
Monad-Based Programming SS 2023

Assignment 3
Deadline for solutions: 08.06.2023

Exercise 1 Traversing Trees (3 Points)

The following code implements a breadth-first traversal of a tree, using the standard implemen-
tation of trees from Data.Tree:

import Data.List
import Data.Monoid
import Data.Tree (Tree(..))

newtype BFSTree a = BFS (Tree a)

instance Foldable (BFSTree) where
foldMap f (BFS tr) = go [tr ]
where

go q = case q of
[] ´> mempty
(Node x xs) : qs ´> f x ‘mappend‘ go (qs ++ xs)

Hence one can run programs like

foldr (:) [] (BFS some tree)

to obtain a breadth-first unfolding of a tree some tree into a list, instead of the default depth-first
unfolding by

foldr (:) [] some tree

In contrast to the depth-first strategy, the breadth-first search strategy fully traverses even a
tree with infinitely many nodes.

t = Node ”1(0)” [Node ”2(1)” [Node ”4(2)” [], Node ”5(2)” []], Node ”3(1)” []]

Then

foldr (:) [] t == [”1(0)”,”2(1)”,”4(2)”,”5(2)”,”3(1)”]
foldr (:) [] (BFS t) == [”1(0)”,”2(1)”,”3(1)”,”4(2)”,”5(2)”]

(a) This implementation is based on using the list type [BFSTree] as a queue in which new trees
are added at the back with the qs ++ xs command, which is highly inefficient, because it requires
full traversal of the pending queue qs at every iteration. Reimplement foldMap, so that it behaves
the same, but does not suffer from this issue. Compare the performance of both implementations
by running tests on exponentially growing trees, e.g.

expTree a b = Node (a, b) [expTree (a + 1) b, expTree a (b + 1)]

(b) Analogously, implement a strategy that zig-zags through the three in a breadth-first fashion,
e.g.:

foldr (:) [] (ZZS t) == [”1(0)”,”2(1)”,”3(1)”,”5(2)”,”4(2)”]



MBProg, SS 2023

Exercise 2 PCF in Haskell (4 Points)

PCF-Terms can be internally represented in Haskell in the following way.

´´ Alias type for variable names as strings
type Name = String

´´ Language Terms
data Expr = T | F
| IfThenElse Expr Expr Expr
| Nmb Int
| Sum Expr Expr
| Dif Expr Expr
| Eq Expr Expr
| Var Name
| App Expr Expr
| Lam Name Expr
| Fix
deriving (Eq, Show)

For example, we can define the following familiar terms:

omega = App Fix (Lam ”x” (Var ”x”))
church0 = Lam ”z” (Lam ”n” (Var ”z”))
church1 = Lam ”z” (Lam ”n” (App (Var ”n”) (Var ”z”)))
church2 = Lam ”z” (Lam ”n” (App (Var ”n”) (App (Var ”n”) (Var ”z”))))

(of course, nothing prevents one from forming nonsensical terms, which do not correspond to
typable PCF-terms, like App (Nmb 0) (Nmb 0); there is a technique to faithfully represent typed
languages within Haskell [1], but we do not have capacities to dwell on it).

Implement call-by-name small-step reduction as a Haskell function:

eval :: Expr ´> Expr

so, that t ’ = eval t iff tÑcbn t1 for all correctly typed terms t, t1 (implementing type checking is
not required).

Exercise 3 Lazy Lists (8 Points)

(a) Complete the PCF language, described at the lecture with

� type constructors for forming coproduct types A`B (corresponding to Haskell’s Either A B)
and for forming lists A‹ (corresponding to Haskell’s [A]),

� with the corresponding constructors inl, inr (corresponding to Left and Right), nil and cons
(corresponding to [ ] and (:) ),

� and with the corresponding case-statements that pattern-match on the new constructors
(take inspiration from PCF’s if-then-else and Haskell’s case operator).

More precisely, you need to: add the new rules for forming terms-in-contexts, to modify the
definition of value and to add the new (big-step or small-step) call-by-name operational semantics
rules.

Hint: Do the case of coproducts first and then switch to lists. In both cases, success depends
on understanding the relevant notion of value correctly; recall that values are irreducible closed
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terms, w.r.t. the evaluations strategy of interest — it is thus advisable to fully describe what a
value is in each case and then produce the corresponding rules of the operational semantics.

(b) Extend the interpreter from Exercise 1 accordingly.

(c) How the notion of value would change if we considered the call-by-value semantics?

(d) Translate the following Haskell program

fib = 1 : 1 : [a + b | (a, b) <´ zip fib (tail fib ) ]

to the above described extended PCF. Hint: For a start, desugar the above Haskell program
suitably, to make the syntax closer to that of PCF, e.g. [ f a b | (a, b) <´ xs] can be replaced
with [ f (fst x) (snd x) | x <´ xs], and the latter can be modelled by the map function. You
then need to implement the relevant auxiliary functions (zip, map, . . .) in PCF and define fib

using them.

(e) Analogously, translate the program ( fib !! 4) to a PCF program p and prove that pó 5,
alternatively that p Ñ‹ 5 in the small-step semantics style. It is also OK to submit a program
that generates the requisite transition (chain), e.g. by running the interpreter from part (b).

Exercise 4 curry and uncurry (5 Points)

Given two complete partial orders A and B, let A Ñc B be the space of continuous functions
from A to B, more precisely

AÑc B “ tf : AÑ B | AÑ B, such that f is continuousu.

Note that A Ñc B is a partial order under the pointwise extension from B, i.e. f v g for
f, g : AÑc B if fpxq v gpxq for all x P A.

(a) Show that AÑc B are complete partial orders, if A and B are so;

(b) Given complete partial order A, B and C, show that curry : pCˆB Ñc Aq Ñ pC Ñc pAÑc

Bqq and uncurry : pC Ñc pAÑc Bqq Ñ pC ˆB Ñc Aq are monotone and continuous where

pcurry fqpxqpyq “ fpx, yq

puncurry fqpx, yq “ fpxqpyq

(you are encouraged to experiment with ghci, in which these functions are available under the
same name). Hint: Use the fact from the lecture that AˆB is a complete partial order whenever
A and B are, where pa, bq v pa1, b1q means by definition that a v a1 in A. and b v b1 in B;
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