## Contents

```
reverse_naive :: [a] -> [a]
```

Naive list reversal

```
Theorem (attempt): reverse (reverse xs) = xs
Proof attempt:
IB: let xs = [], then:
reverse (reverse []) { []-case }
= reverse [] { []-case }
= []
IS: let xs = x : xs', then
            reverse (reverse (x : xs)) { :-case }
= reverse (reverse xs ++ [x]) { :-case }
= ...
= bummer
```

Reversal with accumulator:

```
reverse_with_acc :: [a] -> [a] -> [a]
```

reverse :: [a] -> [a]

Now, we can define reverse properly.

- Our goal is still: reverse (reverse xs) = xs
- Observe (informally): reverse_with_acc xs ys = (reverse xs) ++ ys
- This helps to notice that rev (rwa xs ys) = rwa ys xs, which is sufficient, because we can then just take ys = [], and then, by definition, and by []-case,

```
rev (reve xs) = rev (rwa xs []) = rwa [] xs = rev xs
```

So, let us prove rev (rwa xs ys) = rwa ys xs, by induction on xs

```
IB: xs = [] -->
    rev (rwa [] ys)
= rev ys { []-case for rwa }
= rwa ys [] { def. of rev }
IS: xs = x : xS' -->
    rev (rwa (x : xs') ys)
= rev (rwa xs' (x : ys)) { :-case for rwa }
= rwa (x : ys) xs' { IH }
= rwa ys (x : xs') { :-case for rwa }
```

