Assignment 1

Deadline for solutions: 04.05.2023

Exercise 1 Shortest Math Paper

The shortest math paper in history is allegedly the following one:

COUNTEREXAMPLE TO EULER'S CONJECTURE ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN

Communicated by J. D. Swift, June 27, 1966
A direct search on the CDC 6600 yielded

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least $n n$th powers are required to sum to an nth power, $n>2$.

Reference

1. L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

The above-mentioned counterexample is apparently just a four-tuple (a, b, c, d) of natural numbers (one can obviously assume that $a \leqslant b \leqslant c \leqslant d$), such that $\sqrt[5]{a^{5}+b^{5}+c^{5}+d^{5}}$ is a natural number again. Write a Haskell program that brute force finds the above solution.
Hint: Use laziness and list comprehension. Depending on your machine capacities, search can take some minutes.

Exercise 2 Reasoning about Sorted Trees

Consider the following implementation of binary trees is Haskell:

```
data BTree a = Leaf a | Branch (BTree a) (BTree a)
    deriving (Eq, Show)
btMin :: Ord a => BTree a -> a
btMin (Leaf I) = I
btMin (Branch t s) = min (btMin t) (btMin s)
btMax :: Ord a => BTree a -> a
```

```
btMax (Leaf I) = I
btMax (Branch t s) = max (btMax t) (btMax s)
isSorted :: Ord a => BTree a -> Bool
isSorted (Leaf y) = True
isSorted (Branch t s) = isSorted t && isSorted s && btMax t <= btMin s
insert :: Ord a => a -> BTree a -> BTree a
insert x (Leaf y) | x <= y = Branch (Leaf x) (Leaf y)
insert x (Leaf y) | otherwise = Branch (Leaf y) (Leaf x)
insert x (Branch t s) | x < = btMax t= Branch (insert x t) s
insert x (Branch t s) | otherwise = Branch t (insert x s)
where
```

- BTree a is a type of binary trees with terminal nodes in a;
- btMin and btMax compute the least and the greatest element of a given tree;
- isSorted checks if a tree is sorted;
- insert inserts a new element to a tree.
(a) Provide an example of a pre-order a, and such elements t and x that isSorted t, but not isSorted (insert x t). Recall that a is a pre-order if it satisfies $\mathrm{x}<=\mathrm{x}$ (reflexivity), and x $<=\mathrm{y}$ with $\mathrm{y}<=\mathrm{z}$ jointly imply $\mathrm{x}<=\mathrm{z}$ (transitivity).

Hint: You need to exploit the fact that a need not be a total pre-order, i.e. it need not be the case that for any two elements x and $\mathrm{y}, \mathrm{x}<=\mathrm{y}$ or $\mathrm{y}<=\mathrm{x}$.
(b) Prove that if x is a total pre-order, isSorted t does entail isSorted (insert x t).

Hint: Consider induction on t ; consider strengthening the claim as follows: instead of showing isSorted (insert x t), show that isSorted (insert x t) \&\& (btMax (insert x t) <= max (btMax t) x) \&\& (btMin (insert $x t)=<\min (b t M i n ~ t) x$).

Exercise 3 Getting Real

Consider a notion of number which includes all natural numbers and supports the operations of summation and multiplication. Let us denote by \mathcal{S} the set of such numbers. We can extend \mathcal{S} to the numbers of the form

$$
\begin{equation*}
a+\sqrt{2} \cdot b \tag{*}
\end{equation*}
$$

with $a, b \in \mathcal{S}$ and denote the extended numbers as $\mathcal{S}[\sqrt{2}]$. Note that depending on $\mathcal{S}, \mathcal{S}[\sqrt{2}]$ may be essentially the same as \mathcal{S} (e.g. if \mathcal{S} are all real numbers) or properly less expressive (e.g. if \mathcal{S} are all rational numbers).
Implement the numbers (*) in Haskell as an algebraic data type
where a is the type capturing the elements of \mathcal{S}. Ensure that Sq2Num a (under suitable assumptions) is an instance of the following type classes: Eq, Ord, Show, Num, Fractional, e.g. by completing the following declarations:

```
instance (Num a, Eq a) \(=>\) Eq (Sq2Num a)
instance (Num a, Eq a) \(=>\) Num (Sq2Num a)
instance (Num a, Eq a, Ord a) \(=>\) Ord (Sq2Num a)
instance (Fractional a, Eq a) \(=>\) Fractional (Sq2Num a)
```

Additionally, provide a conversion function
getReal :: Floating a $=>$ Sq2Num $a->a$
reducing from $\mathcal{S}[\sqrt{2}]$ to \mathcal{S} in such a way that real numbers are converted to themselves. Like in the case of complex numbers, you need to prove (!) and implement the mathematical fact that the numbers $(*)$ are closed under summation and multiplication, and additionally under division, provided that so are the numbers from \mathcal{S}.

Hints:

- For inspiration, you can use the standard implementation of complex numbers in Haskell [1].
- That $\mathcal{S}[\sqrt{2}]$ is, for example, closed under addition follows from the fact that \mathcal{S} is so,
 since
$(a+\sqrt{2} \cdot b)+\left(a^{\prime}+\sqrt{2} \cdot b^{\prime}\right)=\left(a+a^{\prime}\right)+\sqrt{2} \cdot\left(b+b^{\prime}\right)$
You need to develop and use analogous properties for other operations.

References

[1] https://www.haskell.org/onlinereport/complex.html.

