
Monad-Based Programming SS 2023

Assignment 2
Deadline for solutions: 18.05.2023

Exercise 1 Programming a Proof Assistant (11 Points)

The formal system of natural deduction for first-order logic operates with the judgements of the
form

Σ Γ $ φ

which state that a (first-order) formula φ whose free variables are in Σ, is derivable from the list
of formulas Γ, whose variables are again in Σ. Derivability of such a judgment is interpreted as
the fact that φ provably follows from Γ.

For example, given that all humans are mortal, and Socrates is a human, we can conclude that
Socrates is mortal, as a derivable judgement as follows:

´ @x. hpxq ñ mpxq, hpSq $ @x. hpxq ñ mpxq
phypq

´ @x. hpxq ñ mpxq, hpSq $ hpSq ñ mpSq
p@Eq

´ @x. hpxq ñ mpxq, hpSq $ hpSq
phypq

´ @x. hpxq ñ mpxq, hpSq $ mpSq
pñ Eq

Here, we indicated by “´” the fact that the list of free variables is empty. Recall that first order
formulas are given by the grammar

φ, ψ ::“ ppt1, . . . , tnq | J | K | φ^ ψ | φ_ ψ | φñ ψ | @x. φ | Dx. φ

where p is an n-ary symbol from a fixed signature of predicate symbols P, and t1, . . . , tn are
first-order terms, which are in turn specified by the grammar:

t1, . . . , tn ::“ x | fpt1, . . . , tnq

where x ranges over a fixed infinite set X of variables and f over a fixed signature of function
symbols F of a the corresponding arity (we do not include negation, which can be modelled as
φñ K). In the above example:

� P “ tm{1, h{1u, F “ tS{0u, and X is, say, the set of all strings of ASCII-characters (by
{n we indicate the arity of the corresponding symbol, also, we omit parenthesis at 0-ary
symbols, e.g. in S, instead of S).

First-order terms can be easily implemented in Haskell, e.g. with

data FOTerm = FOVar String | FOFun String [FOTerm]

(a) In a similar way, implement an inductive data type of first-order formulas. Implement func-
tions for computing a list of free variables of a given formula, and a capture-avoiding substitution
for terms and formulas, i.e. the operation that replaces given free occurrences of x in t with s,
denoted trs{xs (you can adapt the definition from λ-calculus, where the binder λ behaves like
the present binders @ and D).

MBProg, SS 2023

Derivable judgements are built with the following rules:

φ in Γ

Σ Γ $ φ
(hyp)

Σ Γ $ φ Σ Γ $ ψ

Σ Γ $ φ^ ψ
p^Iq

Σ Γ $ φ^ ψ

Σ Γ $ φ
p^E1q

Σ Γ $ φ^ ψ

Σ Γ $ ψ
p^E2q

Σ Γ $ φ

Σ Γ $ φ_ ψ
p_I1q

Σ Γ $ ψ

Σ Γ $ φ_ ψ
p_I2q

Σ Γ $ φ_ ψ Σ Γ, φ $ ξ Σ Γ, ψ $ ξ

Σ Γ $ ξ
p_Eq

Σ Γ, φ $ ψ

Σ Γ $ φñ ψ
pñ Iq

Σ Γ $ φñ ψ Σ Γ $ φ

Σ Γ $ ψ
pñ Eq

Σ, x Γ $ φ

Σ Γ $ @x. φ
p@Iq

Σ Γ $ @x. φ Σ $ t term

Σ Γ $ φrt{xs
p@Eq

Σ Γ $ φrt{xs Σ $ t term

Σ Γ $ Dx. φ
pDIq

Σ Γ $ Dx. φ Σ, x Γ, φ $ ψ

Σ Γ $ ψ
pDEq

Σ Γ $ K
Σ Γ $ φ

pKEq
Σ Γ $ J

pJIq

Σ Γ $ pφñ Kq ñ K

Σ Γ $ φ
p Eq

Here, the auxiliary judgement Σ $ t term states that t is a first-order term, whose variables are
in Σ. Note also that Γ is treated as a proper list, which corresponds to an inverted Haskell-list,
i.e. Γ, φ corresponds to pφ : Γq in Haskell, and similarly for Σ.

The rules are designed so as to indicate how proofs of the judgements in the conclusions are
obtained from the proofs of the judgements in the premises. Consider, for example, p_Eq. This
says: to obtain a proof of a proposition ξ (from the premises Γ), take a proof of the disjunction
φ_ ψ; if this proof is actually a proof of φ, combine it with the premise, stating that ξ follows
from φ; if this proof is actually a proof of ψ, combine it with the premise, stating that ξ follows
from ψ.

(b) Program a proof assistant in Haskell, in the form of an interactive shell, implementing the
above rules of natural deduction.

The interaction must be organised as follows: the user is asked to provide the name of a rule
and possibly further input, such as a term in the pDIq rule. The rule is either applied, if possible,
or an error message is displayed, with a prompt to retry.

Hints: Essentially, you need to implement a type of proof states ProofState, which contains the
information about the current state of the proof, and a function

proofStep :: (String, ProofState) ´> (String, ProofState)

2

MBProg, SS 2023

which takes a string from the user, the current proof state, and returns an updated proof state,
and a string message for the user. It then suffices to compose proofStep with the following
function, which provides interaction with IO:

statefulInteract :: ((String, a) ´> (String, a)) ´> (String, a) ´> IO ()
statefulInteract f (s , x) = putStr s >> getLine >>= (return . \s ´> f (s , x)) >>= statefulInteract f

(further details of interacting with IO, we defer to later). Try

statefulInteract siTest (” [0] Hi, enter a string : ”, 0)

with

siTest :: (String, Int) ´> (String, Int)
siTest (s , n) = (”[” ++ show n ++ ”] your input is: ” ++ show s ++ ”\n[”

++ show (n + 1) ++ ”] enter enother string: ”, n + 1)

to grasp the idea.

The proof state must contain a stack of judgements to derive: initially it contains one judgement
– our grand goal; if the stack is empty, the proof is complete; in the remaining cases ProofState
pops a judgement from the stack, tries to match it with the conclusion of the rule, suggested by
the user, and pushes the premises of the rule to the stack.

(c) Attest your implementation by proving (again, φ encodes φñ K):

� the above example about Socrates;

� the following de Morgan law for quantifiers: ´ ´ $ pDx. P pxqq ñ @x. P pxq;

� the excluded middle law : ´ ´ $ P pq _ P pq.

More concretely, you are requested to submit the log of your successful proof dialogue. The last
item is tricky: make sure to use p Eq in the beginning, and try to obtain

´ pP pq _ P pqq $ P pq _ P pq

as an intermediate goal.

A potential example interaction scenario is as follows:

> We are proving "forall x. h(x) => m(x), h(S) |- m(S)". Which rule to apply?

> just do it, I cannot wait!

> No such rule, try again.

> allE

> Enter a term.

> FOFun "S" []

> Rule mismatch, try again.

> =>E

> Enter a formula.

> FOPred "h" [FOFun "S" []]

> Success! We are proving "forall x. h(x) => m(x), h(S) |- h(S)". Which rule to apply?

> hyp

> Success! We are proving "forall x. h(x) => m(x), h(S) |- h(S) => m(S)". Which rule to apply?

> allE

> Enter a term

> FOFun "S" []

> Success! We are proving "forall x. h(x) => m(x), h(S) |- forall x. h(x) => m(x)". Which rule to apply?

> hyp

> Success! We are done.

3

MBProg, SS 2023

Exercise 2 Small-step v.s. Big-step (9 Points)

Consider the following rules for the small-step and big-step call-by-value operational semantics
of untyped λ-calculus:

Small-step semantics:

pÑcbv p
1

pq Ñcbv p
1q

(l-red)
q Ñcbv q

1 p is a value

pq Ñcbv pq
1

(r-red)
q is a value

pλx. pqq Ñcbv prq{xs
(β)

Big-step semantics:

λx. p ócbv λx. p
(value)

p ócbv λx. p
1 q ócbv q

1 p1rq1{xs ócbv v

pq ócbv v
(app)

Recall that a λ-term is a value if and only if it has the form λx. t. A normal form of t w.r.t.
the small-step semantics is such a value v that tÑ‹

cbv v. A normal form of t w.r.t. the big-step
semantics is such a value v that t ócbv v.

(a) In both styles of semantics, calculate normal forms of the term

pλm. λn. λf. λx.m f pn f xqqpλf. λx. fpfxqqpλf. λx. fpfxqq,

meaning: produce the corresponding complete derivations. How can you interpret the result?

Hint: It can be useful to introduce abbreviations for combinators (i.e. terms without free
variables), e.g. p for λm. λn. λf. λx.m f pn f xq and t for λf. λx. fpfxq.

(b) Prove that our semantics is deterministic, i.e. whenever both p ócbv q and p ócbv r, q must
be equal to r.

(c) Prove that for any closed λ-term p, pÑ‹
cbv q with q being a value iff p ócbv q.

Hint: For one direction of the equivalence prove the following auxiliary lemma: pÑcbv q^q ócbv
cñ p ócbv c.

For (b) and (c), use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the
following properties:

(i) P ptq for any axiom

t

from S.

(ii) whenever P pt1q, . . . , P ptnq and the rule

t1 . . . tn
t

belongs to S then P ptq.

Then P ptq for any t that can be derived using S.

4

	Programming a Proof Assistant(11 Points)
	Small-step v.s. Big-step(9 Points)

