Monad-Based Programming SS 2023

Assignment 6

Deadline for solutions: 20.07.2023

Exercise 1 Kleisi Triples as Monads (6 Points)

Complete the proof from the lecture that Kleisli triples bijectively correspond to monads (T, η, μ) . Recall that you need to

(a) define a Kleisli triple from a monad, given as a triple (T, η, μ) and verify the axioms of Kleisli triples;

(b) define a monad in the form (T, η, μ) from a Kleisli triple and verify the axioms of monads;

- (c) show that the passage $(T, \eta, (-)^*) \to (T, \eta, \mu) \to (T, \eta, (-)^*)$ yields an identity;
- (d) show that the passage $(T, \eta, \mu) \to (T, \eta, (-)^{\star}) \to (T, \eta, \mu)$ yields an identity.

Exercise 2 (Non-)Commutative Monads (6 Points)

A strong monad T is commutative if

$$\begin{array}{cccc} TA \times TB & \xrightarrow{\tau_{A,B}} & T(TA \times B) \xrightarrow{T\hat{\tau}_{TA,B}} & TT(A \times B) \\ & & \hat{\tau}_{A,B} \\ & & & & \\ T(A \times TB) & & & & \\ T\tau_{A,TB} \\ & & & \\ TT(A \times B) & \xrightarrow{\mu_{A \times B}} & & T(A \times B) \end{array}$$

where $\hat{\tau}_{A,B}$: $TA \times B \to T(A \times B)$ is the following dual of $\tau_{A,B}$:

$$TA \times B \xrightarrow{\langle \mathsf{snd}, \mathsf{fst} \rangle} B \times TA \xrightarrow{\tau_{B,TA}} T(B \times A) \xrightarrow{T\langle \mathsf{snd}, \mathsf{fst} \rangle} T(A \times B).$$

(a) Consider the exception monad TX = X + E over the category of sets and functions. For which E it is commutative? Justify your answer with a formal proof.

(b) Consider the lifting monad $TX = X_{\perp}$ over the category of complete partial orders and continuous functions. Is it commutative? Justify your answer with a formal proof.

(c) Prove that the reader monad $TX = X^S$ over the category of sets and functions is commutative for every S.

(8 Points)

Exercise 3 Monads on Posets

A closure operator T over a poset (=partially ordered set), say \mathcal{C} , satisfies properties:

$X \leqslant TX$			(extensiveness)
$X \leqslant Y$	implies	$TX \leqslant TY$	(monotonicity)
TTX = TX			(idempotence)

For example, if C is the standard partial order on real numbers, then the operator that rounds up a real number to the closest integer is a closure operator.

Recall from the lecture that we can view C as a category: |C| is the set of elements, $C(X, Y) = \{*\}$ if $X \leq Y$ and $C(X, Y) = \{\}$ otherwise.

(a) Prove that T is a monad on C iff T is a closure operator.

(b) Prove that if C is a *total order*, i.e. for any two objects X and Y either $X \leq Y$ or $Y \leq X$, then every monad T on C is strong. **Hint:** You need to explain first, what binary products and what terminal objects in C are.

(c) Construct an example of a monad on a poset category that is not strong.

Hint: You can consider C to be the poset of geometric shapes on the plane, ordered by inclusion, i.e. $X \leq Y$ if Y (as a set of points) contains X. As the closure operator, consider *convex closure*, i.e. the operator that sends every shape X to the smallest convex shape TX that contains X – see Fig. Exercise 3 for an example.

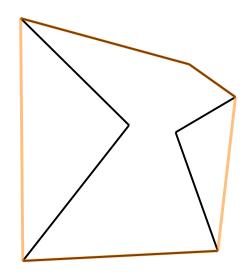


Figure 1: Example of convex closure: black lines – original shape, orange lines – the induced closure.