
Monad-Based Programming SS 2023

Assignment 5
Deadline for solutions: 06.07.2023

Exercise 1 Going Abstract (7 Points)

Recall the proof assistant from Assignment 2, Exercise 1. Your main task here is to adapt your
previous code in such a way that the main program has the following type:

proofStep :: (MonadError e m, MonadIO m, MonadState ProofState m) => m ProofState

for a suitably chosen type of exceptions e (so, we are now integrating IO to proofStep). That is,
you must update your code in such a way that it only uses the effects provided by the indicated
type classes. You will then need to come up with a concrete instance of m, in order to run your
code. The facilities of the indicated type classes must be used in the following way:

� MonadError is used to throw errors related to erroneous user input or inapplicability of
rules.

� MonadIO is used to interact with the user.

� MonadState is used to store read and update the current proof state (list of goals).

The parameter m will have to be instantiated with a monad, obtained by combining monad
transformers for state, exceptions and I/O. Note that there is a certain freedom in defining
such an instance, related to the fact that applying state transformers in different order need
not produce the same result (!) For example, transforming the state monad with the exception
transformer is not the same as transforming the exception monad with the state transformer.
The first yields

p´ ˆ SqS ÞÑ pp´ ˆ Sq ` EqS ,

while the second yields

p´ ` Eq ÞÑ pp´ ` Eq ˆ SqS ,

Incidentally, this is one of the reasons to use the above abstract type classes instead of con-
crete monads and monad transformers. More generally, we are thus following the well-known
programming principle of separating interface from implementation.

For a worked example in this style, consider the snippet in Fig. 1. In mathematical terms,
the involed monad is computed as follows: let T be the IO-monad, its exception-transform is
T p´`Eq; the state monad transformer sends R to pRp´ˆSqqS , and therefore it sends T p´`Eq
to pT p´ ˆ S ` EqqS , which is the resulting monad.

You need to implement the following features in your proof assistant (if you did not fully imple-
ment the proof assistant previously, this is OK – you only need the interactive loop to function):

(a) a command of the user to print the current list of goals;

(b) a command of the user to quit;

(c) finishing the interaction loop normally, after all goal are proven.

Version: 2023/06/22, 23:51:49 MBProg, SS 2023

{´# LANGUAGE LambdaCase #´}

import Control.Monad.Except (MonadIO(..), MonadError(..), runExceptT)
import Control.Monad.State.Lazy (StateT(runStateT), MonadState(put, get), MonadIO(..))
import Control.Monad (void)

data Errors = Quit | Show

´´ A little demo of a program with multiple effects : exceptions, state and IO
´´ The programs keeps requesting the user to enter a string; these are then
´´ collected in the internal store . Exception throwing and catching is used for
´´ escaping from the loop
errIOStateDemo :: (MonadError Errors m, MonadIO m, MonadState [String] m) => m ()
errIOStateDemo = do

´´ This is a computation w.r.t. the monad ”m”, which is a polymorphic parameter

´´ liftIO coerces the IO monad to m, using the type constraint ”MonadIO m”
liftIO $ putStr ”Enter a line: ”

line <´ liftIO getLine
case line of

´´ throw an exception if the user entered ”q” = user is willing to quit
”q” ´> throwError Quit

´´ throw an exception if the user entered ”s” = user is willing to see the state
”s” ´> do lines <´ get; liftIO $ print lines; throwError Show

´´ proceed with the control flow normally, otherwise
´> return ()

´´ Grab the current state (thanks to ”MonadState [String] m”)
state <´ get

´´ Update the state (thanks to ”MonadState [String] m”)
put $ line : state

´´ recursive call
errIOStateDemo

´´ exception handling clause
‘catchError‘ \case

´´ return back to the main loop
Show ´> errIOStateDemo

´´ reraise the exception
e ´> throwError e

´´ In order to use errIOStateDemo, we need to build a concrete monad, so
´´ that the interpreter knows how to instantiate ’m’. From the following
´´ code the interpreter will deduce that m = StateT [String] (ExceptT Errors IO)
´´ i.e. m is the state transformer of the exception transformer of IO
main :: IO ()
main = void (runExceptT (runStateT errIOStateDemo []))

Figure 1: Example of multi-effect program.

Exercise 2 Parsing FOL Formulas (7 Points)

Implement a parser for FOL formulas, specified with the following BNF:

〈fol-term〉 ::= 〈ident〉
| 〈ident〉 ‘(’ 〈fol-terms〉 ‘)’

2

MBProg, SS 2023 Version: 2023/06/22, 23:51:49

〈fol-terms〉 ::= 〈empty〉
| 〈term〉
| 〈term〉 ‘,’ 〈fol-terms〉

〈fol-form〉 ::= T
| F
| 〈ident〉 ‘(’ 〈fol-terms〉 ‘)’
| 〈fol-form〉 ‘/\’ 〈fol-form〉
| 〈fol-form〉 ‘\/’ 〈fol-form〉
| 〈fol-form〉 ‘->’ 〈fol-form〉

and integrate it to the proof assistant (so that the user, when asked, could enter terms and
formulas in this grammar, during the proof process). Since the orignal goals are given statically,
the set of active variable names in runtime is known, which can be used to distinguish variable
names from functional and predicate symbols.

You can solve this problem in one of two way, at pleasure:

� You can adapt the home-grown parser library, discussed at the lecture: https://www8.cs.

fau.de/ext/teaching/sose2023/mbprog/parsing.hs, or

� (recommended) to use the native Haskell Parsec parser combinator library, which is an indus-
trial strength tool for parsing with Haskell. For a gentle introduction, the following free chapter
of the “Real World Haskell” book is worth exploring: https://book.realworldhaskell.org/
read/using-parsec.html.

Note that GenParser is again a monad, but a different (more technically involved) one than
discussed at the lecture. However, you can still stansfer your intuition about parser combination,
using similarity of interfaces: again we have the operation <|> for alternation, many for iterating
the parser multiple times, etc.

Exercise 3 Lifting vs. Maybe (6 Points)

The goal of this excercise is to formalize the foundamental distinction between divergence and
abnormal termination.

The latter is modelled by the maybe-monad TX “ X ` 1, which can be defined in any category
with binary coproducts and a terminal object.

The former can at least be interpreted in categories where objects are (particular) partially
ordered sets (whose underlying partial order we intuitively understand as the information order),
and morphisms are (particular) monotone functions. Then we define the corresponding lifting
monad as follows: TX “ XK “ X Z tKu and the order on XK as follows: x ď y if x, y P X and
x ď y, or x “ K.

Both monads therefore model non-termination. We proceed to idintify a principled distinction
between these monads in that we prove that XK is not generally a coproduct of X and 1. To
that end:

(a) Prove that for suitable X, XK is not a coproduct of X and 1 in the category Cpo of complete
partial orders and continuous functions. Hint: proof by contradiciton.

3

https://www8.cs.fau.de/ext/teaching/sose2023/mbprog/parsing.hs
https://www8.cs.fau.de/ext/teaching/sose2023/mbprog/parsing.hs
https://book.realworldhaskell.org/read/using-parsec.html
https://book.realworldhaskell.org/read/using-parsec.html

Version: 2023/06/22, 23:51:49 MBProg, SS 2023

(b) Identify binary coproducts in the category Cpo!K of pointed complete partial orders and
strict continuous functions, i.e. those continuous functions that preserve K: fpKq “ K. Prove
the universal properties of coproducts.

(c) Prove that also in Cpo!K, XK is generally not a coproduct of X and 1.

4

	Going Abstract(7 Points)
	Parsing FOL Formulas(7 Points)
	Lifting vs. Maybe(6 Points)

