Monads Weak Products Markov Categories: Definitions, Additional Properties De Finetti's Theorem

Imprecise Probability

What's that? Towards Imprecise Probability Monads

Non-Commutative Probability Theory

What's that? Towards Non-Commutative Probability Monads

Flip a $2 \in Coin$

Flip a 2€ Coin

Probability theory is too "fine-grained".

What is Imprecise Probability?

Many different uncertainty frameworks available:

What is Imprecise Probability?

Many different uncertainty frameworks available:

- Dempster-Schafer belief functions
- super-additive measures
- non-additive measures

Do they have probability monads?

Towards Imprecise Probability Monads

Towards Super-Additive Measures

$$\mathbf{Gr} \xrightarrow[]{R} \overset{L}{\underset{\mathbb{R}}{\longleftarrow}} \underset{\mathbb{R} \ge 0}{\mathsf{Rd}} \underset{\mathbb{R} \ge 0}{\overset{\mathbb{R}}{\longrightarrow}} \mathbf{Cont}$$

super-additive measures on X: ?? restrict $\omega : [X, \mathbb{R}_{\geq 0}] \to \mathbb{R}_{\geq 0}$

$$lpha : PX
ightarrow [0, 1]$$

 $lpha(X) = 1$
 $lpha(\emptyset) = 0$
 $lpha(A \cup B) \ge lpha(A) + lpha(B)$
 $- lpha(A \cap B)$

$$egin{aligned} &\omega(1)\stackrel{!}{=}1\ &\omega(\lambda f)\stackrel{!}{=}\lambda\omega(f)\ &f\leq g\stackrel{!}{\Rightarrow}\omega(f)\leq\omega(g)\ &dots\ &$$

・ロ ・ ・ 一 ・ ・ 言 ・ ・ 言 ・ う へ で
28 / 35

An Italian Flag

Further restrictions on **Rd** s.th.

Rd is monad

▶ Gr are Dempster-Shafer belief functions / ...

Further restrictions on **Rd** s.th.

- Rd is monad
- ▶ Gr are Dempster-Shafer belief functions / ...
- Is Gr a commutative monad? (Probably not)
- What does that mean for its Kleisli cat.?

It is not monoidal.

Further restrictions on **Rd** s.th.

- Rd is monad
- ▶ Gr are Dempster-Shafer belief functions / ...
- Is Gr a commutative monad? (Probably not)
- What does that mean for its Kleisli cat.?
 - It is not monoidal.
 - But premonoidal?

Further restrictions on **Rd** s.th.

- Rd is monad
- Gr are Dempster-Shafer belief functions / ...
- Is Gr a commutative monad? (Probably not)
- What does that mean for its Kleisli cat.?
 - It is not monoidal.
 - But premonoidal? A monoidal effectful cat.?
- Results from Markov cat.s?
- Relation to (other) Markov cat.s of imprecise probability (So far: "just" special cases)

Markov Categories

Probability Monads Weak Products Markov Categories: Definitions, Additional Properties De Finetti's Theorem

Imprecise Probability

What's that? Towards Imprecise Probability Monads

Non-Commutative Probability Theory

What's that? Towards Non-Commutative Probability Monads What is Non-Commutative Probability?

Probabilistic Gelfand duality [FJ15, Eq. (1.1)]:

What is Non-Commutative Probability?

Probabilistic Gelfand duality [FJ15, Eq. (1.1)]:

(Subcategories of) C*-algebras!

► Are C*-algebras dual Markov cat.?

Are C*-algebras dual Markov cat.? NO!

Are C*-algebras dual Markov cat.? – NO!

- Generalizations to
 - involutive Markov cat.s in [FL24]
 - quantum Markov cat.s in [Par20]
- Do they come from "quantum probability monads"?

Are C*-algebras dual Markov cat.? – NO!

- Generalizations to
 - involutive Markov cat.s in [FL24]
 - quantum Markov cat.s in [Par20]
- Do they come from "quantum probability monads"? – probably!

References

- [CJ19] Kenta Cho and Bart Jacobs. "Disintegration and Bayesian inversion via string diagrams". In: Mathematical Structures in Computer Science 29.7 (Mar. 2019), pp. 938–971.
- [FJ15] Robert WJ Furber and Bart PF Jacobs. "From Kleisli categories to commutative C*-algebras: probabilistic Gelfand duality". In: Logical methods in computer science 11 (2015).
- [FL24] Tobias Fritz and Antonio Lorenzin. *Involutive Markov* categories and the quantum de Finetti theorem. 2024.
- [Fri20] Tobias Fritz. "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics". In: Advances in Mathematics 370 (2020), p. 107239.
- [Par20] Arthur J Parzygnat. "Inverses, disintegrations, and Bayesian inversion in quantum Markov categories". In: arXiv preprint arXiv:2001.08375 (2020).

34 / 35

Thank You!

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで