
Lecture Notes for

Monad-Based Programming
Recorded by Hans-Peter Deifel (hpd@hpdeifel.de)

Edited by Sergey Goncharov (sergey.goncharov@fau.de)

by PD Dr. Sergey Goncharov

2023/07/28

mailto:hpd@hpdeifel.de
mailto:sergey.goncharov@fau.de

Contents

1 Semantics for Computation 3
1.1 The Untyped Lambda Calculus . 5
1.2 Evaluation Strategies . 7

1.2.1 Formal Systems . 8
1.2.2 Standard Evaluation Strategy . 10
1.2.3 Call-by-Name (Lazy) Evaluation Strategy 11
1.2.4 Call-by-Value (Eager) Evaluation Strategy 11
1.2.5 Big-Step Call-by-Name . 12
1.2.6 Big-Step Call-by-Value . 12

1.3 PCF (Programming Computable Functions) 13
1.3.1 Simply-Typed λ-calculus . 13
1.3.2 Call-by-Name Operational Semantics for PCF 14
1.3.3 Call-by-Value Operation Semantics for PCF 16
1.3.4 Contextual Equivalence . 17
1.3.5 Coproducts, Abrupt Termination and I/O 18

1.4 Denotational Semantics of PCF . 20
1.4.1 Constructions on Predomains . 21
1.4.2 CBN Denotational Semantics . 25
1.4.3 Failure of Full Abstraction . 27
1.4.4 CBV Denotational Semantics . 28

2 Categories and Monads 31
2.1 Introducing Monads . 31

2.1.1 Products and Coproducts . 32
2.1.2 Functors and Monads . 36
2.1.3 Natural Transformations: Relating Functors 39
2.1.4 Examples of Monads . 42
2.1.5 Cartesian Closure . 44

2.2 Tensorial Strength . 44
2.2.1 Strong Monads . 45
2.2.2 Commutative Monads . 46
2.2.3 Applicative Functors . 48

2.3 Algebras and CPS-Transormations . 49
2.4 Free Objects and Adjoint Functors . 53

2

1 Semantics for Computation

In mathematics we do not distinguish between expressions and their meanings. The meaning
of 2`2 is 4 and both things mean (or denote) the same. In computer science we do distinguish
expressions or terms from what they mean, for which we use semantic brackets

J´K : Terms Ñ Meanings

The style of semantics involving such brackets is called denotational semantics. Denotational
semantics has been developed in 70’s by Christopher Strachey and Dana Scott.

The equality 2 ` 2 “ 4 and the like, which we know from mathematics means that 2 ` 2
and 4 denote the same, however, what connects 2`2 and 4 is a computational process (which
is, of course, very simple in this case). Mathematics traditionally ignores the computational
overhead of evaluating 2 ` 2 to 4, but in programming we cannot afford this, because pro-
gramming (program analysis, verification) is largely about evaluation of expressions (or, more
generally, about the process of computation). There are traces of this issue in mathematics,
though, e.g. in the form of infinite series. Those usually make mathematicians uneasy, and
they become much happier if they manage to find a closed form, i.e. an analytic expression,
to which the sum converges. For examples:

1` 1`
1

2!
`

1

3!
`

1

4!
` . . . “ e « 2.71828

Riemann showed that if the partial sums
řn
i“0 an converge, but partial sums of absolute values

řn
i“0 |an| diverge, then one can rearrange the elements in

ř8
i“0 an, so that it converges to any

given number. Examples:

p1´ 1q ` p1{2´ 1{2q ` p1{3´ 1{3q ` . . . “ 0

p1` 1{2´ 1q ` p1{3` 1{4´ 1{2q ` p1{5` 1{6` 1{7´ 1{3q ` . . . “ ln 2

p1` 1{2´ 1q ` p1{3` . . .` 1{8´ 1{2q ` p1{9` . . .` 1{16´ 1{4q ` . . . “ 8

This makes the theory of infinite series a sophisticated subject. In computer science we deal
with potentially infinite computations routinely, as we must, since Turing complete languages
must express all partial recursive functions, which are those for which we generally cannot
decide termination. But, on a positive side, we do not have a behaviour as sophisticated
as above, which is caused by adding and subtracting quantities infinitely. The core idea of
denotational semantics is that the amount of information generated with a computation keeps
increasing over time, and what has been computed previous cannot be “undone” (like with
the expression 1´ 1 where ´1 cancels previously computed 1).

Denotational semantics requires a system of domains, for collecting values. Classical math-
ematics is based on the classical set theory, which postulates that everything is a set (numbers,
relations, functions, curves, etc.) Sets thus play the role of domains. In computer science,
domains are chosen differently (we will see how!), as they must correctly capture the notion

3

Version: 2023/07/28, 17:53:34

of partiality of data and possible non-termination of functions. Because of the parallels be-
tween mathematical functions and programs, built in the denotational semantics, the latter
is sometimes called a mathematical semantics.

A different established style of semantics is operational semantics: it describes a reduction
of terms to values, e.g. 2 ` 2 reduces to 4, assuming that 2 “ spsp0qq (2 is the successor of
the successor of 0):

spsp0qq ` spsp0qq Ñ spsp0q ` spsp0qqq Ñ spsp0` spsp0qqqq Ñ spspspsp0qqqq.

This neither directly defines domains of values nor identifies ` as a function over these
values. The framework for defining operational semantics rigorously is the framework of
formal systems. Finally, logical semantics describes programs by drawing on logical properties
they are expected to satisfy, e.g. x :“ x`1 is such a program that if x was n before its execution
then x is n` 1 after its execution.

In summary:

Classical styles of semantics

� Denotational Semantics (what the program means?)

� Operational Semantics (how the program behaves?)

� Axiomatic Semantics (what properties the program satisfies?)

We stick to the first two styles of semantics, of which we first consider the second one (which
is easier) to approach the first one (which is harder). Example of axiomatic semantics is Hoare
logic (not covered here).

What we do in the course? The course revolves around the triad:

Semantics
Category
Theory

Functional
Programming

Starting from one node you will be able to connect to the other nodes, transferring the
knowledge and understanding.

� Denotational semantics is motivated by computation and ultimately involves advanced
mathematical structures, for which category theory is arguably the most natural language to
use. We thus transfer computational intuition from semantics to category theory to approach
the latter.

4

1.1. The Untyped Lambda Calculus Version: 2023/07/28, 17:53:34

� Good understanding of semantics helps in functional programming, in particular Haskell,
since it has been designed by computer scientists who took semantics very seriously. We thus
learn Haskell in a semantic-oriented way.

� Category theory influenced semantics, since many abstract, purely mathematical con-
cepts, such as monads, were utilized in semantics to organize constructions and reasoning.
We thus use semantics to develop a computational intuition of formal categorical concepts.

� Similarly, a great amount of abstract categorical concepts was utilized in functional
programming, again, most notably by Haskell. Specifically, monads were introduced to Haskell
as a practical organization tool for writing programs – even writing the ”Hello World” program
in Haskell requires a monad!

� Therefore, in this course, conversely, we use Haskell as a showcase for advanced categorical
concepts, such as natural transformations, monads, adjunctions, Cartesian closure.

� Semantically, Haskell is a statically typed, purely functional lazy programming language,
which can be regarded as a far-reaching generalization of the typed λ-calculus, and as such
it provides as excellent playground for illustrating various important semantics concepts.

1.1 The Untyped Lambda Calculus

Untyped λ-calculus is a proto-programming language introduced by a mathematician Alonzo
Church in 1930’s prior to any actual programming languages and computers. We proceed to
recall some general facts about the λ-calculus.

Variables x, y, z, . . .

Terms t, s ::“ x, y, z | λx. t | ts

Contexts C ::“ � | λx.C | Ct | tC

So, a context, more precisely, a linear context, is a term with one “hole” �. Let Crts be the
term obtained by replacing � in a context C with a term t.

� α-conversion Crλx. ts ÝÑα Crλy. try{xss, where y is bound in t (see definition below)

� β-reduction Crpλx. tqss ÝÑβ Crtrs{xss

� η-reduction Crλx.fxs ÝÑη Crf s

where C ranges over all contexts. Derived reductions:

� αβ-reduction is: ÝÑ‹
αβ “ pÑα Y Ñβq

‹

� αβη-reduction is: ÝÑ‹
αβη “ pÑα Y Ñβ Y Ñηq

‹

Definition (Redex). A pβ´qredex (=reducible expression) is a subterm of the form pλx. tqs
of a given term; that is, the given term is of the form Crλx. ts.

Definition (Free Variables).

� Freepxq “ txu

� Freepstq “ Freepsq Y Freeptq

5

1.1. The Untyped Lambda Calculus Version: 2023/07/28, 17:53:34

� Freepλx.sq “ Freepsqr txu

A variable x is free in t, if x P Freeptq. A variable x is bound in t, if x R Freeptq.

Definition (Substitution).

� xrt{xs “ t;

� xrt{ys “ x if x ‰ y;

� ppqqrt{xs “ prt{xsqrt{xs;

� pλx. pqrt{xs “ λx. p;

� pλy. pqrt{xs “ λz. prz{ysrt{xs if z R Freepλy. pq Y Freeptq.

Example. pλx. yxqryx{ys “ λz.pyxqrz{xsryx{ys “ λz.pyzqryx{ys “ λz.pyxqz.

Proposition (Diamond Property = Confluence = Church-Rosser Property). Independent
reductions starting from the same term can always eventually be joined in the following
sense:

t

t1 t2

s

˚

αβ

˚

αβ

˚

αβ

˚

αβ

t

t1 t2

s

˚

αβη

˚

αβη

˚

αβη

˚

αβη

That identifies one-step relations Ñαβ and Ñαβη as confluent, or Church-Rosser and their
transitive-reflexive closures Ñ‹

αβ and Ñ‹
αβη as having the diamond property.

The equivalent formulation of the Church-Rosser property, say for Ñαβ, is as follows:
spÑαβ Yαβ Ðq

‹t iff there is r such that s Ñ‹
αβ r and t Ñ‹

αβ r. In other words, s and t are
reachable from each other by zig-zaging with Ñαβ back and forth iff there is a term r, to
which both s and t reduce by Ñαβ.

Proposition. ÝÑ‹
αβ is not terminating:

Proof. Since Ω “ pλx. xxqpλx. xxq ÝÑβ pλx. xxqpλx. xxq “ Ω, we obtain and infinite reduc-
tion Ω Ñβ Ω Ñβ . . .

It follows that t ÝÑα s iff s ÝÑα t, which entails that ÝÑ‹
α is an equivalence relation.

Following the usual approach, we will dim the distinction between α-equivalent terms. The
slogan is: terms that are equal up to renaming bound variables are considered to be equal;
one also says: equal up-to α-equivalence.

Definition (Fixpoint Combinator). Y “ λf. pλx. fpxxqqpλx. fpxxqq

Y f Ñβ pλx. fpxxqqpλx. fpxxqq Ñβ fppλx. fpxxqqpλx. fpxxqqq β Ð fpY fq,

so Y f and fpY fq are β-equivalent, but Y f need not β-reduce to fpY fq.

6

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

Definition (Church Numerals). The following combinators model natural numbers:

0 “ λf. λz.z

1 “ λf. λz.fz

2 “ λf. λz.ffz

...

They can be added with

p`q “ λm. λn. λf. λz.m f pn f zq

In a similar way one can define p´q, True, False, if-then-else, etc.

Untyped λ-calculus is a precursor of functional programming languages. It is elegant from
a purely mathematical perspective, but from the practical programming point of view it is
subject to serious drawbacks in its core.

Benefits:

� Confluent, hence equality of programs arises from β-reduction, which is a basic notion
of program interpretation.

� Turing complete, as indicated by non-termination.

� Higher-order from the outset, so functions can be passed around, just like data.

Shortcomings:

� No concrete mechanism for preferring one β-reduction over another, although the choice
can be vital for performance.

� The assumption that an interpreter would deeply inspect the program for potential
redexes is unrealistic.

� No distinction between closed terms and terms with free variables, hence no notion of
a value as a complete closed and irreducible piece of data.

� Definable constructs generally fail to be subject to expected reductions, and might
satisfy only unoriented β-equivalences instead, e.g. pY fq pÑ‹

β ¨ βÐ f pY fqp instead of
pY fq pÑ‹

β fpY fq p.

1.2 Evaluation Strategies

Evaluation strategies describe how a term can be reduced. In particular, we might want an
evaluation strategy to be deterministic, since an implementation of it in a compiler must be
so. An appropriate language for defining evaluation strategies (deterministic or not) is the
language of formal systems.

7

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

1.2.1 Formal Systems

Formal systems is a language of mathematics and (!) of theoretical computer science. They
describe, how new pieces of knowledge can be obtained from old in a rule-based manner from
top to bottom, by building a finitary derivation where we move from assumptions (or facts)
to goals.

Definition (Formal System). A formal system consists of

� A (finite) set of symbols – alphabet ;

� A grammar for producing formulas from symbols. A formula is said to be well-formed
if it can be formed using the rules of the grammar. Since one is usually not interested
in non-well-formed formulas for too long, one usually shortens “well-formed formula”
to “formula”;

� A set of axioms, or axiom schemata, consisting of well-formed formulas;

� A set of inference rules, consisting of multiple (zero or infinite number of) premises and
precisely one conclusion, depicted as

Φ1 Φ2 . . . Φn

Φ

if the number of premises (Φ1, . . . ,Φn) is finite; here Φ is the conclusion.

Derivations are built by connecting conclusions of rule instances with premises of rule in-
stances in acyclic manner. We only accept derivations which are complete (no pending global
premises) and well-founded (every path of the derivation, viewed as a tree, is finite). If every
rule of the formal system has only finitely many premises, a derivation is well-founded iff it is
finite (Kőnig’s lemma). A formula is derivable if it can be a net conclusion of some derivation.

Some remarks:

� One is usually interested in organizing a formal system in some sort of finitary (tech-
nically speaking: recursively enumerable) way. That is, if there is a finite number of
axioms and rules, we are fine. Otherwise, we might need to capture many axioms and
rules with schemata, meaning that even thought, the number can be infinite, but there
is a computationally meaningful procedure to enumerate them all.

� An axiom is virtually a rule with no premises.

� Aside from the logical context, it can be more suitable to call formulas judgements,
meaning that a judgement is something more general than a formula. Derivable formulas
are also called theorems, but that again only makes sense if judgements are some sort
of logical formulas, which are true or falls. Formal systems, generally speaking, operate
with derivable (or not derivable), and not just with true or false.

Example (Cherry-Banana Calculus). Let t , u be the alphabet, and let the grammar
identify any non-empty sequence over t , u as a (well-formed) formula. Rule schemes

piq x
x
piiq x y

xy piiiq
x
x

pivq

8

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

represent an infinite number of rules, obtained by replacing variables x, y with non-empty
finite sequences of and . Rule (i) is an “axiom”.

We can build proofs or derivations, like

piq

pivq

piq

piiq

piiiq

Thus the formula is derivable.
Contrastingly, let us show that is not derivable. Indeed, if it was derivable, it would

be derivable with rule (iii). But that rule itself would require as a premise – we obtain
contradiction to the global assumption that derivations must be finite.

Example (Transitive-Reflexive Closure). Given a set X and a relation R Ď X ˆ X, we
previously used the transitive-reflexive closure R‹ Ď X ˆX of R. A formal way to define R‹

is by describing a corresponding formal system:

� alphabet: elements of X and R‹, regarded as a formula, disjoint from X;

� formulas: xR‹y;

� rules:

xR‹x xR‹y
for such x, y that xRy

xR‹y yR‹z

xR‹z

Note that natural deduction (from GLoIn) cannot be organized as a formal system so easily,
e.g. it has rules like

φ
...

ψ

φñ ψ
pñ Iq

That is: derivations themselves must be judgements. Gentzen solved that by introduced a
sequent calculus for first-order logic, whose judgements are sequents

φ1, . . . , φn $ ψ1, . . . , ψm

where the φi are first-order formulas (conjunctive premises) and the ψj are again first-order
formulas (disjunctive goals).

Formal systems are perfectly suitable for describing program semantics: when judging that
a program (terminates and) returns a value, it is natural to assume that this is something we
can derive with a finitary system of rules in finitely many steps (in contrast to judging that
a program does not terminate, which need not be derivable in finitely many steps).

9

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

1.2.2 Standard Evaluation Strategy

We specify evaluation strategies with rules of structural operational semantics (SOS). SOS
is a class of formal systems where the judgments describe how programs reduce. “Structural”
means, that the premises for a judgement on how to reduce a program, are judgements about
reducing structurally smaller programs. We proceed with the small-step operational semantics
where the judgements have the form sÑ s1 meaning that s reduces to s1 in one step.

The evaluation order imposed by the standard evaluation strategy is called the left-most-
outermost order.

pλx. pqq ÝÑso prq{xs

p ÝÑso p
1 p ‰ λy. t

pq ÝÑso p
1q

p ÝÑso p
1

λx. p ÝÑso λx. p
1

q ÝÑso q
1 p Óso p ‰ λx. t

pq ÝÑso pq
1

where p Óso means that p is irreducible with respect to ÝÑso, i.e. p is so-normal.

Remark. The auxiliary judgements like p ‰ λx. t and p Óso are, strictly speaking, side-
conditions, as they do not take part in the derivation process. The latter one, though,
indirectly refers to it, by stating that no derivation p ÝÑso p

1 exists. This is an example of
so-called negative premise. Those can potentially be a problem. In our case, one can show
that p Óso iff p is β-normal, and thus we can get rid of this undesirable circularity.

This style of reductions is also called small-step semantics because in order to find an
so-normal form p1 of some p we generally need a chain of reductions p ÝÑso . . . ÝÑso p

1.

Definition. Using these rules, we define p Óso v, if there is a derivation of p ÝÑ‹
so v and v is

so-normal.

Example.

pλx. xyqpλx. xq ÝÑso pλx. xqy y Óso y ‰ λx. t

yppλx. xyqpλx. xqq ÝÑso yppλx. xqyq

Proposition (Standardization Theorem1). If s ÝÑ‹
αβ t and t is β-normal, then s ÝÑ‹

so t
and t is so-normal.

Note the following.

� The definition of ÝÑso is structural, i.e. a successor of a term t w.r. t. ÝÑso is calculated
by structural induction over t.

� The relation ÝÑso is deterministic in the sense that there is only one way to build a
(possibly nonterminating) reduction starting from a given t; this contrasts αβ-reduction: we
both have pλx.λy. yqΩ ÝÑβ λy. y and

pλx.λy. yqΩ ÝÑso pλx.λy. yqΩ ÝÑso ¨ ¨ ¨

1Hendrik Barendregt. The Lambda calculus: Its syntax and semantics. Amsterdam: North-Holland, 1984,
but see ThProg for a beautiful and concise proof!

10

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

� The standartization theorem indicates that all existing β-normal forms can be calculated
by the standard evaluation, e.g. pλx.λy. yqΩ ÝÑso λy. y and λy. y Óso.

� As a consequence of the previous clause, ÝÑso diverges on a term t iff t does not have
an β-normal form.

1.2.3 Call-by-Name (Lazy) Evaluation Strategy

Lazy or call-by-name (CBN) evaluation strategy refines and simplifies the standard evalu-
ation strategy as follows:

pλx. pqq ÝÑcbn prq{xs

p ÝÑcbn p
1

pq ÝÑcbn p
1q

where the terms are now supposed to be closed. Compared to the standard evaluation strategy,
the key distinctions are:

� no more rewriting under λ (therefore λx.Ω Ócbn);

� all terms are closed.

We now explicitly reject η-reduction, in order to capture the fundamental distinction between
computations and values. Roughly, a λ-term p represents a program, and λx. px represents
its program code. While p can diverge, λx. p cannot diverge, because it is just a text of
the program. However λx. p can be applied to an argument, which then can again result in
divergence.

Proposition. Like SO, CBN does not diverge on terms which have β-normal forms, but
CBN-normal forms need not be β-normal, e.g. λx. pλy. yqx Ócbn but λx. pλy. yqxÑβ λx. x.

Example.

pλx. xxqppλx. xqpλx. xqq ÝÑcbn ppλx. xqpλx. xqqppλx. xqpλx. xqq

ÝÑcbn pλx. xqppλx. xqpλx. xqq

ÝÑcbn pλx. xqpλx. xq

ÝÑcbn pλx. xq.

1.2.4 Call-by-Value (Eager) Evaluation Strategy

Definition (Value). A value is a term of the form λx. t.

Under the same assumption as with CBN we define the call-by-value (CBV) evaluation strat-
egy:

p ÝÑcbv p
1

pq ÝÑcbv p
1q

q ÝÑcbv q
1 p is a value

pq ÝÑcbv pq
1

q is a value

pλx. pqq ÝÑcbv prq{xs

instead of “p is a value”, one could write p Ócbv.

11

1.2. Evaluation Strategies Version: 2023/07/28, 17:53:34

Proposition. CBV calculates properly fewer normal forms than CBN, e.g. pλx.λy. yqΩ Ócbn
λy. y, but

pλx.λy. yqΩ ÝÑcbv pλx.λy. yqΩ ÝÑcbv ¨ ¨ ¨

However, CBV is generally more efficient than CBN.

Example. We can redo the previous example in the CBV style:

pλx. xxqppλx. xqpλx. xqq ÝÑcbv pλx. xxqpλx. xq

ÝÑcbv pλx. xqpλx. xq

ÝÑcbv pλx. xq.

This demonstrates that CBV (at least, implemented naively) is more efficient than CBN.

1.2.5 Big-Step Call-by-Name

In big-step styles of semantics we relate a term not to its one-step successor, but directly
to its normal form.

λx. p ócbn λx. p

p ócbn λx. p
1 p1rq{xs ócbn c

pq ócbn c

Proposition. p ÝÑ‹
cbn q and q Ócbn iff p ócbn q.

Proving this requires the following

Lemma. p ÝÑcbn q with q ócbn r imply p ócbn r.

Proof. Induction over the proof of p ÝÑcbn q:
Induction base: p “ pλx. tqs, q “ trs{xs. Then we build the necessary derivation p ócbn r

in two steps.
Induction step: p “ st, q “ s1t and s ÝÑcbn s

1. By assumption, s1t ócbn r, which implies
s1 ócbn λx. u, urt{xs ócbn r. By induction, s ócbn λx. u. Hence st ócbn r, as required.

1.2.6 Big-Step Call-by-Value

Call-by-value requires evaluation of arguments of function application:

λx. p ócbv λx. p

p ócbv λx.p
1 q ócbv q

1 p1rq1{xs ócbv c

pq ócbv c

Proposition. p ÝÑ‹
cbv q and q Ócbv iff p ócbv q.

Example.

λx. xx ócbv λx. xx

λx. x ócbv λx. x λx. x ócbv λx. x λx. x ócbv λx. x

pλx. xqpλx. xq ócbv λx. x
pλx. xqpλx. xq ócbv λx. x

pλx. xxqppλx. xqpλx. xqq ócbv λx. x

12

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

1.3 PCF (Programming Computable Functions)

1.3.1 Simply-Typed λ-calculus

Type ::“ A,B,C, . . .
looooomooooon

base types

| 1
loomoon

unit type

| AˆB
loomoon

product types

| AÑ B
loomoon

function types

Proposition. Ω “ pλx. xxqpλx. xxq is not typable, and hence not a valid term.

Proof. By contradiction: if x : A then xx : A and x : AÑ B, hence A “ AÑ B, contradiction.

Proposition. ÝÑβ is strong normalising for simply typed λ-calculus.

PCF is obtained from the simply typed λ-calculus by

� fixing Nat and Bool as the base types;

� postulating the corresponding signature of arithmetic and logical operations;

� adding if-then-else;

� adding the fixpoint combinator YA : pAÑ Aq Ñ A; for every type A.

Definition (Terms-In-Context). A term in context has the form

Γ $ t : A,

where A is a type and Γ is a context, which is a list of pairs xi : Ai such that xi occur
non-repetitively.

We work only with those Γ $ t : A which are derivable using the following rules:

(Var)
x : A is in Γ

Γ $ x : A
(1I)

Γ $ ‹ : 1
(ˆ I)

Γ $ t : A Γ $ s : B

Γ $ 〈t, s〉 : AˆB

(ˆ E1)
Γ $ t : AˆB

Γ $ fst t : A
(ˆ E2)

Γ $ t : AˆB

Γ $ snd t : B

(Ñ I)
Γ, x : A $ t : B

Γ $ λx. t : AÑ B
(Ñ E)

Γ $ s : AÑ B Γ $ t : A

Γ $ st : B

(Const)
Γ $ c : A

where c P tTrue,Falseu Y t0, 1, . . .u

(Fun)
Γ $ t1 : A1 ¨ ¨ ¨ Γ $ tn : An

Γ $ fpt1, . . . , tnq : B

where f P t^,_, ,`,´, . . .u

(Eq)
Γ $ s : A Γ $ t : A A P tBool ,Nat , 1u

Γ $ s “ t : Bool

(If)
Γ $ b : Bool Γ $ s : A Γ $ t : A

Γ $ if b then s else t : A
(Fix)

Γ $ YA : pAÑ Aq Ñ A

13

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Definition (Term). A PCF term t is obtained from Γ $ t : A by removing the return type A
and the context Γ.

The PCF syntax corresponds to the Haskell syntax quite accurately, e.g.:

-- | single element () of the unit type ()

() :: ()

-- | first component of a pair

fst :: (a,b) -> a

fst (x,_) = x

-- | second component of a pair

snd :: (a,b) -> b

snd (_,y) = y

-- | logical constants

True :: Bool

False :: Bool

-- | Numeric constants

0 :: Integer

42 :: Integer

-- | lambda-abstraction, assuming f :: a -> b

\x -> f x :: a -> b

-- | application, assuming f :: a -> b, x :: a

f x :: b

-- | equality

(==) :: Eq a => a -> a -> Bool

-- | if-then-else, assuming b :: Bool, x :: a, y :: a

if b then a else b :: a

-- | fixpoint operator is definable:

fix :: (a -> a) -> a

fix f = f(fix f)

1.3.2 Call-by-Name Operational Semantics for PCF

We modify the concept of value as follows.

Definition (Value). A value is either

� a Boolean, or

14

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

� a natural number, or

� ‹, or

� a pair of closed terms, or

� a closed term λx. t.

The call-by-name semantics for PCF is obtained by completing the call-by-name semantics
of λ-calculus. As before, the judgement p ó v indicates that p reduced to the value v in the
updated sense.

We discuss the most instructive rules.

t ó 〈p, q〉 p ó c

fst t ó c

t ó 〈p, q〉 q ó c

snd t ó c

which means that pairing is lazy. Hence, in particular, fst〈1,Ω〉 ó 1, but snd〈1,Ω〉 diverges.
Note that there is no rule for reducing 〈t, s〉, which is by definition already a value.

b ó True p ó c

if b then p else q ó c

b ó False q ó c

if b then p else q ó c

The rules for application and abstraction are as in the λ-calculus. Arithmetic operations are
strict (i.e. if one argument fails, everything fails):

p ó c1 q ó c2
p` q ó c1 ` c2

For interpreting logical disjunction, one could think of the following seemingly natural rules:

b ó True

b_ c ó True

c ó True

b_ c ó True

b ó False c ó False

b_ c ó False

This is known as “parallel or” and it does make certain sense, but in our case it would make
the semantics unintentionally non-deterministic. That is, to evaluate b_c, the semantics every
time would need to simulate behaviours of two independent threads running in parallel and
correspondingly evaluating b and c until one of them possibly succeeds. Such parallel facilities
are not considered to be part of the core in functional languages. From a foundational point
of view, PCF was developed for programming computable functions, in the sense of Turing
computability. This notion of computability is sequential by definition, and thus also does
not support facilities for parallel execution.

The standard rules are like this

b ó True

b_ c ó True

b ó False c ó d

b_ c ó d

That is, _ is not commutative, e.g. True_Ω ó True, but Ω _ True diverges. It is easy to see
that b_ c is interpreted in the same way as if b then True else c.

This semantics can be readily tested in Haskell, since it is lazy:

15

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

fix f = f (fix f) -- fixpoint combinator

omega = fix id -- divergence

success = () -- successful termination

test1 = fst (success, omega) -- terminates

test2 = snd (success, omega) -- diverges

test3 = True || omega -- terminates

test4 = omega || True -- diverges

test4 = False || omega -- diverges

The rule for the fixpoint combinator is the only non-structural rule:

fpYAfq ó c

YAf ó c

1.3.3 Call-by-Value Operation Semantics for PCF

We redefine the notion of value once again.

Definition (Value). A value is a Boolean, or a natural number, or ‹, or a pair of values or a
closed term λx. t.

p ócbv c1 q ócbv c2
〈p, q〉 ócbv 〈c1, c2〉

p ócbv 〈c1, c2〉
fst p ócbv c1

p ócbv 〈c1, c2〉
snd p ócbv c2

If we used the same rule for the Y -combinator, as for call-by-name, we would diverge:

Y f ÝÑ fpY fq ÝÑ fpfpY fqq ÝÑ ¨ ¨ ¨

(Evaluating the argument would use the same rule on and on). In order to prevent this, for
the CBV semantics:

� we require C in YC to be of the form AÑ B,

� the small-step rule for Y : Y f Ñ fpλx.pY fqxq, or, alternatively, as a big-step rule:

f ócbv λx. g grλy. pY fqy{xs ócbv c

Y f ócbv c

Example (Factorial). The factorial function

facp0q “ facp1q “ 1 facpnq “ n ¨ facpn´ 1q pn ą 1q

is expressible as follows in PCF:

p :“

¨

˚

˝

x : Nat $ pYNatÑNatpλf.λx. if x ď 1 then 1 elsex ¨ fpx´ 1q
looooooooooooooooooooooomooooooooooooooooooooooon

g

qqpxq

˛

‹

‚

We show that: pλx. pqpnq ó n! (in CBV).

16

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Proof. We easily reduce the goal to pY gqn ó n!. We proceed by induction over n.

� If n “ 0, then

g ó g λx. if x ď 1 then 1 elsex ¨ pλy. pY gqyqpx´ 1q
looooooooooooooooooooooooomooooooooooooooooooooooooon

g1

ó λx. g1

Y g ó λx. g1 0 ó 0

0 ď 1 ó True 1 ó 1

g1r0{xs ó 1

pY gq0 ó 1

� Case n “ 1 is analogous.

� Suppose, n ą 0. Then

g ó g λx.g1 ó λx. g1

Y g ó λx. g1 n ó n

n ď 1 ó False

n ó n

. . .

...
pY gqpn´ 1q ó pn´ 1q!

pλy. pY gqyqpn´ 1q ó pn´ 1q!

n ¨ pλy. pY gqyqpn´ 1q ó n!

g1rn{xs ó n!

pY gqpnq ó n!

where
... refers to the proof from the induction hypothesis.

1.3.4 Contextual Equivalence

Operational semantics culminates in defining contextual (or operational, or observational)
equivalence. We want to know if two programs are equivalent or not w.r.t. their observable
behaviour. What this means? For closed programs, we can just compare if they reduce to
the same value, i.e. s and t are equivalent iff s ó v iff t ó v for some v. This is not enough for
programs with free variables. Intuitively, free variables range over program inputs and two
programs must be equivalent if they agree on all possible inputs. Additionally, if the result
type is itself a functional type, we need to check if the results are equivalent as functions. We
can formally capture the relevant notion with term contexts.

A term context is a term with a special symbol �, occurring precisely once. Given a
context C and a term t, Crts denotes the term obtained by replacing � in C with t. In typed
settings, contexts and placeholders � have types, i.e. in PCF p�` 1q has the type Nat and �
in it has the type Nat.

Definition (Contextual Equivalence for PCF). A term context C is of ground type if its type
is either Nat or Bool or 1. Two PCF terms Γ $ s : A and Γ $ t : A are contextually equivalent
if for every context C of ground type, for every value v, Crss ó v iff Crts ó v. In this case, we
write Γ $ p “ctx q : A, or simply p “ctx q.

We see that contextual equivalence is a derived notion, defined indirectly via semantics of
closed programs and by quantification over (infinitely many) term contexts. This complex
notion is needed, to cope with (a) programs with free variables (b) higher-order programs
(i.e. not only programs of ground types). Clearly (a) reduces to (b) by λ-abstracting free
variables. The following can be shown (although, we currently do not have machinery for
proving even such innocently looking statements):

17

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Proposition. Let Γ $ s : A and Γ $ t : A be two programs in context, A be a ground type
and let Γ be empty. Then p “ctx q iff for every value v, s ó v iff t ó v.

Contextual equivalence of higher-order programs is considerably more advanced than con-
textual equivalence of closed programs of ground types. For example, for proving that two
implementations of binary addition of numbers are equivalent, it is necessary to check that
they behave the same on all inputs (i.e. either both converge to the same result, or both
diverge). This quantification “over all inputs” is what is more abstractly captured by quan-
tification over all term contexts.

1.3.5 Coproducts, Abrupt Termination and I/O

Let us extend PCF with coproducts types. That is, we add A ` B to the type grammar
and add the following term formation rules:

(+I1)
Γ $ t : A

Γ $ inl t : A`B
(+I2)

Γ $ t : B

Γ $ inr t : A`B

(+E)
Γ $ b : A`B Γ, x : A $ p : C Γ, y : B $ q : C

Γ $ case b of inlx ÞÑ p; inr y ÞÑ q : C

With this extension we can make do without Bool and if-then-else by encoding Bool as 1`1,
and by encoding if-then-else as follows:

if b then p else q “ case b of inlx ÞÑ p; inr x ÞÑ q.

In Haskell, coproducts are implemented as an algebraic data type:

data Either a b = Left a | Right b

Moreover, we can encode the “maybe” type constructor sending a type X to MX “ X ` 1
and introduce the following syntax:

(ret)
Γ $ t : A

Γ $ return t : MA
(bind)

Γ $ p : MB Γ, x : B $ q : MC

Γ $ doxÐ p; q : MC

where

return t “ inl t,

doxÐ p; q “ case p of inlx ÞÑ q ; inl y ÞÑ inr y.

The intuition here: a term in context Γ $ t : MX with Γ “ px1 : A1, . . . , xn : Anq models a
partial function px1, . . . , xnq ÞÑ t, either sending a tuple px1, . . . , xnq to a value in X or to
undefinedness; return and do correspondingly provide means for converting total functions to
partial function and for composing partial functions correspondingly. This yields the second
simplest example of a monad. This first one is the identity monad with MX “ X, and with
return and do defined in the obvious way.

In Haskell the maybe-monad is implemented as follows:

18

1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

data Maybe a = Just a | Nothing

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= _ = Nothing

In Haskell there is a very special monad called IO for interacting with the environment (read-
ing/writing on the console, accessing/modifying the file system, the web, peripheral devises,
sensors, etc). Thanks to the monadic abstraction, interaction with the environment is orga-
nized in the same style as with all other monads, e.g.

main :: IO ()

main = do

putStrLn "Enter two lines"

line1 <- getLine -- line1 :: String

line2 <- getLine -- line2 :: String

putStrLn ("you said: " ++ line1 ++ " and " ++ line2)

Remarkable and often confusing is the laziness of IO, which in conjunction with other lazy
aspects can produce unexpected effects. Consider for instance

interact $ unlines . map reverse . lines

which reads a string from the console and prints it reversed in a loop. An analogous program

interact $ unlines . map (\s -> "your string is: " ++ !s) . lines

does not function as expected (starts printing before input is finished) because the input does
not affect the initial part of the output, in contrast to the reverse-example where we needed
to know the very last character of the input string to be able to say what the reversed string
is. A possible fix is

interact $ unlines . map (\s -> seq (last s) "your string is " ++ s) . lines

Here seq is a very special build-in primitive, smuggling non-lazy semantics in. Very roughly
seq x y runs y unless x unproductively diverges. Thus, e.g. strict function application is
defined as

($!) :: (a -> b) -> a -> b

f $! x = x `seq` f x

An important property that is broken exclusively by seq is that f is no longer contextually
equivalent to λx. fx, which is otherwise true w.r.t. the call-by-name semantics (!) Indeed,
omega and \x -> omega x can be distinguished by the context const 0 $! (but not with
const 0 $!).

19

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

1.4 Denotational Semantics of PCF

Operational semantics is non-compositional, in the sense that it does not yield a function J--K
from terms to meanings, so that for every n-ary term construct op, Joppt1, . . . , tnqK could
be calculated as a function of Jt1K, . . . , JtnK. In particular, operational semantics does not
directly define meanings of functions, hence we cannot express Jf tK via JfK and JtK.

In designing a denotational semantics (overall, but in our concrete case, for PCF) one would
want to satisfy the following yardsticks:

� Soundness: if p ó v then JpK “ JvK;

� Adequacy: if JpK “ JvK with v being a ground value then p ó v;

� Compositionality: JCrtsK “ JCKJtK where we assume that t is closed and JCK is the same
as λx.Crxs.

Soundness and adequacy ensure that the denotational semantics sufficiently mimics the oper-
ational semantics. The soundness property is the most basic one and is usually easy to verify
by induction over a derivation p ó v. Adequacy is usually considerably harder. Composition-
ality is where denotational semantics shines. For example, the proof of f “ctx λx. fx can be
obtained as follows:

Crf s ó v ùñ JCrf sK “ JvK // soundness

ðñ JCKJfK “ JvK // compositionality

ðñ JCKJλx. fxK “ JvK
ðñ JCrλx. fxsK “ JvK // compositionality

ùñ Crλx. fxs ó v. // adequacy

This relies on the fact that JfK “ Jλx. fxK, which will be an easy consequence of the definition
of J´K.

How can we define JAK? It cannot be just a set of values of type A, e.g. JBoolK “
tTrue,Falseu. At least, JBoolK must include the divergence K. Is it enough to say that JAK
collects the values of type A plus the divergence? No, for e.g. the function in JA Ñ BK
must capture not only all total functions (the “values”), the totally undefined function (the
“divergence”), but also all the partially defined functions in between (so, more or less de-
fined). This issue propagates along type constructors, which is the reason we cannot think of
JAK merely as a certain set, and Jf : A Ñ BK merely as a certain function between sets JAK
and JBK. However, we can use as JAK (ω-)complete partial orders (cpos), and as Jf : AÑ BK
(ω-)continuous maps, between JAK and JBK. This is a big idea of denotational semantics,
proposed by Dana Scott.

Definition (Partial Orders). A partial order pA,vq is a relation satisfying the following
axioms:

� a v a;

� a v b^ b v cñ a v c;

� a v b^ b v añ a “ b.

20

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

Definition (Complete Partial Orders). A(n ω-)cpo is a partial order pA,vq, such that for
any infinite chain

a1 v a2 v . . . ,

there is an a, such that

1. @i. ai v a;

2. @i. ai v bñ a v b.

We denote such a by
Ů

i ai. More, generally we write
Ů

iPI ai for any least upper bound (not
necessarily of a chain) if @i. ai v

Ů

iPI ai and
Ů

iPI ai v b once @i. ai v b.

Definition (Pointed Cpos). A cpo pA,vq is pointed if it contains such an element K, that
@a P A.K v a

Every set A is trivially a cpo pA,vq with a v b iff a “ b.

Definition (Monotonicity, Continuity, Strictness). A function f : A Ñ B between partial
orders is monotone if a v b ñ fpaq v fpbq; a monotone function f : A Ñ B between cpos
pA,vq and pB,vq is (Scott-)continuous if for any chain a1 v a2 v . . .:

f
´

ğ

i
ai

¯

“
ğ

i
fpaiq

A function f : A Ñ B is strict if fpKq “ K. This extends to the multi-ary functions in the
obvious way, e.g. if-then-else is strict in the first argument, but not in the second and the
third.

Definition ((Pre-)Domain). We agree to refer to cpos as pre-domains, and to pointed cpos
as domains.

1.4.1 Constructions on Predomains

Product of Predomains AˆB “ tpa, bq | a P A, b P Bu

pa1, b1q v pa2, b2q if a1 v a2 and b1 v b2

Properties:

� Continuity of pairing:
Ů

ipai, biq “
`
Ů

i ai,
Ů

j bj
˘

;

� Continuity of projections: fst : A ˆ B Ñ A and snd : A ˆ B Ñ B are continuous, i.e.:
fst
`
Ů

j aj
˘

“
Ů

j fst aj , snd
`
Ů

j aj
˘

“
Ů

j snd aj ;

� Products of domains are again domains with pK,Kq as the least element.

21

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

Lifting Predomains and Functions The correspondence A ÞÑ AK defines a lifing of A where
AK “ tKu ZA “ tp0,Kqu Y tp1, aq | a P Au.

a v b if a “ p0,Kq or a “ p1, a1q, b “ p1, b1q and a1 v b1

Let for any a P A: bac “ p1, aq P AK. Since p0,Kq is now the bottom element of AK, for
notational simplicity we refer to it as K again. Attempts to regard K “ p0,Kq as a sort of
recursive equation make no sense – K on the left and K on the right are distinguished by their
context.

Let B be a domain and let f : A Ñ B be continuous. Then we define f‹ : AK Ñ B as
follows:

f‹pxq “

#

fpyq if x “ byc
K if x “ K

The result f‹ is the lifting of f .

Notation. We use the point-full notation pletx - p in qq alongside with the point-free one
pλx. qq‹ppq where λx. q : AÑ B and p : AK.

Properties:

� b--c is continuous:
⌊
Ů

i ai
⌋
“

Ů

ibaic.
� Lifting is continuous:

`
Ů

i fi
˘‹
“

Ů

i f
‹
i where continuous functions are compared point-

wise, that is f v g if fpxq v gpxq for any x (see the definition of function spaces
bellow).

For every op : X ˆ Y Ñ Z with X,Y, Z being sets, we define the strict extension:

opK : XK ˆ YK Ñ ZK

opKpp, qq “ letx - p in let y - q inboppx, yqc

Example (Flat Domains). Given a set A, AK is called the flat domain over A, regarded as
a trivially ordered set (i.e. v is “).

BoolK:

True False

K

NatK:

0 1 2 ¨ ¨ ¨

K

Non-example 1K ˆ 1K:

p‹,Kq

p‹, ‹q

pK, ‹q

pK,Kq

22

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

Function Spaces Let pA,vq and pB,vq be two predomains. Then pA Ñc B,vq is the
function space predomain, where

AÑc B “ tf : AÑ B | f is continuousu

and
f v g ô @x. fpxq v gpxq (pointwise)

We define two operations:

curry : pAˆB Ñc Cq Ñ pAÑc pB Ñc Cqq

pcurry fqpxqpyq “ fpx, yq

uncurry : pAÑc pB Ñc Cqq Ñ pAˆB Ñc Cq

puncurry fqpx, yq “ fpxqpyq

from which we can derive

ev “ uncurrypid : pAÑc Bq Ñc pAÑc Bqq : pAÑc Bq ˆAÑc B

Properties:

� curry and uncurry are continuous.

� If B is a domain then so is A Ñc B with the bottom element being the completely
undefined function λx.K.

Theorem 1 (Kleene’s Fixpoint Theorem). Let f be a continuous function f : D Ñ D over a
domain D. Then

1. There is µf P D – the least fixpoint of f , i.e.

a) fpµfq “ µf

b) @x P D. fpxq “ xñ µf v x

2. µf “
Ů

i f
ipKq, where f0pxq “ K, f i`1pxq “ fpf ipxqq

3. µf P D is moreover the least pre-fixpoint of f , i.e.

a) fpµfq v µf

b) @x P D. fpxq v xñ µf v x

Proof. Let us first show that µf as defined in clause 2 is a fixpoint of f . Indeed, fpµfq “

f
´

Ů

i f
ipKq

¯

“

´

Ů

i f
i`1pKq

¯

“ µf . Hence is it also a prefixpoint. Let us show that it is the

least one. Suppose that x P D is another prefixpoint, i.e. fpxq v x. From K v x, inductively,
f ipKq v f ipxq “ x, hence µf “

Ů

i f
ipKq v x. Since µf is the least prefixpoint and a fixpoint,

it is in particular the least fixpoint.

Example. Consider fi : NÑ NK with i P N:

f0pnq “ K pn ě 0q

f1p0q “ b1c, f1pnq “ K pn ě 1q

23

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

f2p0q “ b1c, f2p1q “ b1c, f2pnq “ K pn ě 2q

f3p0q “ b1c, f3p1q “ b1c, f3p2q “ b2c, f3pnq “ K px ě 3q

f4p0q “ b1c, f4p1q “ b1c, f4p2q “ b2c, f4p3q “ b6c, f4pnq “ K px ě 4q

...

It’s easy to see that fi v fi`1 for any i P N. Let

f “
ğ

i
fi

Again, it is easy to see that for every fpnq “ n!. By Kleene fixpoint theorem, we can interpret
this as the fact that f is a solutions of a recursive equation, defining the factorial function.
Note that

fi`1 “ F pfiq @pi P Nq

where F : pNÑ NKq Ñc pNÑ NKq is as follows:

F pg : NÑ NKqpn P Nq “

#

b1c if n “ 0, 1

bnc ¨K gpn´ 1q if n ą 1

which is the defining expression for the factorial. So, by Kleene fixpoint theorem:

µF “
ğ

i
F ipKq “

ğ

i
fi “ f.

We can reformulate this result as follows: f : NÑ NK is a solution of the following system of
equations:

fp0q “ b1c
fp1q “ b1c
fpnq “ letm - fpn´ 1q inbn ¨mc pn ą 1q

and it is the least such solution (!)

Proposition. µ : pD Ñc Dq Ñ D is continuous.

Definition. Given a domain X, let ifThenElse : BK ˆX ˆX Ñ X:

ifThenElsepb, x, yq “

$

’

&

’

%

x if b “ bTruec
y if b “ bFalsec
K otherwise

Proposition. ifThenElse is continuous.

24

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

1.4.2 CBN Denotational Semantics

We assign to every type A a domain JAK as follows:

� J1K “ t‹u;

� JNatK “ NK (flat domain of naturals);

� JBoolK “ BK (flat domain of Booleans);

� JAˆBK “ JAKˆ JBK;

� JAÑ BK “ JAK Ñc JBK.

Now, given a term in context Γ $ t : A where Γ “ x1 : A1, . . . , xn : An the semantics JΓ $ t : AK
is a continuous function JA1K ˆ . . . ˆ JAnK Ñ JAK recursively computed according to the
following clauses where J¨ ¨ ¨Kρ reads as J¨ ¨ ¨Kpρq:

� JΓ $ xi : AiKρ “ pripρq where pri : JA1Kˆ . . .ˆ JAnK Ñ JAiK is the i-th projection;

� JΓ $ ‹ : 1Kρ “ ‹;

� JΓ $ b : BoolKρ “ bbc;
� JΓ $ n : NatKρ “ bnc;
� JΓ $ fpt, sq : AKρ “ fKpJΓ $ t : BKρ, JΓ $ s : CKρq (f P t^,Ñ,`,´,ˆ,“u);

� JΓ $ if b then s else t : AKρ “ ifThenElsepJΓ $ b : BoolKρ, JΓ $ s : AKρ, JΓ $ t : AKρq;

� JΓ $ 〈t, s〉 : AˆBKρ “ 〈JΓ $ t : AKρ, JΓ $ s : BKρ〉;
� JΓ $ fst t : AKρ “ fstJΓ $ t : AˆBKρ;

� JΓ $ snd t : BKρ “ sndJΓ $ t : AˆBKρ;

� JΓ $ λx. t : AÑ BKρ “ pcurry JΓ, x : A $ t : BKqpρq;

� JΓ $ s t : BKρ “ evpJΓ $ s : AÑ BKρ, JΓ $ t : AKρq;

� JΓ $ YA : pAÑ Aq Ñ AKρ “ µ.

Lemma (Substitution Lemma). Given Γ $ q : A, Γ, x : A $ p : B and ρ P JΓK

JΓ $ prq{xs : BKρ “ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq

Proof. Induction over the structure of p. Let us consider the there last clauses in the semantics
for p, which are the only non-trivial ones.

� p “ λy. t with some Γ, y : C $ t : D and then B “ C Ñ D. It follows by assumption that
x ‰ y. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ λy. trq{xs : BKρ
“ pcurryJΓ, y : C $ trq{xs : DKqpρq
“ pcurrypJΓ, y : C, x : A $ t : DK ˝ pid, JΓ, y : C $ q : AKqqqpρq
“ pcurryJΓ, x : A, y : C $ t : DKqpρ, JΓ $ q : AKρq
“ JΓ, x : A $ λy. t : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

25

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

� p “ s t with some Γ, x : A $ t : C and Γ, x : A $ s : C Ñ B. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ psrq{xsq ptrq{xsq : BKρ
“ JΓ $ srq{xs : C Ñ BKρpJΓ $ trq{xs : CKρq
“ pJΓ, x : A $ s : C Ñ BKpρ, JΓ $ q : AKρqq

pJΓ, x : A $ t : CKpρ, JΓ $ q : AKρqq
“ JΓ, x : A $ s t : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

� p “ YB f with some Γ, x : A $ f : B Ñ B. Analogously to the previous clauses:

JΓ $ prq{xs : BKρ “ JΓ $ pYB fqrq{xs : BKρ
“ JΓ $ YB f rq{xs : BKρ
“ µJΓ $ f rq{xs : B Ñ BKρ
“ µpJΓ, x : A $ f : B Ñ BKpρ, JΓ $ q : AKρqq
“ JΓ, x : A $ µf : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

Definition (Soundness). A denotational semantics is sound if

p ó v ñ JpK “ v

Definition (Adequacy). A denotational semantics is adequate, if

JpK “ v ñ p ó v if the type of p is either 1 or Bool or Nat

for every value v.

Proposition. The presented call-by-name denotational semantics is sound and adequate with
respect to ócbn.

Soundness is typically easy to prove: using the equivalence of big-step and small-step
semantics, it suffices to prove that pÑ q entails JpK “ JqK; then p ó v entails pÑ‹ v and we
are done by induction over the length of this reduction. Proving adequacy is usually much
harder and requires new methods.

Assuming soundness, we can equivalently reformulate adequacy as follows: by contrapo-
sition, it says that for all values v, pp ó vq ñ JpK ‰ v, in particular, if p ò then JpK ‰ v
for any value v, i.e. JpK “ K. This is the only instance that does not follow from soundness.
Indeed, if pp ó vq, but p ó v1 with v1 ‰ v then by soundness JpK “ v1 and hence JpK ‰ v. In
summary, we equivalently switched to the implication:

p ò ñ JpK “ K.

Recall the following property of contextual equivalence.

26

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

Proposition. Let Γ $ s : A and Γ $ t : A be two programs in context, A be a ground type
and let Γ be empty. Then s “ctx t iff for every value v, s ó v iff t ó v.

We now can prove it. The left to right direction is clear. Assume the right hand side and
prove s “ctx t. If s ó v for some v then t ó v and by soundness, JsK “ v “ JtK. If s ò then
t ò, and by adequacy, JsK “ K “ JtK. In any case, we have JCrssK “ JCrtsK with C “ �. The
general case follows by induction on C. Then Crss ó v by adequacy entails Crts ó v and vice
versa.

1.4.3 Failure of Full Abstraction

Note the implication

JpK “ JqK ñ p “ctx q

where p and q are closed programs of the same type. Indeed, for very suitable context C of
ground output type,

Crps ó v ðñ JCrpsK “ bvc // sound. and adeq.

ðñ JCKrJpKs “ bvc // compositionality

ðñ JCKrJqKs “ bvc // assumption

ðñ JCrqsK “ bvc // compositionality

ðñ Crqs ó v // sound. and adeq.

We have thus obtained a fundamental relation between operational and denotational seman-
tics: contextually equivalent programs are necessarily denotationally equal. The opposite
implication

p “ctx q ñ JpK “ JqK

is called full abstraction, and it would provide the highest degree of satisfaction, for it would
mean that operational sematnics and denotational semantics agree (as far as program equiv-
alence is concerned). However, for our precent semantics full abstraction fails (!), and the
reason for it is instructive.

Consider the following PCF-function in Haskell syntax:

t :: Bool -> (Bool -> Bool -> Bool) -> Bool

t b f = if (f True omega).

then if (f omega True).

then if (f False False) then omega else b

else omega

else omega

where omega = omega

It can be shown that (t True) and (t False) are contextually equivalent, however, they are
not denotationally equivalent. The reason for it is that we cannot test (t True) and (t Fa c

lse) on the parallel-or function, which is described as follows: porpTrue, xq “ porpx,Trueq “
True, porpFalse,Falseq “ False and porpx, yq “ K otherwise. This function is not definable in
PCF, but it is a continuous function, and thus, it can be used as a witness that (t True)

and (t False) are denotationally distinct.

27

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

1.4.4 CBV Denotational Semantics

We we assign to every type A a predomain JAK as follows:

� J1K “ t‹u;

� JNatK “ N;

� JBoolK “ B;

� JAˆBK “ JAKˆ JBK;

� JAÑ BK “ JAK Ñ JBKK.

Now, the semantics of a term in context Γ $ t : A with Γ “ px1 : A1, . . . , xn : Anq is a contin-
uous function JA1Kˆ . . .ˆ JAnK Ñ JAKK defined by structural induction as follows.

� JΓ $ xi : AiKρ “ bpripρqc;
� JΓ $ n : NatKρ “ bnc;
� JΓ $ b : BoolKρ “ bbc;
� JΓ $ fpt, sq : AKρ “ fKpJΓ $ t : BKρ, JΓ $ s : CKρq (f P t^,Ñ,`,´,ˆ,“u);

� JΓ $ if b then s else t : AKρ “ ifThenElsepJΓ $ b : BoolKρ, JΓ $ s : AKρ, JΓ $ t : AKρq;

� JΓ $ 〈t, s〉 : AˆBKρ “ letx - JΓ $ t : AKρ in let y - JΓ $ s : BKρ inb〈x, y〉c;
� JΓ $ fst t : AKρ “ let v - JΓ $ t : AˆBKρ inbfst vc;
� JΓ $ snd t : BKρ “ let v - JΓ $ t : AˆBKρ inbsnd vc;
� JΓ $ λx. t : AÑ BKρ “ bpcurry JΓ, x : A $ t : BKqpρqc;
� JΓ $ s t : BKρ “ let v - JΓ $ t : AKρ in let f - JΓ $ s : AÑ BKρ in evpf, vq;

� JΓ $ YAÑBKρ “ λf. µpλg. fpλx. leth - g inhpxqqq where f : pJAK Ñ JBKKq Ñ pJAK Ñ
JBKKqK and g P pJAK Ñ JBKKqK.

The analogue of the substitution lemma is as follows.

Lemma (Substitution Lemma). Given Γ $ q : A, Γ, x : A $ p : B and ρ P JΓK,

JΓ $ prq{xs : BKρ “ let v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vq

provided that q is of the form λz. r.

In contrast to the call-by-name case, the assumption that q “ λz. r is essential. For example,
if q diverges, but p does not depend on x, we would have JΓ $ p : BK on the left-hand side
and K on the right-hand side.

Proof. The proof is by structural induction over p. Again, only the last three clauses in the
definition of semantics of p are sophisticated. Still the other ones require some properties of
the let-construct (commutativity and copyability).

Assume that Γ, z : E $ r : F , i.e. A “ E Ñ F .

28

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

� p “ λy. t with some Γ, y : C, x : A $ t : D and then B “ C Ñ D. It follows by assumption
that x ‰ y. Let us fix c P JCK, ρ P JΓK and let s “ let v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vq.
It is easy to check that s “ bgc for some g. Then

JΓ, y : C $ trq{xs : DKpρ, cq
“ let v - JΓ, y : C $ q : AKpρ, cq inJΓ, y : C, x : A $ t : DKpρ, c, vq
“ let v - JΓ $ q : AKρ inJΓ, x : A, y : C $ t : DKpρ, v, cq
“ let v - JΓ $ q : AKρ in let f - JΓ, x : A $ p : BKpρ, vq in fpcq
“ let f - plet v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vqq in fpcq
“ let f - bgc in fpcq
“ gpcq

using the fact that q does not depend on y. Now

JΓ $ prq{xs : BKρ
“ JΓ $ λy. trq{xs : BKρ
“ bpcurryJΓ, y : C $ trq{xs : DKqpρqc
“ bgc
“ s.

� p “ s t with some Γ, x : A $ t : C and Γ, x : A $ s : C Ñ B. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ psrq{xsq ptrq{xsq : BKρ
“ let v - JΓ $ trq{xs : CKρ in

let f - JΓ $ srq{xs : C Ñ BKρ in fpvq
“ letw - JΓ $ q : AKρ in let v - JΓ, x : A $ t : CKpρ, wq in

let f - JΓ, x : A $ s : C Ñ BKpρ, wq in fpvq
“ letw - JΓ $ q : AKρ inJΓ, x : A $ s t : BKpρ, wq.

� p “ YB f with some Γ, x : A $ f : pC Ñ Dq Ñ pC Ñ Dq, hence B “ pC Ñ Dq. Note
that for a suitable w, JΓ $ q : AKρ “ bwc. Then

JΓ $ prq{xs : BKρ “ JΓ $ pYB fqrq{xs : BKρ
“ JΓ $ YB f rq{xs : BKρ
“ µpgq

“ JΓ, x : A $ YBf : BKpρ, wq
“ let v - JΓ $ q : AKρ in JΓ, x : A $ p : BKpρ, vq.

where gppq “ leth - JΓ, x : A $ f : B Ñ BKpρ, wq inhpuppqq and uppqpxq “ leth - p inhpxq.

Proposition. The CBV semantics of PCF is sound and adequate.

Proposition (let-unit-1). letx - btc in p “ prt{xs.

29

1.4. Denotational Semantics of PCF Version: 2023/07/28, 17:53:34

Proof.

letx - btc in p “ pλx. pq‹btc “

#

pλx. pqpsq if btc “ bsc
K otherwise

“

#

pλx. pqt

prt{xs

Proposition (let-unit-2). letx - p inbxc “ p.

Proof. letx - p inbxc “ pλx. bxcq‹ppq “ pλx. xqppq “ p.

Proposition (let-assoc).

letx - p inplet y - q in rq “ let y - pletx - p in qq in r.

where x R Freeprq.

Alternatively, the three laws for the let-operator can be presented in the pointfree form as
follows:

f‹η “ f η‹ “ id f‹g‹ “ pf‹gq‹

where η : A Ñ AK sends x to bxc. These are known as monad laws, and they identify the
map A ÞÑ AK as a monad whose unit is b--c and whose Kleisli lifting is the operation p--q‹.

Thus, a monad can be understood as a certain type constructor that transforms values to
computations and induces a notion of generalized function, carrying a certain (side-)effect in
contrast to “normal functions”. The side-effect of the lifting monad is divergence. Further
side-effects that can be abstracted in monads include

� abortion,

� non-determinism,

� store,

� input/output,

and in fact many others. In order to make these considerations rigorous, we proceed with the
basic concepts of category theory. As we will see, monads is a genuinely categorical concept.

30

2 Categories and Monads

In this chapter, we proceed to identify categorical structures that are relevant for semantics
(and functional programming), specifically to that its fragment we have considered previously.
Category theory provides a language to deal with structures in such a way that the language
itself abstracts from a concrete way these structures are implemented. Instead, in category
theory we describe structures of interest by their universal properties, i.e. such properties that
define them uniquely up-to isomorphism. For example, in set theory the property of being
a singleton does not define any particular set: both t u and t u are singleton sets, and
many more. But all singletons are isomorphic, and in fact, as long as structures of interest are
isomorphic, choosing a specific one is a matter of convention, so it makes sense to characterise
singletons so as to remove any reference to a concrete implementation. In category theory, this
is done via the notion of terminal object. This illustrates one of the key insights of category
theory: one should work with universal properties of concepts, uniquely (up to isomorphism)
characterising the concept, instead of concrete representations.

2.1 Introducing Monads

Let us consider the do-notation, as a generalization of our previous let-notation. The idea is
to capture the most abstract properties of computation, e.g. the let-notation also satisfies the
following commutativity property:

letx - p in let y - q inb〈x, y〉c “ let y - q in letx - p inb〈x, y〉c,

which is not abstract enough: if p writes to a store and q reads from that store the order in
which p and q are executed obviously matters.

Essentially we introduce two term constructs:

doxÐ p
loomoon

TA

: f
loomoon

AÑTB

pxq ret : AÑ TA

In conjunction with other (obvious) term constructs this forms what is known as (first-order)
computational metalanguage whose syntax is Haskell’s do-notation.

Essentially, we need monads to interpret this notation. Monads is a categorical concept.
We need few preliminaries to introduce them formally.

Definition (Category). A Category C consists of a collection of objects |C| and a collection of
morphisms CpA,Bq (also written as HomCpA,Bq, or HompA,Bq if C is clear) for all A,B P |C|,
such that the following properties hold:

� for every A P |C| there is an identity morphism idA P CpA,Aq;
� for any f P CpB,Cq and g P CpA,Bq we can form a composition f ˝ g P CpA,Cq;
� id ˝ f “ f , f ˝ id “ f , pf ˝ gq ˝ h “ f ˝ pg ˝ hq.

31

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

We also write f : AÑ B instead of f P CpA,Bq “ HompA,Bq.
A “collection” in the definition of a category is in fact a “class”, i.e. something generally

larger than a set, e.g. the “set of all sets” does not make sense, but “all sets” form a class.
Categories in which any HompA,Bq is a set are called locally small and the categories in
which |C| is a set are called small. Most of our examples of categories are locally small but
not small.

Example. Examples of categories:

� Sets: |Sets| “ “all sets” and HompA,Bq “ “functions from A to B”.

� Cpo: |Cpo| “ “all cpos” and HompA,Bq “ “continuous functions from A to B”.

� Rel: |Rel| “ “all sets” and HompA,Bq “ “relations R Ď AˆB” with

idA “tpx, xq | x P Au

R ˝ S “tpx, zq P Aˆ C | Dy P B. px, yq P R, py, zq P Su

� PFun: |PFun| “ “all sets” and HompA,Bq “ “partial functions from A to B”.

Definition (Commutative Diagrams). We consider diagrams whose nodes are labeled with
objects and whose edges are oriented and labelled with morphisms. A diagram commutes
if all paths with the same start and endpoint produce equal morphisms (the morphism are
formed by composing the labels along paths).

For example, the axioms for identity can be stated as follows:

A A A

B

id

f

f

id

f

Curiously, we cannot express associativity of composition in this way, because it is already
baked in to the diagrammatic language.

In category theory, it is customary to prove equations between morphisms f “ g “by
diagram chasing”, that is, by producing a commutative diagram, from which a chain of
equations f “ f 1 “ f2 “ . . . “ g1 “ g can be read out. Importantly, not every commutative
diagram produces a proof like this. For example, the diagram

‚ ‚

‚

‚ ‚

a

c b

d

does not prove the equation ba “ dc even though all the triangles commute.

2.1.1 Products and Coproducts

Definition (Binary Products). A (binary) product of objects A,B in a category C is a
triple pA ˆ B P |C|, fst : A ˆ B Ñ A, snd : A ˆ B Ñ Bq, such that for any C P |C| with
f : C Ñ A, g : C Ñ B, there is unique (!) morphism 〈f, g〉 : C Ñ A ˆ B, such that the
following diagram commutes:

32

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

C

A AˆB B

f

〈f,s〉
g

fst snd

As a text: fst ˝ 〈f, g〉 “ f , snd ˝ 〈f, g〉 “ g. The morphisms fst and snd are called (left and
right) projections and the operation f, g ÞÑ 〈f, g〉 is called pairing.

Example.

� In Sets, products are Cartesian products.

� In Cpo, products are products of Cpos.

Definition (Terminal Object). A terminal object is an object 1 P |C|, such that for any
A P |C|, there is a unique morphism: !A : AÑ 1

Definition (Cartesian Category). A Cartesian category is a category with a terminal object
and binary products.

Equivalently, a Cartesian category is the one which has all finite products: products of a
nonempty finite number of components are obviously induced by binary products, the product
of the empty family of components is the terminal object.

Examples: Sets and functions, Cpos and continuous functions, . . .

Definition (Isomorphism). An isomorphism between objects A and B in a category C is given
by a pair of morphisms: f : AÑ B, g : B Ñ A, such that the following diagram commutes:

A B

A B

f

idA

idBg

f

Example. In Sets, an isomorphism is a bijection.

Here is a translation table, between the different languages of set theory, category theory and
Haskell.

Set Categories Haskell

function morphism program
set object type
singleton set terminal object unit type
Cartesian product (Cartesian) product product type
element morphism 1 Ñ X —
predicate — —
bijection isomorphism —

33

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Theorem 2. Let A,B,C P |C|. A triple pC, fst : C Ñ A, snd : C Ñ Bq, is a product of A and
B if there is an operation

f : D Ñ A g : D Ñ B

〈f, g〉 : D Ñ C

such that

fst ˝ 〈f, g〉 “ f, snd ˝ 〈f, g〉 “ g, 〈fst, snd〉 “ id, 〈f, g〉 ˝ h “ 〈f ˝ h, g ˝ h〉.

Proof. The proof consist of the soundness (ñ) and completeness (ð) directions.
(ñ) We need to show the claimed identities. The first two are obvious by definition. The

other two are by diagram chasing:

AˆB

A AˆB B

fst snd

〈fst,snd〉

fst snd

D

C

A AˆB B

h g˝hf˝h

f g

〈f,g〉

fst snd

The first identity holds because in the left diagram replacing 〈fst, snd〉 with id would produce
a diagram, which still commutes, but 〈fst, snd〉 is unique, hence 〈fst, snd〉 “ id.

The second identity holds analogously because by the second diagram, 〈f, g〉 ˝ h satisfies
the characteristic property of 〈f ˝ h, g ˝ h〉.

(ð) Suppose, conversely, the identities hold and for some h : D Ñ C the diagram:

D

A C B

f

h

g

fst snd

commutes. Then

h “ id ˝h “ 〈fst, snd〉 ˝ h “ 〈fst ˝h, snd ˝h〉 “ 〈f, g〉.

Products are defined not uniquely, but only uniquely up to (a unique) isomorphism. Let e.g.
pAˆA, fst, sndq be a product of A,A. Then pAˆA, snd, fstq is also a product of A,A:

swapA : AˆA AˆA
〈snd,fst〉

AˆA AˆA
swap

swap

The pair pswapA, swapA,Aq is an isomorphism of AˆA and AˆA:

swap ˝ swap “ 〈snd, fst〉 ˝ 〈snd, fst〉
“ 〈snd ˝〈snd, fst〉, fst ˝〈snd, fst〉〉
“ 〈fst, snd〉 “ id.

By using specific names ˆ, fst, snd throughout we stick to selected (binary) products. In Set,
standardly

AˆB “ t〈x, y〉 | x P A, y P Bu, fst〈x, y〉 “ x, snd〈x, y〉 “ y.

But we could just as well define

AˆB “ t〈y, x〉 | x P A, y P Bu, fst〈y, x〉 “ x, snd〈y, x〉 “ y.

34

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Theorem 3. Products (if they exists) are unique up to isomorphism.

Proof. Let pAˆB, fst, sndq be a product of A,B and let pA�B, fst1, snd1q be another product.
Then the following diagram commutes:

AˆB

A�B

A AˆB B

〈fst,snd〉 sndfst

〈fst1,snd1〉

snd1fst1

fst snd

Hence,

f
hkkkikkkj

〈fst, snd〉 ˝

g
hkkkkikkkkj

〈fst1 snd1〉 “ id (because both morphisms satisfy the same characteristic
property). Because of symmetry, also g ˝ f “ id. Hence pf, gq is an isomorphism between
AˆB and A�B.

From Haskell’s perspective ˆ is a type constructor, and since Haskell supports user defined
type constructors, we can introduce arbitrary many isomorphic products, e.g.

data Prod a b = Prod a b

proj1 :: Prod a b -> a

proj1 (Prod x _) = x

proj2 :: Prod a b -> b

proj2 (Prod _ y) = y

pair :: (a -> b) -> (a -> c) -> a -> Prod b c

pair f g x = Prod (f x) (g x)

Coproducts are dual to products, which is explicit in the following definition.

Definition (Coproducts). An object A ` B together with morphisms inl : A Ñ A ` B and
inr : B Ñ A`B called left and right injections is a coproduct of A and B if for any f : AÑ C
and any g : B Ñ C, there is a unique morphism rf, gs : A ` B Ñ C, such that the following
diagram commutes:

C

A A`B B

f

inl
rf,gs

g

inr

Intuitively, rf, gs is defined by case distinction: if we are on the left of A`B then we apply f ;
if we are on the right of A`B then we apply g.

Example.

� In Sets, A`B is the disjoint union AZB “ tp0, aq | a P Au Y tp1, bq | b P Bu.

35

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

� In Cpo, coproducts A`B are inherited from Sets, and x v y for x, y P A`B iff both x
and y are either in A or in B.

� In the category of relations, coproducts coincide with products and are thus called biprod-
ucts: A`B is again the disjoint union of A and B, and rr, ss Ď pA`Bq ˆC for r Ď AˆC,
s Ď B ˆ C is as follows: px, yq P rr, ss iff px, yq P r or 〈x, y〉 P s.

Dually to products we have a complete axiomatization for coproducts:

1. rf, gs ˝ inl “ f ;

2. rf, gs ˝ inr “ g;

3. rinl, inrs “ id;

4. h ˝ rf, gs “ rh ˝ f, h ˝ gs.

Now, if we want to define a morphism f : A ` B Ñ C, it suffices to define compositions
f ˝ inl : AÑ C and g ˝ inr : B Ñ C, for f is uniquely determined by them: f “ f ˝ rinl, inrs “
rf ˝ inl, f ˝ inrs. This justifies definitions “by case distinction”: to define f : A ` B Ñ C, we
can write equations like fpinl aq “ hpaq and fpinr bq “ upbq, meaning f ˝ inl “ h and g˝ inr “ u,
which, in turn, is the same as to define f .

Definition (Dual Category). Given a category C, the dual category Cop is defined as follows:

� |Cop| “ |C|;
� CoppX,Y q “ CpY,Xq.

Example. Let C be a poset category, i.e. CpX,Y q “ t‹u iff X ď Y . Then Cop is the dually
ordered poset: CoppX,Y q “ t‹u iff X ě Y .

For example, we now can formally state that products are dual to coproducts.

Proposition. For every C, a binary product Cop is a binary coproduct of Cop.

2.1.2 Functors and Monads

Definition (Functor). A (covariant) functor between categories C and D is a correspondence
sending any A P |C| to FA P |D| and any f P CpA,Bq to Ff P DpFA,FBq in such a way that:

F pidAq “ idFA, F pf ˝ gq “ pFfq ˝ pFgq.

Example (Forgetful Functor). Forgetful functor is an informal concept: this is a functor that
“forgets” some information about the category. One example is

G : Cpo Ñ Set

GpA,vq “ A

Gpfq “ f

G is a typical name for forgetful functors (to remember: forGetful).

36

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Example (Endofunctor). An endofunctor is a functor from a category into itself. E.g.,

F : Set Ñ Set

FX “ X ` E

pFfqpinlxq “ inlpfxq

pFfqpinr eq “ inrpeq

Example (Finite Lists). Another endofunctor over Set:

F : Set Ñ Set

FX “ rXs (finite lists over X)

pFfqrx1, . . . , xns “ rfx1, . . . , fxns

Definition (Contravariant Functor). A functor F : Cop Ñ D is said to be a contravariant
functor from C to D.

Small categories themselves form a category with finite products: the final object is the
category of one object and one arrow, and a product of categories C and D is the category CˆD
with

� |C ˆD| “ |C| ˆ |D|,
� pC ˆDqppX,Y q, pX 1, Y 1qq “ CpX,X 1q ˆDpY, Y 1q.

The category of all categories is not a category, more precisely, the locally small categories do
not form a locally small category (but they form a category in a higher sense). Still, products
of locally small categories make perfect sense regardless of this issue.

Definition (Bi-Functor). A bifunctor is a functor C ˆ D Ñ E for which one also uses the
notation F pA,Bq instead of F pAˆBq and F pf, gq instead of F pf ˆ gq.

Natural transforamtions ξ between bifunctors more explicitly satifying the following condi-
tion:

F pA,Bq GpA,Bq

F pA1 ˆB1q GpA1 ˆB1q

ξA,B

F pf,gq Gpf,gq

ξA1,B1

for any f : AÑ A1 and g : B Ñ B1.

Example (Product Functor). Let C have binary products. Then F : Cˆ C Ñ C sending A,B
to AˆB is a bi-functor with F pf, gq “ f ˆ g.

Example (Hom-Functor). The hom-functor is the bi-functor Homp--, --q : Cop ˆ C Ñ Set.

Now, instead of saying that α : F Ñ G is a natural transformation, one often says that a
family αA : FA Ñ GA is natural in A, e.g. for bi-functors, F : C ˆ D Ñ E , naturality of
αA,B : F pAˆBq Ñ GpAˆBq in A and B. Another example: associativity αA,B,C : Aˆ pBˆ
Cq Ñ pAˆBq ˆ C is natural in A,B,C.

37

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Definition (Monad/Kleisli Triple). A Monad in a category C is given by a triple pT, η, ‹q
(Kleisli triple) where

� T : |C| Ñ |C|,
� η is a family pηX : X Ñ TXqXP|C| (unit),

� for any f : AÑ TB, f‹ : TAÑ TB ((Kleisli) lifting)

and the following laws are satisfied:

η‹ “ id, f‹η “ f, pf‹gq‹ “ f‹g‹.

Example (Exception monad). TX “ X ` E is a monad with:

ηXpaq “ inl a f‹pinl aq “ fa f‹pinr eq “ inr e

This works in any category C with coproducts, TX “ X ` E extends to a monad under the
following definitions:

ηX “ inl : X Ñ X ` E

f‹ “ rf, inrs : X ` E Ñ Y ` E where f : X Ñ Y ` E

Intuitively, f is a function, which may raise an exception, and f‹ completes the definition
of f by the clause: “if an exception has already been raised before, pass it as the result”.

It is easy to check that T from a monad pT, η,´‹q is a functor. We call it the functorial
part of the monad.

Definition (Kleisli Category). Given a monad T over a category C, the Kleisli category CT
of T is defined as follows:

� |CT | “ |C|;
� CT pA,Bq “ CpA, TBq;
� identity morphisms in CT are ηX P CT pX,Xq “ CpX,TXq;
� composition of f : AÑ TB and g : B Ñ TC is Kleisli composition: g‹f : AÑ TC.

Theorem 4. CT is a category:

1. η‹f “ id ˝ f “ f

2. f‹η “ f

3. f‹pg‹hq “ pf‹g‹qh “ pf‹gq‹h

Let f ˆ g denote 〈f ˝ fst, g ˝ snd〉 : Aˆ B Ñ A1 ˆ B1 where f : A Ñ A1 and g : B Ñ B1. It is
easy to check some obvious properties of this notation like pfˆgq˝pf 1ˆg1q “ pf ˝f 1qˆpg˝g1q
and pf ˆ gq ˝ 〈f 1, g1〉 “ 〈f ˝ f 1, g ˝ g1〉.

Let

αA,B,C “ 〈idˆ fst, snd ˝ snd〉 : Aˆ pB ˆ Cq Ñ pAˆBq ˆ C;

α-1
A,B,C “ 〈fst ˝ fst, sndˆid〉 : pAˆBq ˆ C Ñ Aˆ pB ˆ Cq.

Obviously, α and α-1 are mutualy inverse. Analogously, we define unitors:

λA “
`

Aˆ 1
fst
ÝÑ A

˘

, ρA “
`

1ˆA
snd
ÝÝÑ A

˘

for which λ-1
A “ 〈idA, !〉, ρ-1A “ 〈!, idA〉.

38

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Theorem 5 (Mac Lane’s Coherence Theorem1). Any diagram with labels composed from
id,ˆ, α, α-1, λ, λ-1, ρ, ρ-1 commutes.

2.1.3 Natural Transformations: Relating Functors

Associativity morphisms αA,B,C are examples of natural transformations, which are a cat-
egorical formalization of parametric dependency.

Definition (Natural Transformation). Let C,D be categories and F,G : C Ñ D be functors.
A natural transformation ϑ : F Ñ G is a family of morphisms in D:

pϑC : FC Ñ GCqCP|C|,

such that, for any f : C Ñ C 1 in C, the following (naturality) diagram commutes:

FC GC

FC 1 GC 1

ϑC

Ff Gf

ϑC1

The morphisms ϑC : FC Ñ GC are called components of ϑ : F Ñ G.
Intuitively, natural transformations are such morphisms ϑC : FC Ñ GC that do not use

any information about C. Instead of saying “ϑ : F Ñ G is a natural transformation” one
often uses equivalent formulation “ϑC : FC Ñ GC is a morphism natural in C”.

Semantically, naturality corresponds to a specific form of parametric polymorphism. Haskell
functions are automatically polymorphic in the corresponding type variables, but not neces-
sarily natural. E.g. Haskell’s function

reverse :: [a] -> [a]

for list reversal is polymorphic in a as well as natural it in the categorical sense, but

sort :: Ord a => [a] -> [a]

for sorting lists is not natural, which is indicated by the type constraint ”Ord a =>” telling
that sorting is not independent of the type a – the result depends on the fact that a is an
ordered type and on that how it is ordered.

Another example of a natural transformation:

maybeToList :: Maybe a -> [a]

maybeToList (Just a) = [a]

maybeToList Nothing = []

1simplified version

39

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Definition. For any functor F and natural transformation ϑ : G Ñ H we define natural
transformations ϑF : GF Ñ HF and Fϑ : FGÑ FH as follows:

pϑF qX “ ϑFX

pFϑqX “ F pϑXq.

(Easy) exercise: show that ϑF and Fϑ are indeed natural transformations.

Remark A natural transformation F
ξ
ÝÑ G is often drawn as C D

F

G

ξ . This would

be consistent with the notation ξ : F ñ G, which is often used for natural transformations.
We simply write ξ : F Ñ G instead, for, after all, natural transformations are just morphisms
in the functor category rF,Gs.

Theorem 6. Cat is defined as follows:

� |Cat| are small Categories C (that is, those for which |C| is a set).

� CatpC,Dq is the class of all functors from C to D.

Cat is itself a category with id : C Ñ C being the identity functor and F ˝ G being functor

composition C D EG F .

Proof. trivial.

Theorem 7. Given two categories C and D, rC,Ds, defined as follows:

� |rC,Ds| are functors from C to D;

� rC,DspF,Gq are natural transformations ξ : F Ñ G.

is again a category.

Proof.

1. id ˝ ξ “ ξ: For any f : AÑ B

FA GA GA

FB GB GB

Ff

ξA

ξA

Gf

idA

Gf

ξB

ξB

idB

2. ξ ˝ id “ ξ

3. ξ ˝ pθ ˝ σq “ pξ ˝ θq ˝ σ

Properties 2 and 3 are analogous to proof.

Definition (Vertical composition). Pointwise composition of natural transformations (pξ ˝
θqA “ ξA ˝ θA) is called vertical composition:

40

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

C D

F

H

G
θ

ξ

Definition (Horizontal composition). Given ξ : F Ñ F 1 and θ : GÑ G1,

ξ ˝ θ : GF Ñ G1F 1

is defined by the diagram:

C D E
F

F 1

G

G1

ξ θ

Notation. Given ξ : F Ñ G, we can form Hξ : HF Ñ HG and ξU : FU Ñ GU , also written
ξU : FU Ñ GU , by putting

pHξqA “ HpξAq pξU qA “ ξUA

Proposition. Given ξ : F Ñ F 1 and θ : GÑ G1 then ξ ˝ θ “ pθF 1q ˝ pGξq

Example. elemsA : rAs Ñ PpAq defined as follows:

elemsAprl1, . . . , l2sq “ tl1, . . . , lnu

yields a natural transformation elems : r s Ñ P of endofunctors over Sets. Naturality: Let
f : AÑ B. Then

pPfq ˝ elems ˝prl1, . . . , lnsq “ pPfq ˝ tl1, . . . , lnu “ tfpl1q, . . . , fplnqu.

On the other hand:

pelemsB ˝rf sqrl1, . . . , lns “ elemsBprfpl1q, . . . , fplnqsq “ tfpl1q, . . . , fplnqu.

We now can give a new (equivalent) definition of a monad.

Definition (Monad). A monad on a category C consists of an endofunctor T : C Ñ C, and
natural transformations

η : Id Ñ T
looooomooooon

unit

, µ : TT Ñ T
looooomooooon

multiplication

making the diagrams

TTTX TTX

TTX TX

µTX

TµX µX

µX

TX TTX TX

TX

ηTX

idTX

µµX
idTX

TηX

41

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

commute, i.e. the equations

µ ˝ µT “ µ ˝ Tµ µ ˝ ηT “ id “ µ ˝ Tη.

Proposition. Given a Kleisli-Triple pT 1, η1, ‹q satisfying the monad laws, one obtains a
monad in the sense defined above in the following way:

Tf “ pη ˝ fq‹ for f : X Ñ Y

TX “ T 1X

ηX “ η1X

µX “ pidTXq
‹

2.1.4 Examples of Monads

IO Monad

instance Monad IO

getLine :: IO String

putStrLn :: String -> IO ()

do x <- getLine; putStrLn $ "yes, exactly, " ++ x ++ "!"

Rough intuition: IO A “ World Ñ AˆWorld:

getLine : 1 Ñ pWorld Ñ pString ˆWorldqq

getLinepxqpwq “ 〈receiveLineFromWorldpwq, w〉
putStringpsqpwq “ 〈1, sendLineToWorldps, wq〉

State Monad
TX “ pX ˆ SqS

This works in Sets, Cpos and more generally in Cartesian closed categories.

ηX : X Ñ pX ˆ SqS pf : X Ñ pY ˆ SqSq‹ : pX ˆ SqS Ñ pY ˆ SqS

ηXpxqpsq “ 〈x, s〉 f‹ppqpsq “ let〈x, s1〉 - ppsq in fpxqps1q

where

let〈x, y〉 - p in q “ let z - p in qrfst z{x, snd z{ys

The state monad supports the following operations:

put : S Ñ T1 putpsqps1q “ p˚, sq

get : 1 Ñ TS getp˚qpsq “ ps, sq

42

2.1. Introducing Monads Version: 2023/07/28, 17:53:34

Example (Writer Monand).

TX “M ˆX (where M is a Monoid)

Example (Reader Monad).
TX “ XS

The Reader Monad is a submonad of the State monad:

αX : XS Ñ pX ˆ SqS

αXppqpsq “ pppsq, sq

Theorem 8. TX “ XS is a monad.

Continuation Monad In Sets: TX “ pX Ñ Rq
loooomoooon

Continuation

Ñ R
loomoon

Result

ηXpxq “ λk. kpxq

pf : X Ñ pRY Ñ Rqq‹pp : RX Ñ Rq “ λk : Y Ñ R. ppλx.fpxqpkq
looooomooooon

XÑR

q

The following lemma helps to prove that the continuation monad is indeed a monad in an
abstract way.

Lemma. Let F : C Ñ D be a functor and let T be a map |C| Ñ |C|. Suppose that for any
X,Y P |C|, the hom-sets HompX,TY q and HompFX,FY q are isomorphic naturally in X.
Then T is a monad with the following induced structure

η “ qid f‹ “
}

pf pid

where pf : FX Ñ FY and qg : X Ñ TY are the obvious isomorphic images of f : X Ñ TY and
g : FX Ñ FY correspondingly.

Moreover, the Kleisli category of T is isomorphic to the full subcategory of D over the
objects of the form FX.

Proof. The naturality condition means precisely that f̂pFhq “ xfh for any h : X Ñ Y and

f : Y Ñ TY . This entails that gpFhq “ qgh for g “ qf and moreover,

f‹g “
}

pf pidg “

pf pidFg “
~

pf xid g “
}

pf pg .

Therefore,

η‹ “
}

p

qid pid “
q

pid “ id

f‹η “
}

pf pη “
q

pf “ f

pf‹gq‹ “

p pf pgq pid “

pf ppg pidq “ f‹
}

pg pid “ f‹ g‹,

and we are done.

43

2.2. Tensorial Strength Version: 2023/07/28, 17:53:34

This can be instantiated as follows.

Example. For the state monad TX “ pX ˆ SqS , HomCpX,TY q – CpX ˆ S, Y ˆ Sq.
For the continuation monad TX “ pX Ñ Rq Ñ R, HomCpX,TY q – HomCoppRX , RY q “

HomCpR
Y , RXq.

2.1.5 Cartesian Closure

Definition (Cartesian Closure). Let C be a Cartesian category. Given X,Y P |C|, XY P |C|,
together with a morphism ev : XY ˆ Y Ñ X is called an exponential object, if for every
f : Z ˆ Y Ñ X there is unique g : Z Ñ XY , such that the following diagram commutes:

Z ˆ Y XY ˆ Y

X

gˆid

f
ev

The forall-exists clause can be interpreted as existence of an operation CpZ ˆ Y,Xq Ñ
CpZ,XY q, which is standardly called curry. The category C is called Cartesian closed if
all exponentials XY exist.

Proposition. In any CCC C, AB extends to a bi-functor p--qp--q : CopˆC Ñ C sending f : A1 Ñ
A and g : B Ñ B1 to

currypBA ˆA1
idˆf
ÝÝÝÑ BA ˆA

ev
ÝÑ B

g
ÝÑ B1q : BA Ñ B1A

1

.

Proposition. In any CCC curry and uncurry are natural in all parameters.

2.2 Tensorial Strength

Suppose that we want to add a new type former to the type grammar of PCF

A,B,C, . . . ::“ 1 | AˆB | AÑ B | TA

We can interpret such a language in any CCC with a monad T on it, with suitable carriers
JBoolK, JNatK, and a fixpoint operator fix : pAÑ Aq Ñ A. Recall the semantics of types:

� J1K “ 1;

� JAˆBK “ JAKˆ JBK;

� JAÑ BK “ JBKJAK.

We add JTAK “ T JAK to that. Now, the semantics of a term in context Γ $ t : A with
Γ “ px1 : A1, . . . , xn : Anq must be a morphism JA1Kˆ . . .ˆ JAnK Ñ JAK. This works alright,
and we could also incorporate the do-notation in the language:

Γ $ p : TA Γ, x : A $ q : TB

Γ $ doxÐ p; q : TB

44

2.2. Tensorial Strength Version: 2023/07/28, 17:53:34

Here we have:

f “ JΓ $ p : TAK : JΓK Ñ T JAK
g “ JΓ, x : A $ q : TBK : JΓKˆ JAK Ñ T JBK

from which we expect to obtain:

JΓ $ doxÐ p; q : TBK : JΓK Ñ T JBK

We would expect to have

JΓK
〈id,f〉
ÝÝÝÑ JΓKˆ T JAK ?

ÝÝÝÑ T pJΓKˆ JAKq g‹
ÝÑ T JBK

That is, we need means to incorporate the context Γ into a computation of type A.

2.2.1 Strong Monads

We arrive at the following notion.

Definition (Tensorial Strength). A strong functor is a functor F : C Ñ D between Cartesian
categories C and D, plus strength, which is a natural transformation τA,B : AˆFB Ñ F pAˆBq,
such that

1ˆ FX FX

F p1ˆXq

τ

snd

F snd

pX ˆ Y q ˆ FZ F ppX ˆ Y q ˆ Zq

X ˆ pY ˆ FY q X ˆ F pY ˆ Zq F pX ˆ pY ˆ Zqq

assoc

τ

Fassoc

Xˆτ τ

Strong natural transformations are those that preserve strength in the obvious sense. Given
a strong functor pF, τq, note that pId, id : X ˆ Y Ñ X ˆ Y q and pFF, pFτqτ : X ˆ FFY Ñ

FF pX ˆ Y qq are again strong functors.
Now, a monad is strong if it is strong as a functor and η, µ are strong natural transforma-

tions, concretely,

X ˆ Y T pX ˆ Y q

X ˆ TY

idˆη

η

τ

X ˆ TTY X ˆ TY

T pX ˆ TY q TT pX ˆ Y q T pX ˆ Y q

τ

idˆµ

τ

Tτ µ

The reason why we do not see strength when programming in Haskell is because Haskell
functors F : C Ñ C are indeed natural transformations AB Ñ FAFB (as opposed to cate-
gorical functors HompA,Bq Ñ HompFA,FBq). Categorically, this is in fact, a quite specific
condition.

Definition (Functorial Strength). An endofunctor F : C Ñ C on a CCC C is functorially
strong, if it comes with a functorial strength, i.e. a family of morphisms

ρA,B : BA Ñ FBFA,

45

2.2. Tensorial Strength Version: 2023/07/28, 17:53:34

such that

Homp1ˆA,Bq HompA,Bq HompFA,FBq Homp1ˆ FA,FBq

Homp1, BAq Homp1, FBFAq

–

curry

F –

curry

Homp1, ρA,Bq

Moreover, ρ must respect internal units (currypsndq : 1 Ñ AA) and composition (BA ˆCB Ñ
CA) in an obvious sense.

Analogously, we can internalise natural transformations and define “functorialy strong
monad” as those functorially strong functors, for which there are internalized version of η
and µ.

It turns out however that tensorial strength and functorial strength are equivalent:

τA,B “ uncurry
`

A
curry id

ÝÝÝÝÝÝÝÑ pAˆBqB
ρ

ÝÝÝÑ T pAˆBqTB
˘

,

ρA,B “ curry
`

BA ˆ TA
τ

ÝÝÝÑ T pBA ˆAq
T ev

ÝÝÝÝÝÑ TB
˘

.

Example. Every endofunctor and every monad on Set are strong with the functorial strength
being just the functorial action, because there is no distinction between hom-sets HompA,Bq
and exponentials BA. Hence τA,Bpx P A, p P TBq “ pTλy. 〈x, y〉qppq (now we see, what this
expression actually means!)

Every monad on predomains is thus also strong – this amounts to verifying that the above τ
is continuous.

Categorically, the right setup for these considerations is enriched categories. These general-
ize standard categories by replacing hom-sets with hom-objects of a yet another category V,
in which the original category is said to be enriched. This produces the whole spectrum of
derived notions: V-functors, V-natural transormations, V-monads, etc. From this perspec-
tive our categories are Set-categories, i.e. categories enriched in Set. Every Cartesian closed
category can be regarded as enriched over itself, because we can use exponentials AB instead
of hom-sets HompB,Aq. In that sense strong functors turn out to be precisely the enriched
functors and strong monads turn out to be precisely the enriched monads. As a slogan: in
CCC strength is equivalent to enrichment2.

Is there non-strong monads? They are not easy to meet in the wild.

Example (Non-Strong Monad). In the category of two-sorted sets Set2 “ Set ˆ Set the
monad pX,Y q ÞÑ pX,Y `Xq is not strong.

2.2.2 Commutative Monads

We can classify computational effects according the equations they satisfy. Recall that the
lifting monad satisfies the commutativity property:

letx - p in let y - q inb〈x, y〉c “ let y - q in letx - p inb〈x, y〉c,
2Anders Kock. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1 (1972), pp. 113–

120.

46

2.2. Tensorial Strength Version: 2023/07/28, 17:53:34

where τ̂A,B : TAˆB Ñ T pAˆBq is the following dual of τA,B:

TAˆB
〈snd,fst〉
ÝÝÝÝÝÑ B ˆ TA

τB,TA
ÝÝÝÝÑ T pB ˆAq

T 〈snd,fst〉
ÝÝÝÝÝÝÑ T pAˆBq.

Definition (Commutative Monad). A strong monad T is commutative if

TAˆ TB T pTAˆBq TT pAˆBq

T pAˆ TBq

TT pAˆBq T pAˆBq

τ

τ̂

T τ̂

µ

Tτ

µ

This is the same as claiming

doxÐ p; do y Ð q; return〈x, y〉 “ do y Ð q; doxÐ p; return〈x, y〉

in the do-notation style, with x and y not occurring in p and q. Let us check it. Let

f “ JΓ $ p : TAK, g “ JΓ $ q : TBK,

and show that

JΓ $ doxÐ p; do y Ð q; return〈x, y〉 : T pAˆBqK
“ JΓ $ do y Ð q; doxÐ p; return〈x, y〉 : T pAˆBqK

assuming that the underlying monad T is commutative. The left-hand side evaluates to

w “
`

JΓK
〈id,f〉
ÝÝÝÑ JΓKˆ T JAK τ

ÝÑ T pJΓKˆ JAKq h‹
ÝÑ T pJAKˆ JBKq

˘

where

h “
`

JΓKˆ JAK gˆid
ÝÝÝÑ T JBKˆ JAK τ̂

ÝÑ T pJBKˆ JAKq
T 〈snd,fst〉
ÝÝÝÝÝÝÑ T pJAKˆ JBKq

˘

Analogously, the right-hand side evaluates to

w1 “
`

JΓK
〈id,g〉
ÝÝÝÑ JΓKˆ T JBK τ

ÝÑ T pJΓKˆ JBKq
ph1q‹
ÝÝÝÑ T pJAKˆ JBKq

˘

where

h1 “
`

JΓKˆ JBK fˆid
ÝÝÝÑ T JAKˆ JBK τ̂

ÝÑ T pJAKˆ JBKq
˘

So, we need to show that w “ w1, i.e. that

pT 〈snd, fst〉 ˝ τ̂ ˝ pg ˆ idqq‹ ˝ τ ˝ 〈id, f〉 “ pτ̂ ˝ pf ˆ idqq‹ ˝ τ ˝ 〈id, g〉.

Indeed,

pT 〈snd, fst〉 ˝ τ̂ ˝ pg ˆ idqq‹ ˝ τ ˝ 〈id, f〉

47

2.2. Tensorial Strength Version: 2023/07/28, 17:53:34

“ µ ˝ T pT 〈snd, fst〉 ˝ τ̂ ˝ pg ˆ idqq ˝ τ ˝ 〈id, f〉 // since p´q‹ “ µ ˝ T

“ µ ˝ TT 〈snd, fst〉 ˝ T τ̂ ˝ T pg ˆ idq ˝ τ ˝ 〈id, f〉 // functoriality of T

“ T 〈snd, fst〉 ˝ µ ˝ T τ̂ ˝ T pg ˆ idq ˝ τ ˝ 〈id, f〉 // naturality of µ

“ T 〈snd, fst〉 ˝ µ ˝ T τ̂ ˝ τ ˝ pg ˆ idq ˝ 〈id, f〉 // naturality of τ

“ T 〈snd, fst〉 ˝ µ ˝ Tτ ˝ τ̂ ˝ pg ˆ idq ˝ 〈id, f〉 // commutativity of T

“ T 〈snd, fst〉 ˝ µ ˝ Tτ ˝ τ̂ ˝ pg ˆ idq ˝ 〈g, f〉
“ T 〈snd, fst〉 ˝ µ ˝ Tτ ˝ τ̂ ˝ pidˆ fq ˝ 〈g, id〉
“ µ ˝ TT 〈snd, fst〉 ˝ Tτ ˝ τ̂ ˝ pidˆ fq ˝ 〈g, id〉 // naturality of µ

“ µ ˝ T pT 〈snd, fst〉 ˝ τq ˝ τ̂ ˝ pidˆ fq ˝ 〈g, id〉 // functoriality of T

“ µ ˝ T pτ̂ ˝ 〈snd, fst〉q ˝ τ̂ ˝ pidˆ fq ˝ 〈g, id〉 // defn. of τ̂

“ µ ˝ T τ̂ ˝ T 〈snd, fst〉 ˝ τ̂ ˝ pidˆ fq ˝ 〈g, id〉 // functoriality of T

“ µ ˝ T τ̂ ˝ τ ˝ 〈snd, fst〉 ˝ pidˆ fq ˝ 〈g, id〉 // defn. of τ̂

“ µ ˝ T τ̂ ˝ τ ˝ pf ˆ idq ˝ 〈snd, fst〉 ˝ 〈g, id〉
“ µ ˝ T τ̂ ˝ τ ˝ pf ˆ idq ˝ 〈id, g〉
“ µ ˝ T τ̂ ˝ T pf ˆ idq ˝ τ ˝ 〈id, g〉 // naturality of τ

“ µ ˝ T pτ̂ ˝ pf ˆ idqq ˝ τ ˝ 〈id, g〉 // functoriality of T

“ pτ̂ ˝ pf ˆ idqq‹ ˝ τ ˝ 〈id, g〉. // since p´q‹ “ µ ˝ T

Further important properties:

� copyability: doxÐ p; do y Ð p; return〈x, y〉 “ dox - p; return〈x, x〉;
� discardability: doxÐ p; return ‹ “ return ‹.

Example. Powerset monad is commutative, but neither copyable, nor discardable.

Example (Probabilistic Computations). The following is a probability distribution monad
on Set:

� DX “ td : X Ñ r0, 1s |
ř

d “ 1u (it follows that the set tx | dpxq ‰ 0u is countable);

� pηxqpxq “ 1 and pηxqpyq “ 0 if x ‰ y (Dirac’s distribution);

� pf : X Ñ DY q‹pd : X Ñ r0, 1sqpy P Y q “
ř

xPX dpxq ¨ fpxqpyq.

This monad is commutative and discardable, but not copyable.

2.2.3 Applicative Functors

Applicative functors are a light-weight alternative to (strong) monads. Mathematically,
they are the same as strong lax-monoidal functors.

Definition (Lax-monoidal functors). A functor F : C Ñ D between two Cartesian categories
is called lax-monoidal if it is equipped with the following structure:

� a morphism ε : 1 Ñ F1,

� a family of natural in X and Y morphisms σ : FX ˆ FY Ñ F pX ˆ Y q,

48

2.3. Algebras and CPS-Transormations Version: 2023/07/28, 17:53:34

such that the following diagrams commute:

1ˆ FX F1ˆ FX

FX F p1ˆXq

εˆid

snd σ

F 〈!,id〉

FX ˆ 1 FX ˆ F1

FX F pX ˆ 1q

idˆε

fst σ

F 〈id,!〉

pFX ˆ FY q ˆ FZ FX ˆ pFY ˆ FZq

F pX ˆ Y q ˆ FZ FX ˆ F pY ˆ Zq

F ppX ˆ Y q ˆ Zq F pX ˆ pY ˆ Zqq

assoc

σˆid idˆσ

σ σ

F assoc

A strong lax-monoidal functor is a lax-monoidal functor F : C Ñ D, which is strong and for
which the following diagram commutes:

pAˆ FBq ˆ pC ˆ FDq pAˆ Cq ˆ pFB ˆ FDq

F pAˆBq ˆ F pC ˆDq pAˆ Cq ˆ F pB ˆDq

F ppAˆBq ˆ pC ˆDqq F ppAˆ Cq ˆ pB ˆDqq

–

τˆτ idˆσ

σ τ

–

where – refers to obvious isomorphisms.

This (in presence of exponentials!) is equivalent to the notion of applicative functor in Haskell
which requires pure : A Ñ FA and 〈˚〉 : F pBAq ˆ FA Ñ FB, and which can be defined as
follows:

pure “
`

A
〈id,!〉
ÝÝÝÑ Aˆ 1

idˆε
ÝÝÑ Aˆ F1

τ
ÝÑ F pAˆ 1q

F fst
ÝÝÝÑ FA

˘

〈˚〉 “
`

F pBAq ˆ FA
σ
ÝÑ F pBA ˆAq

F ev
ÝÝÑ FB

˘

Every strong monad is canonically an applicative functor as follows:

ε “ η σ “ µ ˝ pT τ̂q ˝ τ

Dually, we obtain an applicative functor by taking σ “ µ ˝ pTτq ˝ τ̂ . Unless the monad is
commutative, this applicative functor structure is properly different.

2.3 Algebras and CPS-Transormations

Definition (Monad Algebras). An (Eilenberg-Moore) algebra for a monad T , or a T -algebra
is a tuple pA, a : TAÑ Aq satisfying the following conditions:

A TA

A

ηA

a

TTA TA

TA A

Ta

µA a

a

49

2.3. Algebras and CPS-Transormations Version: 2023/07/28, 17:53:34

We call the object A of a T -algebra pA, a : TAÑ Aq the carrier of the latter and the morphism
a : TA Ñ A the corresponding structure. As expected, morphisms of T -algebras are those
morphisms of carrier that preserve the structure:

TA TB

A B

Th

a b

h

We thus a category of T -algebras, of the Eilenberg-Moore category of T .

Example (Pointed Sets). Let T be the maybe-monad TX “ X`1. Then pA, a : A` 1 Ñ Aq
is a T -algebra iff

A A` 1

A

inl

a

pA` 1q ` 1 A` 1

A` 1 A

a`1

rid,inrs a

a

The former diagram means precisely that a is of the form rid, ps for some p : 1 Ñ A and the
latter diagram commutes automatically. Therefore, to give a maybe-algebra over A is to give
a morphism 1 Ñ A, i.e. specify a point in A. A morphism of algebras h : pA, a : A`1 Ñ Aq Ñ
pB, b : B ` 1 Ñ Bq is exactly a morphism h : AÑ B of the carriers that respects the points.

Example (Monoids). Let TX be the list monad over Set: TX “ X‹. It can be shown that
the category of list-algebras is isomorphic to the category of monoids, defined as follows:

� objects are monoids pM,d : M ˆM ÑM, e PMq;

� morphisms from pM,d, eq to pM 1,d1, e1q are those maps h : M ÑM 1, which preserve the
monoid structure: hpad bq “ hpaq d1 hpbq, hpeq “ e1.

Definition (Free Algebras). A free T -algebra on an object A P |C| is the tuple
pTA, µA : TTAÑ TAq.

The axioms of T -algebras are automatics for free algebras.

Definition (Strong Monad Morphisms). Given two monads S and T on the same category,
a natural transformation α : S Ñ T is a monad morphism if

X SX

TX

ηX

ηX
αX

SSX TSX TTX

SX TX

µX

αSX TαX

µX

αX

A monad morphism between two strong monads is strong if it is a strong natural transfor-
mation.

Monad algebras, strong monad morphisms and continuations are connected in the following
theorem.

50

2.3. Algebras and CPS-Transormations Version: 2023/07/28, 17:53:34

Theorem 9 (Dubuc’s Theorem34). Given a strong monad T , T -algebra structures over
pA, a : TA Ñ Aq are in one-to-one correspondence with strong monad morphisms α : T Ñ

p-- Ñ Aq Ñ A as follows:

� given pA, a : TAÑ Aq,

αX “ curry
´

TX ˆ pX Ñ Aq
–
ÝÑ pX Ñ Aq ˆ TX

pT evqτ
ÝÝÝÝÑ TA

a
ÝÑ A

¯

;

� given α : T Ñ p-- Ñ Aq Ñ A,

a “
´

TA
〈id, curry snd〉
ÝÝÝÝÝÝÝÝÑ TAˆ pAÑ Aq

uncurryα
ÝÝÝÝÝÑ A

¯

.

If A is a free T -algebra A “ TR then αpp : TXqpf : X Ñ TRq “ f‹ppq. Moreover,
αpp : TRqpη : RÑ TRq “ η‹ppq “ p. This can be illustrated with a series of Haskell programs.
The program over the list monad

ex1 :: [Int]

ex1 = do

a <- return 2

b <- return 2

return $ a+b

forms a list [4]. We can reuse just the same code for the continuation monad:

ex2 :: Cont String Int

ex2 = do

a <- return 2

b <- return 2

return $ a+b

However, since the result type is String, in the end we will need to convert from Int to
String, e.g. with runCont ex2 show. In contrast to the list monad we now can ”escape”
from the computation:

ex3 :: Cont String Int

ex3 = do

cont (\r -> "escape")

a <- return 2

b <- return 2

return $ a+b

3Eduardo J Dubuc. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math. Argentina 25
(1970), pp. 5–26.

4simplified version

51

2.3. Algebras and CPS-Transormations Version: 2023/07/28, 17:53:34

Now, if we start with the program

ex4 :: [Int]

ex4 = do

a <- [1,2]

b <- [1,2]

return $ a + b

which yields [2,3,3,4], we can use the CPS-transform of the list monad to convert to the
continuation monad:

i x = cont (\r -> x >>= r)

ex5 :: Cont [Int] Int

ex5 = do

a <- i [1,2]

b <- i [1,2]

return $ a + b

Here [Int] is the free list-algebra on Int and i is the induced monad morphism. With r c

unCont ex5 return we obtain [42] like in the original case of the list monad. But now we
also can escape from the computation:

ex6 :: Cont [Int] Int

ex6 = do

cont (\r -> [42])

a <- i [1,2]

b <- i [1,2]

return $ a + b

The same can be achieved with the library function callCC :: MonadCont m => ((a -> m

b) -> m a) -> m a (=call with current continuation):

ex7 :: Cont [Int] Int

ex7 = callCC $ \k -> do

k 42

a <- i [1,2]

b <- i [1,2]

return $ a + b

52

2.4. Free Objects and Adjoint Functors Version: 2023/07/28, 17:53:34

2.4 Free Objects and Adjoint Functors

Definition (Free Objects). Given a functor G : C Ñ D, a free C-object on X P |D| consists of
an object FX P |C| together with a morphism ηX : X Ñ GpFXq in D such that for any other
Z P |C| and morphism f : X Ñ GZ in D, there exists a unique f : : FX Ñ Z in C such that

GpFXq GZ

X

Gf:

f
ηX

We used the suggestive notation FX, since F can be seen as an operation that sends given
objects to free objects. If all free objects exist, F moreover extends to a functor, defined as
follows: given a morphism f : X Ñ Y in D, let Ff “ ηY ˝ f , which is the unique morphism,
for which the following diagram commutes:

GpFXq GpFY q

X Y

GpηY ˝fq
:

f

ηX ηY

It can be show that F satisfies the axioms of functors:

� F pidXq “ idFX , because idFX makes the same diagram commute as F idX “ ηX :

GpFXq GpFXq

X X

GpidFXq

idX

ηX ηX

� F pg ˝ fq “ Fg ˝ Ff , because Fg ˝ Ff “ pηZ ˝ gq
: ˝ pηY ˝ fq

: makes the same diagram
commute as F pg ˝ fq “ pηZ ˝ g ˝ fq

::

GpFXq GpFY q GpFZq

X Y Z

GpηY ˝fq
:

GppηZ˝gq
:˝pηY ˝fq

:q

GpηZ˝gq
:

f

ηX ηY

g

ηZ

Example (Free Monoids). Let C be the category of monoids over Set and let G be the obvious
forgetful functor. Then pX‹, η : X Ñ GX‹q is a free object on X and for every f : X Ñ GZ,
f : : X‹ Ñ Z is a unique extension of f to a monoid map from X‹ to Z.

Example (Free Algebras). Let C be the category of T -algebras over D and G : C Ñ D a
forgetful functor. Let F : D Ñ C be the free T -algebra functor. Then pFX, ηX : X Ñ GFX “

TXq is the free object on X.

Example (Exponentials). Exponentials in a category C with binary products, can be viewed
as co-free objects, i.e. free objects in Cop. To obtain the definition of co-free object we just
invert all arrows in the definition of free object. To obtain exponentials XA in C, we take
D “ C, GX “ X ˆA and then take FX “ XA. The corresponding diagram is then

53

2.4. Free Objects and Adjoint Functors Version: 2023/07/28, 17:53:34

XA ˆA Z ˆA

X

ev

pcurry fqˆid

f

More precisely, an exponential consists of an object XA and an evaluation morphism ev : XAˆ

AÑ X, such that for every f : Z ˆ AÑ X, there is a morphism curry f : Z Ñ XA, which is
the unique morphism with the property that f “ ev ˝pcurry f ˆ idq.

Definition (Adjointness). A functor F : D Ñ C is a left adjoint ofG : C Ñ D if HompFX, Y q–
HompX,GY q naturally in X and Y . This is written as F % G or G $ F and G is called a
right adjoint to F .

Theorem 10. A functor G : C Ñ D has a left adjoint F : D Ñ C iff there exist free objects
pFX, ηX : X Ñ GFXq for every X:

� from an adjunction HompFX, Y q – HompX,GY q we obtain a correspondence

pf : X Ñ GY q ÞÑ pf : : FX Ñ Y q

such that pηX : X Ñ GFXq: “ idFX for a suitable ηX ;

� from free objects pFX, ηX : X Ñ GFXq, we obtain the maps

pf : FX Ñ Y q ÞÑ ppGfqη : X Ñ GY q,

pf : X Ñ GY q ÞÑ pf : : FX Ñ Y q.

Theorem 10 allows us to switch between two equivalent ways of defining categorical structures:
by adjunctions or by free objects. The latter way is more fine grained, because we can speak
about existence of specific free objects, while the adjoint formulation is only sensible when all
free objects exist.

Example (Exponential). Existence of exponentials now can be reformulated as p--q ˆ A %
p--qA. Theorem 10 shows that this definition is equivalent to the definition via free objects.

By Theorem 10, we now see that F % G for F being the free T -algebra functor and G being
the corresponding forgetful functor. This is called the Eilenberg-Moore adjunction. Because
of Theorem 10, it is easy to see that we could just as well consider the category of free T -
algebras instead of the category of all algebras. The resulting adjunction is called the Kleisli
adjunction. The reason for it is the following

Proposition. The Kleisli category of a monad is isomorphic to the category of all free algebras
of that monad. The relevant isomorphism is defined as follows:

� (from Kleisli for free algebras):

X ÞÑ pTX, µAq, pf : X Ñ TY q ÞÑ pf‹ TX Ñ TY q;

� (from free algebras to Kleisli):

pTX, µAq ÞÑ X pf : pTX, µXq Ñ pTY, µY qq ÞÑ pfη X Ñ TY q

54

Bibliography

Barendregt, Hendrik. The Lambda calculus: Its syntax and semantics. Amsterdam: North-
Holland, 1984.

Dubuc, Eduardo J. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math.
Argentina 25 (1970), pp. 5–26.

Kock, Anders. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1
(1972), pp. 113–120.

55

	Semantics for Computation
	The Untyped Lambda Calculus
	Evaluation Strategies
	Formal Systems
	Standard Evaluation Strategy
	Call-by-Name (Lazy) Evaluation Strategy
	Call-by-Value (Eager) Evaluation Strategy
	Big-Step Call-by-Name
	Big-Step Call-by-Value

	PCF (Programming Computable Functions)
	Simply-Typed -calculus
	Call-by-Name Operational Semantics for PCF
	Call-by-Value Operation Semantics for PCF
	Contextual Equivalence
	Coproducts, Abrupt Termination and I/O

	Denotational Semantics of PCF
	Constructions on Predomains
	CBN Denotational Semantics
	Failure of Full Abstraction
	CBV Denotational Semantics

	Categories and Monads
	Introducing Monads
	Products and Coproducts
	Functors and Monads
	Natural Transformations: Relating Functors
	Examples of Monads
	Cartesian Closure

	Tensorial Strength
	Strong Monads
	Commutative Monads
	Applicative Functors

	Algebras and CPS-Transormations
	Free Objects and Adjoint Functors

