
Introduction to Dependently Typed Programming SS 2022

Assignment 5
Deadline for solutions: 25.07.2022

Exercise 1 GCD and Termination (8 Points)

Greatest common divisor gcd(a, b) of two natural positive (!) numbers is inductively defined as
gcd(a− b, b) if a > b, as gcd(a, b− a) if b > a and as a if a = b.

a) Implement gcd in Agda using the modules of Iowa Agda library. To that end you will need
to design a corresponding termination proof.

Hint: A concise and elegant solution can be obtained by using the lexicographic order and a
corresponding termination proof ↓-lex from termination.agda. Note, however, that it is only
one possible approach.

It is tactically advantageous to define gcd(n,m) for all natural n and m. If n and m are not
both 0 the result is well defined, otherwise it is sensible to put gcd(0, 0) = 0.

b) Formalize and prove that any divisor of a and b is a divisor of gcd(a, b).

Hint: It is convenient to couch the developments in terms of the relation

divides : ∀ (n m : N) → Set

expressing the fact that n divides m, and to prove the lemma

divides .− : ∀ (n m k : N) → k divides n → k divides m → k divides (m .− n)

Exercise 2 Binary Logarithms, Termination and
Proof (Ir-)Relevance (9 Points)

a) Implement the following functions that calculate binary logarithms of natural numbers and
round the results down and up respectively:

blog2_c : N → N
dlog2_e : N → N

So, e.g. blog22c = dlog22e = 1 and blog23c = 1, dlog23e = 2. You can assume that blog20c =
dlog20e = 0.

Hint: You should implement a helper blog2_c-wf : (n : N) → ↓B _>_ n → N from which
blog2_c would be definable by feeding ↓-> n as the second argument. Some preparation would
be needed, in particular, you will need a function div2 : (n : N) → N for integer division
by 2 and rudimental properties of it.

Attention: The remaining overhead will critically depend on the definition of blog2_c-wf. It
is thus strongly suggested to implement the following clause

blog2 (suc (suc n)) c-wf (pf↓ sn) = suc (blog2 suc (div2 n) c-wf (sn (div2n<sn n)))

IDenT, SS 2022

where div2<sn n must be a proof that div2 n < suc n.

b) Prove the following monotonicity property:

blog2c-mono : (n m : N) → (n ≤ m ≡ tt) → blog2 n c ≤ blog2 m c ≡ tt

(to that end you will need to formulate and prove the corresponding property of the underlying
helper).

c) Implement the following characteristic properties:

blog2c-ind1 : (n : N) → is-even (suc n) ≡ tt

→ blog2 (suc n) c ≡ suc (blog2 (div2 (suc n)) c)
blog2c-ind2 : (n : N) → is-even (suc n) ≡ ff

→ blog2 (suc n) c ≡ blog2 n c

and use them to prove the following:

blog2c-n+n : ∀ (n : N) → n > 0 ≡ tt → blog2 (n + n) c ≡ suc blog2 n c
blog2c-n+n+1 : ∀ (n : N) → n > 0 ≡ tt → blog2 (suc (n + n)) c ≡ suc blog2 n c

Hint: It is advisable to prove the folloinwing property of blog2_c-wf first:

blog2c-wf-irrel : (n m : N) → {p : ↓B _>_ n} → {q : ↓B _>_ m} → n ≡ m

→ blog2 n c-wf p ≡ blog2 m c-wf q

in order to be able to enforce proof irrelevance. Indeed, the result of blog2 n c-wf p does not
depend on the particular choice of the proof object p, however, in proof-relevant environments,
this is generally not a property, available by default. You can use the above part b) where the
analogous inequational property must have been proven.

Exercise 3 Logarithms and Tree Heights (7 Points)

The following function

bt-height : ∀ {n : N} → braun-tree n → N
bt-height bt-empty = 0

bt-height (bt-node _ l r _) = suc (max (bt-height l) (bt-height r))

calculates the hight of a brown tree. Using the properties of binary logarithms from the previous
excercise, prove the following properties in Agda:

bt-height-gt : ∀ {n : N} → (n > 0 ≡ tt)

→ (t : braun-tree n) → suc blog2 n c ≤ bt-height t ≡ tt

bt-height-lt : ∀ {n : N}
→ (t : braun-tree n) → bt-height t ≤ suc dlog2 n e ≡ tt

Exercise 4 Kripke Semantics (6 Points)

a) Design a proof of the intuitionistic tautology φ = p → ((p → q) → q) and verify the proof
in Agda by showing that the type [] ` φ is inhabited. Normalize your proof by calling the nbe

function. Does it result in a different proof?

2

IDenT, SS 2022

b) (Peirce’s law) The formula ((p → q) → p) → p is famously known for being a classical
tautology, which does not hold intuitionistically. Construct a Kripke model, falsifying it and
implement in Agda. That is, you will need to deliver a proof for

no-peirce's-law : (k , w0 |=
Implies (Implies (Implies ($ "p") ($ "q")) ($ "p")) ($ "p")) → ⊥

for suitable k and w0.

3

	Exercise 1 GCD and Termination(8 Points)
	Exercise 2 Binary Logarithms, Termination and Proof (Ir-)Relevance(9 Points)
	Exercise 3 Logarithms and Tree Heights(7 Points)
	Exercise 4 Kripke Semantics(6 Points)

