
Introduction to Dependently Typed Programming SS 2022

Assignment 4
Deadline for solutions: 6.07.2022

Exercise 1 Formal Type Theory (7 Points)

This is a pen-and-paper exercise on understanding the formal development of the Martin-Löf
type theory. We refer to the rules from the lecture for constructing derivations.

a) Spell out the rules for non-dependent functions spaces A → B, that is, you need to inspect
the rules for

∏
x : AB, and eliminate all ineffective dependencies on x.

b) Extend the type theory from the lecture with a type of Booleans. Take inspiration from the
existing rules for coproducts A + B and note that Booleans corresponds to the case of both A
and B being unit types.

c) Analogously to the introduction rule for reflexivity of propositional equality, introduce the
corresponding rules for symmetry and transitivity. Prove that they are derivable.

Hint: The case of transitivity is a little tricky: from a ≡ b you should first derive b ≡ c→ a ≡ c
and then use the elimination rule for function spaces to derive a ≡ c using the other assumption,
i.e. that b ≡ c.

Exercise 2 Without K (15 Points)

x

z

y

reflx

p q

sym p

trans p q

Implement solutions to the following prob-
lems in Agda with the pragma {-# OPTIONS

--without-K #-} activated*. This corre-
sponds to the general version of Martin-Löf
type theory with the elimination principle for
the identity types, as explained at the lecture.
As a result, proofs of equations themselves be-
come subject to (nontrivial) proofs.

The following intuition is helpful when work-
ing with such proofs. You can think of
p : x ≡ y as a path from x to y on a surface.
Then refl : x ≡ x is a one point path, symmetry produces a reversed path (sym p) : y ≡ x, and
transitivity concatenates two paths. For example, you can show that trans p (sym p) ≡ refl
(do it!). This is called the groupoid interpretation of type theory.

The following variant of the identity type eliminator

J' : ∀ {A : Set `} {x : A} (P : (z : A) → x ≡ z → Set `)
→ P x refl → (y : A) (x≡y : x ≡ y) → P y x≡y

J' P p ._ refl = p

*Consult the relevant page of Agda documentation for more deltails

https://agda.readthedocs.io/en/v2.6.0.1/language/without-k.html


IDenT, SS 2022

can thus be regarded as (based) path induction: to show a property P y x≡y of a path x≡y,
we show P x refl (induction base) and that all paths P z x≡z can be formed (so, we can
continuously move from z := x to z := y).

A type is contractible if it provably has exactly one inhabitant; a type is a mere proposition if
all its inhabitants are equal; a type is a set if there is at most one proof of equality of any two
its inhabitants. This is formalized in Agda as follows:

isContr : Set ` → Set `
isContr A = Σ A (λ x → ∀ y → x ≡ y)

isProp : Set ` → Set `
isProp A = (x y : A) → x ≡ y

isSet : Set ` → Set `
isSet A = (x y : A) → isProp (x ≡ y)

a) Show that every contractible type is a mere proposition and every mere proposition is a set.

Hint: Second property is non-tivial and requires some exploration of the space of identity proofs
p : x ≡ x. The idea is to prove that every proof x≡y : x ≡ y is equal to the canonical proof
witnessing isProp A. As an intermediate step, show the following, using (based) path induction:

prop-refl-prop : ∀ {A : Set `}{x : A} (p : isProp A)

→ trans (p x x) (sym (p x x)) ≡ (p x x)

b) Show that a type A is a mere proposition iff every type x ≡ y with x y : A is contractible.

c) Show that a type A is a set iff it satisfies the K eliminator, iff it satisfies uniqueness of identity
proofs:

K : ∀ (A : Set `) (x : A) (P : x ≡ x → Set)

→ P refl → (x≡x : x ≡ x) → P x≡x

UIP : ∀ (A : Set `) → Set `

Hence, removal of the {-# OPTIONS --without-K #-} is precisely equivalent to stating that
every type is a set. This explains the historical choice of the name Set for types in Agda. As
many other things, we cannot prove in MLTT that there are types that are not sets, but MLTT
can be consistently extended in both directions: by ensuring that every type is a set (set-theoretic
interpretation), or by ensuring that non-set types indeed exist (homotopy interpretation).

d) Show that B and N are sets.

Hint: The second property is non-trivial and can be proven by induction over natural numbers,
for which you will need to prove the following auxiliary property by path induction

suc-pre-of-eq : ∀ {x y : N} (sx≡sy : suc x ≡ suc y)

→ cong sx≡sy (λ z → suc (pre z)) ≡ sx≡sy

where

pre : N → N
pre zero = zero

pre (suc n) = n

(you will need to copy cong from eq.agda and possibly other functions about equalities.)

2



IDenT, SS 2022

Exercise 3 Non-negative Rational Numbers (8 Points)

a) Implement non-negative rational numbers Q as a setoid, whose carrier is formed by pairs
n,m, representing fractions n/m with natural n and positive natural m and the equivalence
relation, which identifies those fractions, which are equal as numbers. Use the following module
as a formalization of the notion of equivalence

module Equivalence {a `} {A : Set a} (R : A → A → Set `) where

record IsEquivalence : Set (a t `) where

field

refl : ∀ {x} → R x x

sym : ∀ {x}{y} → R x y → R y x

trans : ∀ {x}{y}{z} → R x y → R y z → R x z

b) Define addition and multiplication of rational numbers and prove that multiplication dis-
tributes over addition.

c) Prove that equality of rational numbers (i.e. the above defined setoid equivalence) is a de-
cidable relation.

3


	Exercise 1 Formal Type Theory(7 Points)
	Exercise 2 Without K(15 Points)
	Exercise 3 Non-negative Rational Numbers(8 Points)

