Lecture Notes for

Monad-Based Programming

Recorded by Hans-Peter Deifel (hpd@hpdeifel.de)
Edited by Sergey Goncharov (sergey.goncharov@fau.de)

by PD Dr. Sergey Goncharov

2023/07/28


mailto:hpd@hpdeifel.de
mailto:sergey.goncharov@fau.de

Contents

1 Semantics for Computation 3
1.1 The Untyped Lambda Calculus . . . . . . ... ... ... ... ... 5
1.2 Evaluation Strategies . . . . . . . . . . . L L 7

1.2.1 Formal Systems . . . . . . . .. L 8
1.2.2 Standard Evaluation Strategy . . . . . . . . . ... ... .. 10
1.2.3  Call-by-Name (Lazy) Evaluation Strategy . . . . ... ... ... ... 11
1.2.4  Call-by-Value (Eager) Evaluation Strategy . . . . . . . ... ... ... 11
1.2.5 Big-Step Call-by-Name . . . . . .. ... ... ... ... ... 12
1.2.6 Big-Step Call-by-Value . . . . . .. ... .. ... ... .. ..., 12
1.3 PCF (Programming Computable Functions) . . . . . ... .. ... ... ... 13
1.3.1  Simply-Typed A-calculus. . . . . . ... ... ... 0L 13
1.3.2 Call-by-Name Operational Semantics for PCF . . . . . . .. ... ... 14
1.3.3 Call-by-Value Operation Semantics for PCF . . . . . . ... ... ... 16
1.3.4 Contextual Equivalence . . . . ... ... ... ... ... ..., 17
1.3.5 Coproducts, Abrupt Termination and I/O . . . . . ... ... ... .. 18
1.4 Denotational Semantics of PCF . . . . . .. .. .. ... ... ... 20
1.4.1 Constructions on Predomains . . . . . . ... ... ... ... ... .. 21
1.4.2 CBN Denotational Semantics . . . . . .. ... ... ... ....... 25
1.4.3 Failure of Full Abstraction. . . . . . ... ... ... ... ....... 27
1.4.4 CBV Denotational Semantics . . . . . . .. ... ... ... ... .. 28

2 Categories and Monads 31

2.1 Introducing Monads . . . . . . . . . . 31
2.1.1 Products and Coproducts . . . . . . .. ... ... o 32
2.1.2 Functors and Monads . . . . .. ... ... .. ... ... ... 36
2.1.3 Natural Transformations: Relating Functors . . . . . . . .. .. .. .. 39
2.1.4 Examples of Monads . . . . . . . .. ... 42
2.1.5  Cartesian Closure . . . . . . . . . ... 44

2.2 Tensorial Strength . . . . . . .. .. L 44
2.2.1 Strong Monads . . . . .. ... 45
2.2.2  Commutative Monads . . . . . . . . ... ... . 46
2.2.3 Applicative Functors . . . . . . . .. ... 48

2.3 Algebras and CPS-Transormations . . . . . . . . . . . . ... .. ... .... 49

2.4  Free Objects and Adjoint Functors . . . . . ... ... ... ... ... .. 53



1 Semantics for Computation

In mathematics we do not distinguish between expressions and their meanings. The meaning
of 2+2 is 4 and both things mean (or denote) the same. In computer science we do distinguish
expressions or terms from what they mean, for which we use semantic brackets

[—]: Terms — Meanings

The style of semantics involving such brackets is called denotational semantics. Denotational
semantics has been developed in 70’s by Christopher Strachey and Dana Scott.

The equality 2 + 2 = 4 and the like, which we know from mathematics means that 2 + 2
and 4 denote the same, however, what connects 2+ 2 and 4 is a computational process (which
is, of course, very simple in this case). Mathematics traditionally ignores the computational
overhead of evaluating 2 + 2 to 4, but in programming we cannot afford this, because pro-
gramming (program analysis, verification) is largely about evaluation of expressions (or, more
generally, about the process of computation). There are traces of this issue in mathematics,
though, e.g. in the form of infinite series. Those usually make mathematicians uneasy, and
they become much happier if they manage to find a closed form, i.e. an analytic expression,
to which the sum converges. For examples:

1+1+%+%+%+...=ew2.71828
Riemann showed that if the partial sums ", ay, converge, but partial sums of absolute values
> o lan| diverge, then one can rearrange the elements in .2, ay, so that it converges to any
given number. Examples:

1-1)+1/2-1/2)+(1/3-1/3)+...=0
1+1/2-1)+1/3+1/4-1/2)+(1/5+1/6+1/7T—1/3)+...=1n2
A+1/2-1)+1/3+...+1/8—-1/2)+ (1/9+ ... +1/16 —1/4) + ... = ®

This makes the theory of infinite series a sophisticated subject. In computer science we deal
with potentially infinite computations routinely, as we must, since Turing complete languages
must express all partial recursive functions, which are those for which we generally cannot
decide termination. But, on a positive side, we do not have a behaviour as sophisticated
as above, which is caused by adding and subtracting quantities infinitely. The core idea of
denotational semantics is that the amount of information generated with a computation keeps
increasing over time, and what has been computed previous cannot be “undone” (like with
the expression 1 — 1 where —1 cancels previously computed 1).

Denotational semantics requires a system of domains, for collecting values. Classical math-
ematics is based on the classical set theory, which postulates that everything is a set (numbers,
relations, functions, curves, etc.) Sets thus play the role of domains. In computer science,
domains are chosen differently (we will see how!), as they must correctly capture the notion



Version: 2023/07/28, 17:53:34

of partiality of data and possible non-termination of functions. Because of the parallels be-
tween mathematical functions and programs, built in the denotational semantics, the latter
is sometimes called a mathematical semantics.

A different established style of semantics is operational semantics: it describes a reduction
of terms to values, e.g. 2 + 2 reduces to 4, assuming that 2 = s(s(0)) (2 is the successor of
the successor of 0):

5(s(0)) + 5(5(0)) — 5(5(0) + 5(5(0))) — s(s(0 + 5(5(0)))) — s(s(s(5(0))))-

This neither directly defines domains of values nor identifies + as a function over these
values. The framework for defining operational semantics rigorously is the framework of
formal systems. Finally, logical semantics describes programs by drawing on logical properties
they are expected to satisfy, e.g. © := x+1 is such a program that if x was n before its execution
then z is n + 1 after its execution.

In summary:

Classical styles of semantics

e Denotational Semantics (what the program means?)
e Operational Semantics (how the program behaves?)

e Axiomatic Semantics (what properties the program satisfies?)

We stick to the first two styles of semantics, of which we first consider the second one (which
is easier) to approach the first one (which is harder). Example of axiomatic semantics is Hoare
logic (not covered here).

What we do in the course? The course revolves around the triad:

Category
Theory

Semantics

Functional
Programming

Starting from one node you will be able to connect to the other nodes, transferring the
knowledge and understanding.

e Denotational semantics is motivated by computation and ultimately involves advanced
mathematical structures, for which category theory is arguably the most natural language to
use. We thus transfer computational intuition from semantics to category theory to approach
the latter.



1.1. The Untyped Lambda Calculus Version: 2023/07/28, 17:53:34

e Good understanding of semantics helps in functional programming, in particular Haskell,
since it has been designed by computer scientists who took semantics very seriously. We thus
learn Haskell in a semantic-oriented way.

e Category theory influenced semantics, since many abstract, purely mathematical con-
cepts, such as monads, were utilized in semantics to organize constructions and reasoning.
We thus use semantics to develop a computational intuition of formal categorical concepts.

e Similarly, a great amount of abstract categorical concepts was utilized in functional
programming, again, most notably by Haskell. Specifically, monads were introduced to Haskell
as a practical organization tool for writing programs — even writing the ”Hello World” program
in Haskell requires a monad!

e Therefore, in this course, conversely, we use Haskell as a showcase for advanced categorical
concepts, such as natural transformations, monads, adjunctions, Cartesian closure.

e Semantically, Haskell is a statically typed, purely functional lazy programming language,
which can be regarded as a far-reaching generalization of the typed A-calculus, and as such
it provides as excellent playground for illustrating various important semantics concepts.

1.1 The Untyped Lambda Calculus

Untyped A-calculus is a proto-programming language introduced by a mathematician Alonzo
Church in 1930’s prior to any actual programming languages and computers. We proceed to
recall some general facts about the A-calculus.

Variables x,y,z,...
Terms t,su=uz,y,z | Ax.t|ts
Contexts C:=0|Xz.C|Ct|tC

So, a context, more precisely, a linear context, is a term with one “hole” 0. Let C[t] be the
term obtained by replacing [] in a context C with a term ¢.

e a-conversion C[\z.t] —4 C[\y.t[y/x]], where y is bound in ¢ (see definition below)
e f-reduction C[(Az.t)s] — 5 C[t[s/x]]
e n-reduction C[Az.fz] —, C[f]

where C ranges over all contexts. Derived reductions:

e af-reduction is: —7%5 = (—a U —p)"

*

e afn-reduction is: — 580

= (_’a U —g U —>77)*

Definition (Redex). A (5—)redex (=reducible expression) is a subterm of the form (Az.t)s
of a given term; that is, the given term is of the form C[Az.t].

Definition (Free Variables).

e Free(z) = {z}
e Free(st) = Free(s) u Free(t)



1.1. The Untyped Lambda Calculus Version: 2023/07/28, 17:53:34

e Free(Az.s) = Free(s) \ {z}

A variable x is free in t, if = € Free(t). A variable x is bound in t, if = ¢ Free(t).

Definition (Substitution).

t/x] = t;

t/y] =z if © # y;

(pa)[t/x] = plt/x]qlt/x];

(Az.p)[t/x] = Ax. p;

(Ay.p)[t/x] = Az.p[z/y][t/x] if z ¢ Free(\y. p) U Free(t).

ox[
[

L

Example. (Az.yz)[yz/y] = Az.(yx)[z/z][yz/y] = Az.(yz)[yz/y] = Az.(yx)z.

Proposition (Diamond Property = Confluence = Church-Rosser Property). Independent
reductions starting from the same term can always eventually be joined in the following
sense:

t t
a,f/ \Tﬁ a51/ \c:ﬁn
* * * *
tl t2 tl t2

N NI
N .
af * o *ap afn * % afn

That identifies one-step relations —,g and —,g, as confluent, or Church-Rosser and their
transitive-reflexive closures —7 3 and _);/377 as having the diamond property.

The equivalent formulation of the Church-Rosser property, say for —.g, is as follows:
s(—ap Vap <)*t il there is 7 such that s —7 5 r and t —} ;5 r. In other words, s and ¢ are
reachable from each other by zig-zaging with —,g back and forth iff there is a term r, to
which both s and ¢ reduce by — 3.

s x T
Proposition. —a8 18 not terminating:

Proof. Since Q = (Az.zx)(Az.zx) —pg (Az.2zz)(Az. zx) = 2, we obtain and infinite reduc-
tiOnQ—>ﬁQ—>g... [

It follows that t —, s iff s —, t, which entails that —, is an equivalence relation.

Following the usual approach, we will dim the distinction between a-equivalent terms. The
slogan is: terms that are equal up to renaming bound variables are considered to be equal;
one also says: equal up-to a-equivalence.

Definition (Fixpoint Combinator). Y = Af. (Az. f(zzx))(Az. f(zx))

Y —p Q. f(zx))Az. f(zx)) —p f(Az. f(zx)(Az. f(22))) g < [V ]),

so Y f and f(Y f) are S-equivalent, but Y f need not S-reduce to f(Y f).



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

Definition (Church Numerals). The following combinators model natural numbers:

They can be added with
(+) =dm. A Af dz.m f (n f 2)
In a similar way one can define (—), True, False, if-then-else, etc.

Untyped A-calculus is a precursor of functional programming languages. It is elegant from
a purely mathematical perspective, but from the practical programming point of view it is
subject to serious drawbacks in its core.

Benefits:
e Confluent, hence equality of programs arises from S-reduction, which is a basic notion
of program interpretation.
e Turing complete, as indicated by non-termination.

e Higher-order from the outset, so functions can be passed around, just like data.

Shortcomings:

¢ No concrete mechanism for preferring one S-reduction over another, although the choice
can be vital for performance.

e The assumption that an interpreter would deeply inspect the program for potential
redexes is unrealistic.

e No distinction between closed terms and terms with free variables, hence no notion of
a value as a complete closed and irreducible piece of data.

e Definable constructs generally fail to be subject to expected reductions, and might
satisfy only unoriented S-equivalences instead, e.g. (Y f)p =5 g f (Y f)p instead of

Yf)p—5 fYf)p.

1.2 Evaluation Strategies

Evaluation strategies describe how a term can be reduced. In particular, we might want an
evaluation strategy to be deterministic, since an implementation of it in a compiler must be
so. An appropriate language for defining evaluation strategies (deterministic or not) is the
language of formal systems.



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

1.2.1 Formal Systems

Formal systems is a language of mathematics and (!) of theoretical computer science. They
describe, how new pieces of knowledge can be obtained from old in a rule-based manner from
top to bottom, by building a finitary derivation where we move from assumptions (or facts)
to goals.

Definition (Formal System). A formal system consists of

A (finite) set of symbols — alphabet;

e A grammar for producing formulas from symbols. A formula is said to be well-formed
if it can be formed using the rules of the grammar. Since one is usually not interested
in non-well-formed formulas for too long, one usually shortens “well-formed formula”
to “formula”;

A set of axioms, or axiom schemata, consisting of well-formed formulas;

A set of inference rules, consisting of multiple (zero or infinite number of) premises and
precisely one conclusion, depicted as

P Py ... D,
®

if the number of premises (®1,...,®,) is finite; here ® is the conclusion.

Derivations are built by connecting conclusions of rule instances with premises of rule in-

stances in acyclic manner. We only accept derivations which are complete (no pending global

premises) and well-founded (every path of the derivation, viewed as a tree, is finite). If every

rule of the formal system has only finitely many premises, a derivation is well-founded iff it is

finite (Kdnig’s lemma). A formula is derivable if it can be a net conclusion of some derivation.
Some remarks:

e One is usually interested in organizing a formal system in some sort of finitary (tech-
nically speaking: recursively enumerable) way. That is, if there is a finite number of
axioms and rules, we are fine. Otherwise, we might need to capture many axioms and
rules with schemata, meaning that even thought, the number can be infinite, but there
is a computationally meaningful procedure to enumerate them all.

e An axiom is virtually a rule with no premises.

e Aside from the logical context, it can be more suitable to call formulas judgements,
meaning that a judgement is something more general than a formula. Derivable formulas
are also called theorems, but that again only makes sense if judgements are some sort
of logical formulas, which are true or falls. Formal systems, generally speaking, operate
with derivable (or not derivable), and not just with true or false.

Example (Cherry-Banana Calculus). Let {%, &} be the alphabet, and let the grammar
identify any non-empty sequence over { §&, &} as a (well-formed) formula. Rule schemes

O ﬁ (ii) inyﬁy (i) T (iv)



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

represent an infinite number of rules, obtained by replacing variables x,y with non-empty
finite sequences of % and &. Rule (i) is an “axiom”.
We can build proofs or derivations, like

R
L5k &€& G

Thus the formula & & & is derivable.

Contrastingly, let us show that & & is not derivable. Indeed, if it was derivable, it would
be derivable with rule (iii). But that rule itself would require % & as a premise — we obtain
contradiction to the global assumption that derivations must be finite.

Example (Transitive-Reflexive Closure). Given a set X and a relation R < X x X, we
previously used the transitive-reflexive closure R* € X x X of R. A formal way to define R*
is by describing a corresponding formal system:

e alphabet: elements of X and R*, regarded as a formula, disjoint from X;

e formulas: zR*y;

e rules:

xRy yR*z

for such z, y that xRy TR~

cR*x xRy

Note that natural deduction (from GLoIn) cannot be organized as a formal system so easily,
e.g. it has rules like

(4

That is: derivations themselves must be judgements. Gentzen solved that by introduced a
sequent calculus for first-order logic, whose judgements are sequents

Y e PR

where the ¢; are first-order formulas (conjunctive premises) and the 1; are again first-order
formulas (disjunctive goals).

Formal systems are perfectly suitable for describing program semantics: when judging that
a program (terminates and) returns a value, it is natural to assume that this is something we
can derive with a finitary system of rules in finitely many steps (in contrast to judging that
a program does not terminate, which need not be derivable in finitely many steps).



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

1.2.2 Standard Evaluation Strategy

We specify evaluation strategies with rules of structural operational semantics (SOS). SOS
is a class of formal systems where the judgments describe how programs reduce. “Structural”
means, that the premises for a judgement on how to reduce a program, are judgements about
reducing structurally smaller programs. We proceed with the small-step operational semantics
where the judgements have the form s — s’ meaning that s reduces to s’ in one step.

The evaluation order imposed by the standard evaluation strategy is called the left-most-
outermost order.

p—swp  pFAy.t P —0 P
()‘I‘p)q —so0 p[q/x] P4 —so qu >\$~p —so )\x.p'

/

qd —s0 ¢ D lso p# M.t
Pq —s0 P4’

where p |g, means that p is irreducible with respect to —,, i.e. p is so-normal.

Remark. The auxiliary judgements like p # Azx.t and p |y, are, strictly speaking, side-
conditions, as they do not take part in the derivation process. The latter one, though,
indirectly refers to it, by stating that no derivation p —g, p’ exists. This is an example of
so-called negative premise. Those can potentially be a problem. In our case, one can show
that p s iff p is B-normal, and thus we can get rid of this undesirable circularity.

This style of reductions is also called small-step semantics because in order to find an
so-normal form p’ of some p we generally need a chain of reductions p —, ... —¢ p'.

Definition. Using these rules, we define p |, v, if there is a derivation of p —7 v and v is
so-normal.

Example.

Az zy)(A\x. ) —50 (Az. )Y Y Iso Yy # Ax.t
y((Az. zy)(Az. ) —s0 y(Az. 2)y)

Proposition (Standardization Theorem?!). If s — gt and ¢ is S-normal, then s —, ¢
and ¢ is so-normal.

Note the following.
e The definition of —, is structural, i.e. a successor of a term t w.r.t. —, is calculated
by structural induction over t.

o The relation —g, is deterministic in the sense that there is only one way to build a
(possibly nonterminating) reduction starting from a given ¢; this contrasts af-reduction: we
both have (Az.\y.y)Q —pg Ay.y and

Az MY ) —50 (A2 AY. y)Q —g0 - -

'Hendrik Barendregt. The Lambda calculus: Its syntaz and semantics. Amsterdam: North-Holland, 1984,
but see ThProg for a beautiful and concise proof!

10



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

e The standartization theorem indicates that all existing S-normal forms can be calculated
by the standard evaluation, e.g. (Ax.A\y.y) Q@ —s0 A\y.y and \y. y |so-

e As a consequence of the previous clause, — ¢, diverges on a term t iff ¢ does not have
an (-normal form.

1.2.3 Call-by-Name (Lazy) Evaluation Strategy

Lazy or call-by-name (CBN) evaluation strategy refines and simplifies the standard evalu-
ation strategy as follows:

/
P —cbn P
(Az.p)q —cbn Pla/] Pg —cbn P'q

where the terms are now supposed to be closed. Compared to the standard evaluation strategy,
the key distinctions are:

e no more rewriting under A\ (therefore Ax.Q |cpn);

e all terms are closed.

We now explicitly reject n-reduction, in order to capture the fundamental distinction between
computations and values. Roughly, a A-term p represents a program, and Azx.pz represents
its program code. While p can diverge, Ax.p cannot diverge, because it is just a text of
the program. However Az.p can be applied to an argument, which then can again result in
divergence.

Proposition. Like SO, CBN does not diverge on terms which have g-normal forms, but
CBN-normal forms need not be f-normal, e.g. Az. (Ay.y)z |en but Az. (A\y.y)z —5 Az. .

Example.
(Az.zz)(Az. x)(Az. z)) —ebn (Az.2)(Az. 2))(Az. ) (A\2. 7))
—bn (Az.z)((Az. 2)(Az. 2))
—cbn (Az.x)(Az. )
—>cbn ()\.CI?.%')

1.2.4 Call-by-Value (Eager) Evaluation Strategy

Definition (Value). A value is a term of the form Az.¢.

Under the same assumption as with CBN we define the call-by-value (CBV) evaluation strat-
egy:

D —cbv D qd—cbv ¢ p is a value q is a value
Pq —cbv P'q Pq —cbv PG (Az.p)g —cbv Plg/x]

instead of “p is a value”, one could write p |cpy.

11



1.2. FEvaluation Stmtegies Version: 2023/07/28, 17:53:34

Proposition. CBV calculates properly fewer normal forms than CBN, e.g. (Az.Ay.9)Q |con
Ay.y, but
Az MY y) Q — by (AT AY. YY) Q —>cpy - -

However, CBV is generally more efficient than CBN.

Example. We can redo the previous example in the CBV style:

Az.zx)(Az. z)(A\z. 7)) —> ey (Az.z2) (A2, 2)
— by (Az.2)(Az. )

—>cbv ()\I' :L')

This demonstrates that CBV (at least, implemented naively) is more efficient than CBN.

1.2.5 Big-Step Call-by-Name

In big-step styles of semantics we relate a term not to its one-step successor, but directly
to its normal form.

p Ucbn )\x.p/ p'[q/x] Ucbn c
)\.’E.p Ucbn A':U-p pq Ucbn c

Proposition. p —? ¢ and q |cpn iff p Jcbn ¢-
Proving this requires the following
Lemma. p —p, g with ¢ Ucbn r imply p Ucbn r.

Proof. Induction over the proof of p — by ¢:

Induction base: p = (Az.t)s, ¢ = t[s/x]. Then we build the necessary derivation p |cpn 7
in two steps.

Induction step: p = st, ¢ = s't and s —>¢,, 8. By assumption, st ||cpn 7, which implies
s ebn Az.u, ult/x] |cpn - By induction, s |cpn Ax. u. Hence st ||cpy 7, as required. O

1.2.6 Big-Step Call-by-Value

Call-by-value requires evaluation of arguments of function application:

p Ucbv )\%.p/ q Ucbv q/ p/[q//$] Ucbv c
)\$.p Ucbv )\I‘.p pq Ucbv c

Proposition. p —’sz q and q |epy iff p eby g

Example.

AZ.Z by AL. T AT T Jeby AZ. T AZ. T Jeby AZ. T
(Ar.z)(Az. x) by AT

M. 2T by AT. TT Az.z)(Az. x) by Az

Az.zz)(Az. 2)(Ax. ) Jeby Az.

12



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

1.3 PCF (Programming Computable Functions)

1.3.1 Simply-Typed A-calculus

Typex:=AB,C,...| 1 | AxB | A—-B
base types ~ unit type product types function types

Proposition. Q = (Az. zz)(Az. zzx) is not typable, and hence not a valid term.

Proof. By contradiction: if x: A then xx: Aandz: A — B, hence A = A — B, contradiction.
O

Proposition. —g is strong normalising for simply typed A-calculus.

PCF is obtained from the simply typed A-calculus by

fixing Nat and Bool as the base types;

postulating the corresponding signature of arithmetic and logical operations;

adding if-then-else;

adding the fixpoint combinator Y4: (A — A) — A; for every type A.
Definition (Terms-In-Context). A term in context has the form
'—t: A,

where A is a type and I' is a context, which is a list of pairs x;: A; such that x; occur
non-repetitively.

We work only with those I' - t: A which are derivable using the following rules:

=1 Fiiﬁj;BB =B FFS:AF_;Z:BFH:A
(Const) o i (Fun) I'- tlli ﬁlf(t'l', " : ’tnl“) ;l_Btn: A,
where ¢ € {True, False} U {0,1,...} where f e {n,v,— +,—,...}
() Fr:t;i t: Bjjoez it S
(If) I' = b: Bool N'-s:A Pt A (Fix)

I'—ifbthen selset: A F'-Ys:(A—>A) - A

13



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Definition (Term). A PCF term t is obtained from I' - ¢: A by removing the return type A
and the context T'.

The PCF syntax corresponds to the Haskell syntax quite accurately, e.g.:

-- | single element () of the unit type ()

O 2 0

-- | first component of a pair

fst :: (a,b) > a
fst (x,_) = x

-- | second component of a pair
snd :: (a,b) > Db
snd (_,y) =y

-- | logical constants
True :: Bool

False :: Bool

-— | Numeric constants

0 :: Integer

42 :: Integer

-- | lambda-abstraction, assuming f :: a —-> b

\x > f x ::a—>b

-- | application, assuming f :: a -> b, = :: a

f x i1 b

-- | equality

(== :: Eq a =>a ->a -> Bool
-- | if-then-else, assuming b :: Bool, = :: a, Yy :: a

if b then a else b ioa

-— | fizpoint operator is definable:
fix :: (a->a) > a
fix £ = f(fix f)

1.3.2 Call-by-Name Operational Semantics for PCF

We modify the concept of value as follows.
Definition (Value). A value is either

e a Boolean, or

14



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

e a natural number, or

e x Or

e a pair of closed terms, or

e a closed term Az.t.
The call-by-name semantics for PCF is obtained by completing the call-by-name semantics
of A-calculus. As before, the judgement p | v indicates that p reduced to the value v in the

updated sense.
We discuss the most instructive rules.

tl(pa) plec tl g qlc
fstt | ¢ sndt || ¢

which means that pairing is lazy. Hence, in particular, fst(1,) | 1, but snd(1,Q) diverges.
Note that there is no rule for reducing (¢, s), which is by definition already a value.

b | True plc b || False qlc
if bthenpelseq || ¢ if bthen pelse q || ¢

The rules for application and abstraction are as in the A-calculus. Arithmetic operations are
strict (i.e. if one argument fails, everything fails):

plc qlc2
ptaqglc+e

For interpreting logical disjunction, one could think of the following seemingly natural rules:

b | True c | True b | False c | False
bv el True bv el True bvc| False

This is known as “parallel or” and it does make certain sense, but in our case it would make
the semantics unintentionally non-deterministic. That is, to evaluate bv ¢, the semantics every
time would need to simulate behaviours of two independent threads running in parallel and
correspondingly evaluating b and ¢ until one of them possibly succeeds. Such parallel facilities
are not considered to be part of the core in functional languages. From a foundational point
of view, PCF was developed for programming computable functions, in the sense of Turing
computability. This notion of computability is sequential by definition, and thus also does
not support facilities for parallel execution.
The standard rules are like this

b | True b | False cld
bvcl] True bveld

That is, v is not commutative, e.g. True v || True, but € v True diverges. It is easy to see
that b v c is interpreted in the same way as if bthen True else c.
This semantics can be readily tested in Haskell, since it is lazy:

15



1.3. PCF (Programming Computable Functions)

Version: 2023/07/28,

17:53:34

fix £ = f (fix f) -
omega = fix id =
success = () -
testl = fst  (success, omega) -
test2 = snd  (success, omega) ==
test3 = True || omega ==
test4d = omega || True —-
test4 = False || omega ==

fizpoint combinator
divergence
successful termination

terminates
diverges

terminates
diverges
diverges

The rule for the fixpoint combinator is the only non-structural rule:

fYaf)lc
Yaflc

1.3.3 Call-by-Value Operation Semantics for PCF

We redefine the notion of value once again.

Definition (Value). A value is a Boolean, or a natural number, or , or a pair of values or a

closed term Az.t.

p Ucbv C1 q Ucbv C2 p Ucbv <Cl7c2>
(0, q) Uevy {c1,c2) fstp lewv 1

p Ucbv <Cl7 02>
sndp {cby 2

If we used the same rule for the Y-combinator, as for call-by-name, we would diverge:

Vi— V) — f(fY]))

—_ e e

(Evaluating the argument would use the same rule on and on). In order to prevent this, for

the CBV semantics:

e we require C in Yo to be of the form A — B,

e the small-step rule for Y: Y f — f(Ax.(Y f)z), or, alternatively, as a big-step rule:

flavrz.g gDy (YH)y/z] by €

Yfive

Example (Factorial). The factorial function
fac(0) = fac(1) =1 fac(n) =n-

is expressible as follows in PCF:

fac(n — 1) (n>1)

pi= | x: Nat = (Yngt—nNat(Af Az ifx < 1thenlelsex - f(x —1)))(x)

~~

g

We show that: (Az.p)(n) | n! (in CBV).

16



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Proof. We easily reduce the goal to (Y g)n | n!. We proceed by induction over n.
e If n =0, then

gl g Mx.ifx<l1thenlelsex-(\y.(Yg)y)(x—1) | Az.¢

v

"

g 0<1|True 11

Yg | Az.g 000 g'[0/z] | 1
(Yg)0 |1

e Case n =1 is analogous.

e Suppose, n > 0. Then

(Yg)(n—1) | (n—1)!
nln (Ay.(Ygy)n—1)§ (n—1)!

_— n < 1] False n-(Ay. (Yg)y)(n—1) | n!
glg g | Ax.g Tn/z] <U n'( Ju) )
Yg| \v.g ni{n g ’
(Yg)(n) | n!
where : refers to the proof from the induction hypothesis. O

1.3.4 Contextual Equivalence

Operational semantics culminates in defining contextual (or operational, or observational)
equivalence. We want to know if two programs are equivalent or not w.r.t. their observable
behaviour. What this means? For closed programs, we can just compare if they reduce to
the same value, i.e. s and t are equivalent iff s || v iff ¢ | v for some v. This is not enough for
programs with free variables. Intuitively, free variables range over program inputs and two
programs must be equivalent if they agree on all possible inputs. Additionally, if the result
type is itself a functional type, we need to check if the results are equivalent as functions. We
can formally capture the relevant notion with term contexts.

A term context is a term with a special symbol [, occurring precisely once. Given a
context C' and a term ¢, C[t] denotes the term obtained by replacing O in C' with ¢. In typed
settings, contexts and placeholders [J have types, i.e. in PCF (O + 1) has the type Nat and O
in it has the type Nat.

Definition (Contextual Equivalence for PCF). A term context C is of ground type if its type
is either Nat or Boolor 1. Two PCF terms I' -+ s: A and I' - t: A are contextually equivalent
if for every context C' of ground type, for every value v, C[s] | v iff C[t] || v. In this case, we
write I' = p =cx q: A, or simply p =cix ¢.

We see that contextual equivalence is a derived notion, defined indirectly via semantics of
closed programs and by quantification over (infinitely many) term contexts. This complex
notion is needed, to cope with (a) programs with free variables (b) higher-order programs
(i.e. not only programs of ground types). Clearly (a) reduces to (b) by A-abstracting free
variables. The following can be shown (although, we currently do not have machinery for
proving even such innocently looking statements):

17



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

Proposition. Let ' - s: Aand I' - ¢: A be two programs in context, A be a ground type
and let I' be empty. Then p = ¢ iff for every value v, s | v iff ¢t | v.

Contextual equivalence of higher-order programs is considerably more advanced than con-
textual equivalence of closed programs of ground types. For example, for proving that two
implementations of binary addition of numbers are equivalent, it is necessary to check that
they behave the same on all inputs (i.e. either both converge to the same result, or both
diverge). This quantification “over all inputs” is what is more abstractly captured by quan-
tification over all term contexts.

1.3.5 Coproducts, Abrupt Termination and 1/0
Let us extend PCF with coproducts types. That is, we add A + B to the type grammar
and add the following term formation rules:

Tt A (+1) I'-¢t: B
T—inlt: A+ B 2 Trinrt: A+ B

(+11)

'-b6: A+ B Lz: A-p: C Iy: Brgq: C
I' = casebofinlz — p;inry — q: C

(+E)

With this extension we can make do without Bool and if-then-else by encoding Bool as 1+ 1,
and by encoding if-then-else as follows:

if bthenpelseq = casebofinlz — p; inrz — q.
In Haskell, coproducts are implemented as an algebraic data type:
data Either a b = Left a | Right b

Moreover, we can encode the “maybe” type constructor sending a type X to M X = X + 1
and introduce the following syntax:

F—t: A '+~p: MB Ix: BFq: MC

t bind
(ret) ' returnt: MA (bind) I'-dox <« p; q: MC

where

returnt = inlt,

dox < p; ¢ = casepofinlz — ¢; inly — inry.

The intuition here: a term in context I' - t: M X with I' = (x1: Ay,...,2,: Ay) models a
partial function (z1,...,x,) — t, either sending a tuple (x1,...,2,) to a value in X or to
undefinedness; return and do correspondingly provide means for converting total functions to
partial function and for composing partial functions correspondingly. This yields the second
simplest example of a monad. This first one is the identity monad with M X = X, and with
return and do defined in the obvious way.

In Haskell the maybe-monad is implemented as follows:

18



1.3. PCF (Programming Computable Functions) Version: 2023/07/28, 17:53:34

data Maybe a = Just a | Nothing

instance Monad Maybe where
(Just x) >>=k =k x
Nothing >>=

Nothing

In Haskell there is a very special monad called I0 for interacting with the environment (read-
ing/writing on the console, accessing/modifying the file system, the web, peripheral devises,
sensors, etc). Thanks to the monadic abstraction, interaction with the environment is orga-
nized in the same style as with all other monads, e.g.

main :: I0 ()
main = do
putStrLn "Enter two lines"

linel <- getLine -- linel :: String
line2 <- getLline -— line2 :: Siring
putStrln ("you said: " ++ linel ++ " and " ++ line2)

Remarkable and often confusing is the laziness of 10, which in conjunction with other lazy
aspects can produce unexpected effects. Consider for instance

interact $ unlines . map reverse . lines

which reads a string from the console and prints it reversed in a loop. An analogous program

interact $ unlines . map (\s -> "your string is: " ++ !s) . lines

does not function as expected (starts printing before input is finished) because the input does
not affect the initial part of the output, in contrast to the reverse-example where we needed
to know the very last character of the input string to be able to say what the reversed string
is. A possible fix is

interact $ unlines . map (\s -> seq (last s) "your string is " ++ s) . lines

Here seq is a very special build-in primitive, smuggling non-lazy semantics in. Very roughly
seq x y runs y unless x unproductively diverges. Thus, e.g. strict function application is
defined as

(1) :: (a->Db) —>a ->b
f$! x=x "seq” f x

An important property that is broken exclusively by seq is that f is no longer contextually
equivalent to Az. fx, which is otherwise true w.r.t. the call-by-name semantics (!) Indeed,
omega and \x -> omega x can be distinguished by the context const 0 $! (but not with
const 0 $!).

19



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

1.4 Denotational Semantics of PCF

Operational semantics is non-compositional, in the sense that it does not yield a function [-]
from terms to meanings, so that for every n-ary term construct op, [op(ti,...,t,)] could
be calculated as a function of [¢1],...,[tn]. In particular, operational semantics does not
directly define meanings of functions, hence we cannot express [f t] via [f] and [¢].

In designing a denotational semantics (overall, but in our concrete case, for PCF) one would
want to satisfy the following yardsticks:

e Soundness: if p | v then [p] = [v];
e Adequacy: if [p] = [v] with v being a ground value then p | v;

e Compositionality: [C[t]] = [C][t] where we assume that ¢ is closed and [C] is the same
as \z. C|z].

Soundness and adequacy ensure that the denotational semantics sufficiently mimics the oper-
ational semantics. The soundness property is the most basic one and is usually easy to verify
by induction over a derivation p || v. Adequacy is usually considerably harder. Composition-
ality is where denotational semantics shines. For example, the proof of f =« Azx. fo can be
obtained as follows:

Clf1 Vv = [C[f]] =[] /| soundness
= [C][f] =[] /| compositionality
> [Cl[ . fz] = [v]
— [C[Az. fz]] = [v] /| compositionality
= C[\z. fz] | v. /| adequacy

This relies on the fact that [f] = [Az. fz], which will be an easy consequence of the definition
of [-].

How can we define [A]? It cannot be just a set of values of type A, e.g. [Bool] =
{True, False}. At least, [Bool] must include the divergence L. Is it enough to say that [A]
collects the values of type A plus the divergence? No, for e.g. the function in [A — BJ
must capture not only all total functions (the “values”), the totally undefined function (the
“divergence”), but also all the partially defined functions in between (so, more or less de-
fined). This issue propagates along type constructors, which is the reason we cannot think of
[A] merely as a certain set, and [f: A — B] merely as a certain function between sets [A]
and [B]. However, we can use as [A] (w-)complete partial orders (cpos), and as [f: A — B]
(w-)continuous maps, between [A] and [B]. This is a big idea of denotational semantics,
proposed by Dana Scott.

Definition (Partial Orders). A partial order (A,C) is a relation satisfying the following
axioms:

e al g
e alCbAbCc=alc

ealCbAbCa=a=0

20



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

Definition (Complete Partial Orders). A(n w-)cpo is a partial order (A4,C), such that for
any infinite chain
arCaxE ...,

there is an a, such that

1. Vi.a; C a;
2. Vi,a; Tb=aCb.

We denote such a by | |, a;. More, generally we write | |, ; a; for any least upper bound (not

necessarily of a chain) if Vi.a; C | |,.; a; and | |,.; a; T b once Vi.a; C b.

Definition (Pointed Cpos). A cpo (A, C) is pointed if it contains such an element L, that
YVae A. L Ca

Every set A is trivially a cpo (A,C) with a C b iff a = b.

Definition (Monotonicity, Continuity, Strictness). A function f: A — B between partial
orders is monotone if a C b = f(a) C f(b); a monotone function f: A — B between cpos
(A,C) and (B,C) is (Scott-)continuous if for any chain a1 Cag C .. .:

(L) =L, fa

A function f: A — B is strict if f(L) = L. This extends to the multi-ary functions in the
obvious way, e.g. if-then-else is strict in the first argument, but not in the second and the
third.

Definition ((Pre-)Domain). We agree to refer to cpos as pre-domains, and to pointed cpos
as domains.

1.4.1 Constructions on Predomains

Product of Predomains A x B = {(a,b) |a€ A,be B}
(al,bl) E (az,bQ) if al E a9 and bl E bQ

Properties:

e Continuity of pairing: | |;(a;,b;) = (L, ai, | ; b;);
e Continuity of projections: fst: A x B — A and snd: A x B — B are continuous, i.e.:
fst(|_|j a;) = LI, fstay, snd(|_|j aj) = L;snd aj;

e Products of domains are again domains with (L, 1) as the least element.

21



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

Lifting Predomains and Functions The correspondence A — A defines a lifing of A where
Al ={l}wA={0,1)}u{(l,a) |ae A}.

aCb if a=(0,1) or a=(1,d),b=(1,V)anda C¥

Let for any a € A: |a] = (1,a) € A;. Since (0,1) is now the bottom element of A, for
notational simplicity we refer to it as L again. Attempts to regard L = (0, L) as a sort of
recursive equation make no sense — 1 on the left and L on the right are distinguished by their
context.

Let B be a domain and let f: A — B be continuous. Then we define f*: A] — B as

follows:
o) fly) itz =yl
/ (x)_{L o=l

The result f* is the lifting of f.

Notation. We use the point-full notation (letx = pinq) alongside with the point-free one
(Azx.q)*(p) where Az.q: A — B and p: A;.

Properties:
e |-] is continuous: || |;a;| =;|a:].
e Lifting is continuous: (|_|Z fi)* = ||, f¥ where continuous functions are compared point-

wise, that is f T g if f(z) C g(x) for any x (see the definition of function spaces
bellow).

For every op: X xY — Z with XY, Z being sets, we define the strict extension:
OPL:XLXYLHZL
op(p,q) = letz=pinlety=qin[op(x,y)]

Example (Flat Domains). Given a set A, A is called the flat domain over A, regarded as
a trivially ordered set (i.e. C is =).

Bool | :

True False

NS

1

Natj_:

Non-example 1| x 1;:

~ N
(%, 1) (L %)
N e
(L, 1)

22



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

Function Spaces Let (A,C) and (B,C) be two predomains. Then (A —. B,C) is the
function space predomain, where

A —.B={f: A— B f is continuous}
and
fCg<e V. f(x) C g(x) (pointwise)
We define two operations:
curry: (Ax B —.C) - (A —.(B—.0C))
(curry f)(2)(y) = f(z,y)
uncurry: (A —. (B —.C)) - (Ax B —.C)
(uncurry f)(z,y) = f(z)(y)

from which we can derive
ev = uncurry(id: (A —>. B) >. (A —:B)): (A—>.B)x A—.B
Properties:

e curry and uncurry are continuous.
e If B is a domain then so is A —. B with the bottom element being the completely
undefined function Az. L.

Theorem 1 (Kleene’s Fixpoint Theorem). Let f be a continuous function f: D — D over a
domain D. Then

1. There is puf € D — the least fixpoint of f, i.e.

a) f(uf) = nf

b) VxeD.f(x)=x=pufCx
2. pf =L f1(L), where fO(z) = L, f*1(z) = f(f'(2))
3. uf € D is moreover the least pre-fixrpoint of f, i.e.

a) f(uf) E nf
b) VeeD.f(x) Cx=pufCx

Proof. Let us first show that pf as defined in clause 2 is a fixpoint of f. Indeed, f(uf) =
f<|_|z fi(L)) = <|_|Z f”l(L)) = uf. Hence is it also a prefixpoint. Let us show that it is the
least one. ASuppose that x € D is anqther prefixpoint, i.e. f(z) C z. From L C z, inductively,
JY (L) C fY(x) = x, hence uf = ||, f*(L) C «. Since pf is the least prefixpoint and a fixpoint,
it is in particular the least fixpoint. O

Example. Consider f;: N - N with i e N:

fo(n) =L (
f1(0) = [1], fi(n) = L (

S 3
VoWV

23



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

f2(0) = [1], f2(1) = [1], fa(n) = L (n>2)
f3(0) = [1], f3(1) = [1], f3(2) = 2], fs(n) = L (z=3)
f4(0) = [1], fa(1) = [1], fa(2) = [2], fa(3) = [6], fu(n) = L (z>4)

It’s easy to see that f; C f;41 for any i € N. Let

f:|_|l.fi

Again, it is easy to see that for every f(n) = n!. By Kleene fixpoint theorem, we can interpret
this as the fact that f is a solutions of a recursive equation, defining the factorial function.
Note that

firn=F(fi) V(@eN)
where F': (N—> N, ) —. (N — N)) is as follows:

1] ifn=0,1

F(g:NHNL)(nEN):{LnJ qgln—1) ifn>1

which is the defining expression for the factorial. So, by Kleene fixpoint theorem:

,uF=|_|iFi(J_) :|_|1f1:f

We can reformulate this result as follows: f: N — N is a solution of the following system of
equations:

f(0) = [1]
) = 1]
fn) =letm=f(n—1)in|n-m| (n>1)

and it is the least such solution (!)
Proposition. u: (D —. D) — D is continuous.

Definition. Given a domain X, let ifThenElse: B x X x X — X:

x if b= |True]
ifThenElse(b,z,y) = {y if b = |False]

1 otherwise

Proposition. ifThenElse is continuous.

24



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

1.4.2 CBN Denotational Semantics

We assign to every type A a domain [A] as follows:
o [1] - {+k
e [Nat] = N; (flat domain of naturals);
e [Bool] =B, (flat domain of Booleans);
e [Ax B] =[A] < [BI;
e [A— B] = [A] - [BI].
Now, given a term in context I' - ¢: A where I’ = z1: Aj,...,x,: A, the semantics [ - ¢: A]
is a continuous function [A;] x ... x [4,] — [A] recursively computed according to the
following clauses where [- -], reads as [---](p):
o [I'z;: Ai], = pry(p) where pr;: [A1] x ... x [A,] — [A;] is the i-th projection;
o [['»*:1]p =%
[T b: Bool], = |b];
[I' = n: Nat], = |n];
D f(t5): Al = FL(IC - ¢ Bl D 5: L) (f € {nvm =}
[ - if bthen selse t: A], = ifThenElse([I' - b: Bool],, [I' - s: A],, [I' - t: A],);
[T (t,s): Ax B], = ([I'+t: A],, [I' - s: B],);
[['fstt: A, = fst[[' - t: A x B],;
[I'+sndt: B, =snd[I' - t: A x B],;
[I'=Az.t: A— B], = (curry [I',x: A t: B])(p);
[I'=st: B],=ev([I' -s: A— B],,[I'+t: A],);
o '-Y4: (A— A)— A], = p.

Lemma (Substitution Lemma). Given I' - ¢: A, I',x: A+ p: B and p € [I]
[T+ plg/z]: B], = [T,z: A p: B](p,[T + q: A],)

Proof. Induction over the structure of p. Let us consider the there last clauses in the semantics
for p, which are the only non-trivial ones.

e p=\y.t withsome I',;y: C +t: D and then B = C — D. It follows by assumption that
x # y. Then, by induction,

[T+ plg/x]: B], = [T+ Ay.t[q/x]: B],
= (curry[I',y: C = tlg/x]: D])(p)
= (curry([I",y: C,x: A t: D] o (id,[T',y: C + q: A])))(p)
= (curry[',z: A,y: C=t: D])(p, [T = q: A],)
=[I,z: A+ Xy.t: B](p, [T+ q: A],)
=[T,z: A+ p: B](p, [T + q: A],).

25



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

e p=stwithsomeI',z: Ar-t: Cand I'yx: A+ s: C — B. Then, by induction,

[T + pla/2]: Bl, = [T - (sla/=)) (tla/z]): Bl,
— [T - slg/a]: C — BI,(IT - tlg/a]: C,)
= ([Iz: A s5: C — B](p,[I' - q: A],))
(IT,z: A=t: Cl(p, [T+ q: A],))
=[Iz: A st: B](p,[I' F q: A],)
=[Iz: A+p: B](p,[I' + q: A],).

e p=Yp fwithsome'z: A+ f: B — B. Analogously to the previous clauses:

[+ plg/]: Bl, = [I'+ (Y f)la/z]: B,
= [I'+ Y5 flg/z]: B],
= pu[I' + fla/z]: B — B],
= ([T z: A= f: B— B](p, [T+ q: A],))
= [T z: At puf: Bl(p, [T+ gq: A],)
=[Iz: A= p: B](p,[I' - q: A],).

Definition (Soundness). A denotational semantics is sound if

plv=[p]=v

Definition (Adequacy). A denotational semantics is adequate, if
[p] =v=p | v if the type of p is either 1 or Bool or Nat

for every value v.

Proposition. The presented call-by-name denotational semantics is sound and adequate with
respect to |cbn-

Soundness is typically easy to prove: using the equivalence of big-step and small-step
semantics, it suffices to prove that p — ¢ entails [p] = [¢]; then p | v entails p —* v and we
are done by induction over the length of this reduction. Proving adequacy is usually much
harder and requires new methods.

Assuming soundness, we can equivalently reformulate adequacy as follows: by contrapo-
sition, it says that for all values v, —(p || v) = [p] # v, in particular, if p { then [p] # v
for any value v, i.e. [p] = L. This is the only instance that does not follow from soundness.
Indeed, if —(p | v), but p | v with v/ # v then by soundness [p] = v' and hence [p] # v. In
summary, we equivalently switched to the implication:

pt=[p] =L

Recall the following property of contextual equivalence.

26



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

Proposition. Let ' - s: Aand I' - ¢: A be two programs in context, A be a ground type
and let I be empty. Then s = t iff for every value v, s || viff t | v.

We now can prove it. The left to right direction is clear. Assume the right hand side and
prove s =cix t. If s | v for some v then ¢ | v and by soundness, [s] = v = [t]. If s {} then
t 1, and by adequacy, [s] = L = [t]. In any case, we have [C[s]] = [C[t]] with C = 0. The
general case follows by induction on C'. Then C|[s] || v by adequacy entails C[¢] || v and vice
versa.

1.4.3 Failure of Full Abstraction

Note the implication

[p] = 9] = p =ctx g

where p and ¢ are closed programs of the same type. Indeed, for very suitable context C' of
ground output type,

Clp] l v < [C[p]] = |v // sound. and adeq.

] ]
< [C][[p]] = [v] / compositionality
< [C][[d]] = [v] / assumption
= [Clq]] = [v] /| compositionality
> Clg] bv / sound. and adeq.

We have thus obtained a fundamental relation between operational and denotational seman-
tics: contextually equivalent programs are necessarily denotationally equal. The opposite
implication

P =ctx 4 = [[p]] = [[Q]]

is called full abstraction, and it would provide the highest degree of satisfaction, for it would
mean that operational sematnics and denotational semantics agree (as far as program equiv-
alence is concerned). However, for our precent semantics full abstraction fails (!), and the
reason for it is instructive.

Consider the following PCF-function in Haskell syntax:

t :: Bool -> (Bool -> Bool -> Bool) -> Bool
t b f =if (f True omega).
then if (f omega True).
then if (f False False) then omega else b
else omega
else omega
where omega = omega

It can be shown that (t True) and (t False) are contextually equivalent, however, they are
not denotationally equivalent. The reason for it is that we cannot test (t True) and (t Fa,
1se) on the parallel-or function, which is described as follows: por(True,x) = por(x, True) =
True, por(False, False) = False and por(z,y) = L otherwise. This function is not definable in
PCF, but it is a continuous function, and thus, it can be used as a witness that (t True)
and (t False) are denotationally distinct.

27



1.4. Denotational Semantics Of PCF Version: 2023/07/28, 17:53:34

1.4.4 CBV Den