Towards Generalizing Probability Monads

Nico Wittrock

Oberseminar at Chair for Theoretical Computer Science, University of Erlangen-Nuremberg,

27 August 2024

(ロ) (御) (君) (君) (君) 君 のぬの

Table of contents

[Markov Categories](#page-2-0)

[Probability Monads](#page-3-0) [Weak Products](#page-18-0) [Markov Categories: Definitions, Additional Properties](#page-20-0) [De Finetti's Theorem](#page-33-0)

[Imprecise Probability](#page-36-0)

[What's that?](#page-37-0) [Towards Imprecise Probability Monads](#page-41-0)

[Non-Commutative Probability Theory](#page-48-0)

[What's that?](#page-49-0) [Towards Non-Commutative Probability Monads](#page-51-0)

[Probability Monads](#page-3-0) [Weak Products](#page-18-0) [Markov Categories: Definitions, Additional Properties](#page-20-0) [De Finetti's Theorem](#page-33-0)

[Imprecise Probability](#page-36-0)

[What's that?](#page-37-0) [Towards Imprecise Probability Monads](#page-41-0)

[Non-Commutative Probability Theory](#page-48-0)

[What's that?](#page-49-0) [Towards Non-Commutative Probability Monads](#page-51-0)

Discrete Monads

▶ power-set monad

$$
\mathcal{P}: \mathsf{Set} \to \mathsf{Set} \\ X \mapsto \{\mathcal{S} \subseteq X\}
$$

▶ distribution monad

$$
\mathcal{D}: Set \rightarrow Set
$$

$$
X \mapsto \{\text{finite distributions on } X\}
$$

$$
\longrightarrow \left\{\left(\begin{array}{c}\n\cdot & \cdot \\
\cdot & \cdot\n\end{array}\right), \dots\right\}
$$

メロトメ 御 メメ きょくきょうき 2990 3 / 35

Continuous Monads

▶ Giry monad

 \blacktriangleright variations thereof:

 $\mathcal{G}|_{\text{Pol}}$: Pol \rightarrow Pol on polish spaces Radon monad \mathcal{R} : CHaus \rightarrow CHaus on cpct. Hausdorff sp.

> イロト 不優 トメ 差 トメ 差 トー 差 4 / 35

consider monad $\mathcal{T}: D \to D$

Kleisli cat. $\mathsf{Kl}_\mathcal{T}$ \int objects: $\mathrm{Obj}_{\mathsf{Kl}_\mathcal{T}} \vcentcolon = \mathrm{Obj}_{\mathsf{D}}$ morphisms: $\mathsf{Hom}_{\mathsf{Kl}_\mathcal{T}}(A,B) := \mathsf{Hom}_{\mathsf{D}}(A,\mathcal{T}B)$

consider monad $\mathcal{T}: D \to D$

Kleisli cat. $\mathcal{K}\ell:\mathsf{D}\to\mathsf{K}\mathsf{l}_\mathcal{T}$ \int objects: $\mathrm{Obj}_{\mathsf{Kl}_\mathcal{T}} \vcentcolon = \mathrm{Obj}_{\mathsf{D}}$ morphisms: $\mathsf{Hom}_{\mathsf{Kl}_\mathcal{T}}(A,B) := \mathsf{Hom}_{\mathsf{D}}(A,\mathcal{T}B)$

Kleisli Categories

Example (Power-Set Monad)

▶ maps in Set:

$$
f:A\to X
$$

 \blacktriangleright maps in $\mathsf{Kl}_\mathcal{P}$:

$$
f : A \to PX
$$

Kleisli Categories

Example (Power-Set Monad)

▶ maps in Set:

$$
f:A\to X
$$

 \blacktriangleright maps in Kl_p:

$$
f:A\to PX
$$

- Example (Giry Monad)
	- ▶ maps in Meas:

 $f: A \rightarrow X$

 \blacktriangleright maps in Kl_G :

 $f: A \rightarrow X$

Symmetric Monoidal Kleisli Categories

We consider monad $\mathcal{T}: D \to D$.

- \triangleright D is cartesian monoidal
- \triangleright T is commutative, i.e., comes with "zipper map"

$$
\nabla_{X,Y}:\mathcal{T} X\times \mathcal{T} Y\to \mathcal{T}(X\times Y)
$$

Kl τ is symmetric monoidal via ⊗ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ on objects: $X \otimes Y := X \times Y$ on morphisms $f: A \rightarrow \mathcal{T} X,$ $g : B \to \mathcal{T}$ Y $f \otimes g : X \times Y \xrightarrow{f \times g} \mathcal{T} X \times \mathcal{T} Y \xrightarrow{\nabla \chi, Y} \mathcal{T} (X \times Y)$ Symmetric Monoidal Kleisli Categories

We consider monad $\mathcal{T}: D \to D$.

- \triangleright D is cartesian monoidal
- \triangleright τ is commutative, i.e., comes with "zipper map"

$$
\nabla_{X,Y}:\mathcal{T} X\times \mathcal{T} Y\to \mathcal{T}(X\times Y)
$$

 $K\ell : D \to Kl_{\mathcal{T}}$ preserves tensor products

Symmetric Monoidal Kleisli Categories

```
Example (Power-Set Monad)
```
 $P : Set \rightarrow Set$

$$
\nabla_{X,Y} : \mathcal{P}X \times \mathcal{P}Y \to \mathcal{P}(X \times Y)
$$

$$
(S, T) \mapsto S \times T \subseteq X \times Y
$$

Symmetric Monoidal Kleisli Categories Example (Power-Set Monad) $P : Set \rightarrow Set$

$$
\nabla_{X,Y} : \mathcal{P}X \times \mathcal{P}Y \to \mathcal{P}(X \times Y)
$$

$$
(S, T) \mapsto S \times T \subseteq X \times Y
$$

Example (Giry monad) $G :$ Meas \rightarrow Meas

Symmetric Monoidal Kleisli Categories: Giry

Symmetric Monoidal Kleisli Categories: Giry

Probability Monads

メロトメ 伊 トメ ミトメ ミト G. 298 12 / 35

Probability Monads

Definition

A probability monad is a monad $\mathcal{T}: D \to D$ such that

 \triangleright D is cartesian monoidal \blacktriangleright τ is commutative monad \triangleright Kl : D \rightarrow Kl_T preserves projections: in $\mathsf{Kl}_{\mathcal{T}}$ commutes

Probability Monads

Definition

A probability monad is a monad $\mathcal{T}: D \to D$ such that

Example

Giry monad G, Radon monad R, distribution monad D. Power-set monad P is no probability monad.

L

 $\mathcal{K}\!\ell\pi^{\mathsf{R}}$

Weak Products

Consider probability monad $\mathcal{T} : D \to D$ with $\mathcal{K}\ell : D \to Kl_{\mathcal{T}}$. ▶ D has products:

Weak Products

Consider probability monad $\mathcal{T} : D \to D$ with $\mathcal{K}\ell : D \to Kl_{\mathcal{T}}$. \blacktriangleright Kl_T has weak products:

Definition

A Markov Category is cat. with weak products and chosen morphisms (f, g) as in (2) , such that

- \blacktriangleright they canonically induce a symmetric monoidal structure
- ▶ diagrams [\(1\)](#page-20-2), [\(2\)](#page-20-1) coincide: $(f \otimes g) \circ (id, id) = (f, g)$

▶ Symmetric monoidal cat.s have graphical notation

$$
f: X \to Y \equiv \chi - \boxed{f} - \gamma
$$

\n
$$
(\text{id}, \text{id}): X \to X \otimes X \equiv \chi - \left(\frac{X}{X}\right)
$$

\n
$$
\pi^{L}: X \otimes Y \to X \equiv \chi - \left(\frac{X}{X}\right)
$$

▶ Symmetric monoidal cat.s have graphical notation

$$
f: X \to Y \equiv \chi - \boxed{f} - \gamma
$$

\n
$$
(\text{id}, \text{id}): X \to X \otimes X \equiv \chi - \left(\frac{\gamma}{X}\right)
$$

\n
$$
\pi^{L}: X \otimes Y \to X \equiv \chi - \left(\frac{\gamma}{X}\right)
$$

▶ leads to usual definition of Markov cat.s

- ▶ more explicit [\[Fri20\]](#page-55-0)
- ▶ generalization: CD-cat.s (Cho and Jacobs [\[CJ19\]](#page-55-1))

Example

Kleisli cat.s of probability monads. In particular: cartesian monoidal cat.s.

17 / 35

 QQ

イロト 不優 トメ 差 トメ 差 トー 差

Deterministic Morphisms

Definition

Morphism $f : A \rightarrow X$ in Markov cat. is deterministic, if

Example

1. In Kleisli cat. $Kl_{\mathcal{D}}$ of distribution monad: deterministic morphisms are of the form

18 / 35

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Deterministic Morphisms

Definition

Morphism $f : A \rightarrow X$ in Markov cat. is deterministic, if

Example

1. In Kleisli cat. $Kl_{\mathcal{D}}$ of distribution monad: deterministic morphisms are of the form

2. In Kleisli [c](#page-24-0)at. Kl τ : all $\mathcal{K}\ell(f)$ are determ[ini](#page-25-0)[sti](#page-27-0)c σ 18 / 35 Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $C_{\text{det}} \subseteq C$.

Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $C_{\det} \subseteq C$.

Definition

Kleisli cat. Kl τ of probability monad $\mathcal{T} : D \to D$ is representable, if

 $(KI_{\tau})_{\det} \cong D$

Representable Markov Categories

Consider Markov cat. C.

Lemma

Deterministic morphisms form subcategory $C_{\text{det}} \subseteq C$.

Definition

Kleisli cat. Kl $_{\mathcal{T}}$ of probability monad $\mathcal{T}: D \rightarrow D$ is representable, if

 $(KI_{\tau})_{\det} \cong D$

Example

- 1. Kleisli cat. $Kl_{\mathcal{D}}$ of distribution monad is representable.
- 2. Kleisli cat. Kl_G of Giry monad is not.

Polish Spaces

 Kl_G of Giry monad is not representable.

Polish Spaces

 Kl_G of Giry monad is not representable. But: restriction to Polish spaces Pol ⊆ Meas

 $\mathcal{B}:=\mathcal{G}|_{\mathsf{Pol}}: \mathsf{Pol}\to \mathsf{Pol}$

has representable Kleisli cat. Kl $_{\mathcal{B}}=$:BorelStoch:

Polish Spaces

 Kl_G of Giry monad is not representable. But: restriction to Polish spaces Pol ⊆ Meas

$$
\mathcal{B}:=\mathcal{G}|_{Pol}:Pol\to Pol
$$

has representable Kleisli cat. Kl $_{\mathcal{B}}=$:BorelStoch:

$$
\text{Pol}(A, \mathcal{B}X) \xrightarrow{def} \text{Kl}_{\mathcal{B}}(A, X)
$$
\n
$$
\begin{array}{c}\n\downarrow \parallel \qquad \qquad \parallel \\
\text{BorelStock}_{\text{det}}(A, \mathcal{B}X) \qquad \text{BorelStock}(A, X) \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel \\
\downarrow \text{d}_{\mathcal{B}X} \longmapsto \text{[samp}_X : \mathcal{B}X \to X]\n\end{array}
$$

Countable Products

Lemma

BorelStoch has inverse limits

$$
X^{\mathbb{N}}:=\varprojlim_{n\in\mathbb{N}}X^{\otimes n}
$$

with projections $\pi^{(n)}:X^{\mathbb{N}}\to X^{\otimes n}$, depicted as

De Finetti's Theorem

Theorem

For a morphism $p: I \to X^{\mathbb{N}}$ in BorelStoch, it is equivalent:

1. p is invariant under finite permutations: for all $n \in \mathbb{N}$ and $i < n$

De Finetti's Theorem

Theorem

For a morphism $p: I \to X^{\mathbb{N}}$ in BorelStoch, it is equivalent:

1. p is invariant under finite permutations: for all $n \in \mathbb{N}$ and $i < n$

2. there is a (unique) morphism $\mu: I \rightarrow \mathcal{B}X$ such that

[Probability Monads](#page-3-0) [Weak Products](#page-18-0) [Markov Categories: Definitions, Additional Properties](#page-20-0) [De Finetti's Theorem](#page-33-0)

[Imprecise Probability](#page-36-0)

[What's that?](#page-37-0) [Towards Imprecise Probability Monads](#page-41-0)

[Non-Commutative Probability Theory](#page-48-0)

[What's that?](#page-49-0) [Towards Non-Commutative Probability Monads](#page-51-0)

Flip a 2€ Coin

メロメメ 御 メメ きょくきょう 299 重 24 / 35

Flip a 2€ Coin

Probability theory is too "fine-grained".

What is Imprecise Probability?

Many different uncertainty frameworks available:

What is Imprecise Probability?

Many different uncertainty frameworks available:

- ▶ Dempster-Schafer belief functions
- \blacktriangleright super-additive measures
- \blacktriangleright non-additive measures

 \blacktriangleright ...

Do they have probability monads?

Towards Imprecise Probability Monads

メロトメ 伊 トメ ミトメ ミト э Ω 27 / 35

Towards Super-Additive Measures

$$
\mathsf{Gr} \xrightarrow{\mathsf{L}} \mathsf{Rd} \xrightarrow{\mathsf{I}} \mathsf{Cont} \longrightarrow \mathsf{Cont} \longrightarrow \mathsf{Cont} \longrightarrow \mathsf{I} \longrightarrow \
$$

super-additive measures on X : \quad ?? restrict $\omega : [X,\mathbb{R}_{\geq 0}] \to \mathbb{R}_{\geq 0}$

$$
\alpha: PX \to [0, 1]
$$

$$
\alpha(X) = 1
$$

$$
\alpha(\emptyset) = 0
$$

$$
\alpha(A \cup B) \ge \alpha(A) + \alpha(B)
$$

$$
-\alpha(A \cap B)
$$

$$
\omega(1) \stackrel{!}{=} 1
$$

$$
\omega(\lambda f) \stackrel{!}{=} \lambda \omega(f)
$$

$$
f \leq g \stackrel{!}{\Rightarrow} \omega(f) \leq \omega(g)
$$

$$
\vdots
$$

イロメ イ部 メイミメイモメー 差 Ω 28 / 35

An Italian Flag

 \blacktriangleright Further restrictions on Rd s.th.

- \triangleright Rd is monad
- \triangleright Gr are Dempster-Shafer belief functions / ...

 \blacktriangleright Further restrictions on Rd s.th.

- ▶ Rd is monad
- \triangleright Gr are Dempster-Shafer belief functions / ...
- \blacktriangleright Is Gr a commutative monad? (Probably not)
- ▶ What does that mean for its Kleisli cat.?

 \blacktriangleright It is *not* monoidal.

 \blacktriangleright Further restrictions on Rd s.th.

- ▶ Rd is monad
- \triangleright Gr are Dempster-Shafer belief functions / ...
- \blacktriangleright Is Gr a commutative monad? (Probably not)
- ▶ What does that mean for its Kleisli cat.?
	- \blacktriangleright It is *not* monoidal.
	- ▶ But premonoidal?

 \blacktriangleright Further restrictions on Rd s.th.

- ▶ Rd is monad
- \triangleright Gr are Dempster-Shafer belief functions / ...
- \triangleright Is Gr a commutative monad? (Probably not)
- ▶ What does that mean for its Kleisli cat?
	- \blacktriangleright It is *not* monoidal.
	- ▶ But premonoidal? A monoidal effectful cat.?
- ▶ Results from Markov cat.s?
- ▶ Relation to (other) Markov cat.s of imprecise probability (So far: "just" special cases)

[Probability Monads](#page-3-0) [Weak Products](#page-18-0) [Markov Categories: Definitions, Additional Properties](#page-20-0) [De Finetti's Theorem](#page-33-0)

[Imprecise Probability](#page-36-0)

[What's that?](#page-37-0) [Towards Imprecise Probability Monads](#page-41-0)

[Non-Commutative Probability Theory](#page-48-0)

[What's that?](#page-49-0) [Towards Non-Commutative Probability Monads](#page-51-0) What is Non-Commutative Probability?

 \blacktriangleright Probabilistic Gelfand duality [\[FJ15,](#page-55-2) Eq. (1.1)]:

What is Non-Commutative Probability?

 \blacktriangleright Probabilistic Gelfand duality [\[FJ15,](#page-55-2) Eq. (1.1)]:

 \blacktriangleright (Subcategories of) C^* -algebras!

▶ Are C*-algebras dual Markov cat.?

▶ Are C*-algebras dual Markov cat.? – NO!

▶ Are C*-algebras dual Markov cat.?

– NO!

▶ Generalizations to

▶ involutive Markov cat.s in [\[FL24\]](#page-55-3)

▶ quantum Markov cat.s in [\[Par20\]](#page-55-4)

▶ Do they come from "quantum probability monads"?

▶ Are C*-algebras dual Markov cat.?

– NO!

▶ Generalizations to

▶ involutive Markov cat.s in [\[FL24\]](#page-55-3)

- ▶ quantum Markov cat.s in [\[Par20\]](#page-55-4)
- ▶ Do they come from "quantum probability monads"? – probably!

References

- [CJ19] Kenta Cho and Bart Jacobs. "Disintegration and Bayesian inversion via string diagrams". In: Mathematical Structures in Computer Science 29.7 (Mar. 2019), pp. 938–971.
- [FJ15] Robert WJ Furber and Bart PF Jacobs. "From Kleisli categories to commutative C*-algebras: probabilistic Gelfand duality". In: Logical methods in computer science 11 (2015).
- [FL24] Tobias Fritz and Antonio Lorenzin. Involutive Markov categories and the quantum de Finetti theorem. 2024.
- [Fri20] Tobias Fritz. "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics". In: Advances in Mathematics 370 (2020), p. 107239.
- [Par20] Arthur J Parzygnat. "Inverses, disintegrations, and Bayesian inversion in quantum Markov [ca](#page-54-0)[te](#page-55-5)[g](#page-56-0)[o](#page-50-0)[ri](#page-51-0)[es](#page-56-0)["](#page-47-0)[.](#page-48-0) [In](#page-56-0)[:](#page-0-0) arXiv preprint arXiv:2001.08375 (2[02](#page-54-0)[0\).](#page-56-0)

Thank You!

Questions?

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |