
Monad-Based Programming SS 2023

Assignment 4
Deadline for solutions: 22.06.2023

Exercise 1 Soundeness of (Lazy) PCF (8 Points)

Recall that the soundness property states that for every closed program p and every value v of
the same type, p ó v entails JpK “ JvK. Using the equivalence of the big-step and the small-
step semantics, this property follows from the other one, which is also called soundness of the
individual rules: for every operational semantics rule

p1 Ñ q1 . . . pn Ñ qn
pÑ q

if Jp1K “ Jq1K, . . . , JpnK “ JqnK then JpK “ JqK.

(a) Why?

(b) Prove soundness of the following rules

pÑ p1

pq Ñ p1q Y pÑ ppY pq pλx. pqq Ñ qrp{xs

using Substitution Lemma from the script: Given Γ $ q : A, Γ, x : A $ p : B and ρ P JΓK

JΓ $ prq{xs : BKρ “ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq

(c) Prove that JΓ $ f : AÑ BK “ JΓ $ λx. fx : AÑ BK.

Exercise 2 Iteration from Recursion (7 Points)

Consider the following term formation rule for while:

Γ $ p : S Γ, x : S $ b : Bool Γ, x : S $ q : S

Γ $ let x - p while b do q : S

Here,

� S is regarded as a type of states,

� p is a program that initializes the state,

� b is a test, depending on the current state, and

� q is a loop body, which transforms a given state to a new one.



Version: 2023/06/09, 13:26:20 MBProg, SS 2023

(a) Express plet x - p while b do qq in PCF as a term over p, b and q in such a way that

JΓ $ let x - p while b do q : SK “ JΓ $ if brp{xs then plet x - qrp{xs while b do qq else p : SK. (˚)

Hint: Some exploration will be needed. You should think of that, how substitution

plet x - p while b do qqrr{ys

must be computed. Then note that if x ‰ y and y is not free either in b or in q,

JΓ $ let x - y while b do q : SK “ JΓ $ if bry{xs then pλy. let x - y while b do qqpqry{xsq else y : SK.

This gives an idea how to recursively express plet x -y while b do qq through itself, and thus, how
to express the general case using the Y -combinator.

(b) Prove (*).

(c) The simplest implementation of Fibonacci numbers, corresponding to the following Haskell
defletion

fib 0 = 1

fib 1 = 1

fib n = fib (n - 1) + fib (n - 2)

can be extremely inefficient, for every step recursively calls fib twice, so the number of recursive
calls grows exponentially. Because of that, it makes sense to use the following variant of fib,
which simultaneously calculates the n-th and the pn` 1q-th Fibonacci number:

fib2 0 = (1 , 1)

fib2 n = let (fn_1, fn) = fib2 (n - 1) in (fn, fn_1 + fn)

It can be shown that fib is equivalent to fst $ fib2.

This example demonstrates that inefficiency of unconstrained recursion cannot generally be
prevented, which is sometimes considered as a drawback of functional programming. The reason
why in the second program recursion is harmless is because it is essentially an iterative program:
the state is a pair of numbers, which are updated in a while-loop, as long as the counter n is
non-zero. Formalize this by reformulating fib2 using the above while-operator.

(d) Use the encoding of while in PCF from (a), and run the corresponding program in your
interpreter from Exercise 2, Assignment 3, to compute fib2 3.

Exercise 3 Dinaturality (5 Points)

The least fixpoint operator µ, figuring in the Kleene fixpoint theorem, features many properties.
One such property is the so-called dinaturality law : given two continuous functions f : A Ñ B
and g : B Ñ A between domains,

fpµpgfqq “ µpfgq.

Prove it. Hint: prove mutual inequality. You need not use any knowledge, except the very
definition of µ – that it defines a fixpoint, and this fixpoint is the least one.

2


	Soundeness of (Lazy) PCF(8 Points)
	Iteration from Recursion(7 Points)
	Dinaturality(5 Points)

