


2



Contents

1 Class190423 5

reverse_naive :: [a] -> [a]

Naive list reversal

Theorem (attempt): reverse (reverse xs) = xs

Proof attempt:

IB: let xs = [], then:

reverse (reverse []) { []-case }

= reverse [] { []-case }

= []

IS: let xs = x : xs’, then

reverse (reverse (x : xs)) { :-case }

= reverse (reverse xs ++ [x]) { :-case }

= ...

= bummer

Reversal with accumulator:

reverse_with_acc :: [a] -> [a] -> [a]

reverse :: [a] -> [a]

Now, we can define reverse properly.

� Our goal is still: reverse (reverse xs) = xs

� Observe (informally): reverse_with_acc xs ys = (reverse xs) ++ ys

3



4 CONTENTS

� This helps to notice that rev (rwa xs ys) = rwa ys xs, which is suffi-
cient, because we can then just take ys = [], and then, by definition,
and by []-case,

rev (reve xs) = rev (rwa xs []) = rwa [] xs = rev xs

So, let us prove rev (rwa xs ys) = rwa ys xs, by induction on xs

IB: xs = [] -->

rev (rwa [] ys)

= rev ys { []-case for rwa }

= rwa ys [] { def. of rev }

IS: xs = x : xs’ -->

rev (rwa (x : xs’) ys)

= rev (rwa xs’ (x : ys)) { :-case for rwa }

= rwa (x : ys) xs’ { IH }

= rwa ys (x : xs’) { :-case for rwa }


	Class190423

