
Introduction to Dependently Typed Programming SS 2022

Assignment 3
Deadline for solutions: 15.06.2019

Exercise 1 Cassini’s Identity (15 Points)

Cassini’s identity is the following property of Fibonacci numbers: Fn−1Fn+1−F 2
n = (−1)n. The

following elegant proof of Cassini’s identity due to Donald Knuth is obtained by resorting to
matrix theory:

Fn−1Fn+1 − F 2
n = det

[
Fn+1 Fn

Fn Fn−1

]
= det

[
1 1
1 0

]n
=

(
det

[
1 1
1 0

])n

= (−1)n.

Implement this proof in Agda using the fact that det(M ∗ N) = (detM) ∗ (detN) without a
proof*.

It is advisable to proceed according to the following plan.

1. (Re-)Define Fibonacci numbers by using integers instead of naturals, that is, the type of
every Fn is Z.

2. Use the results of Assignment 2 to define a type of 2 by 2 integer matrices.

3. Introduce determinants of matrices: det

[
a b
c d

]
= a ∗ d− c ∗ b.

4. Show that

det

[
1 1
1 0

]n
= (−1)n.

by induction over n using the above auxiliary property of determinants, which you need not
prove.

5. Show by induction that [
Fn+1 Fn

Fn Fn−1

]
=

[
1 1
1 0

]n
.

Hint: Induction step amounts to normalization of the target equality by rewriting. In particular,
proving the following equations will be useful.

*1Z : ∀ {n : Z} → n *Z 1Z ≡ n

+0Z : ∀ {n : Z} → n +Z 0Z ≡ n

*0Z : ∀ {n : Z} → n *Z 0Z ≡ 0Z

*This is a rare example of a proof not being required. Unless the requirement to do the proof is explicitly
waived like this, it is always mandatory. ‘Prove’ means ‘do prove in Agda’; ‘show’ = prove.



IDenT, SS 2022

Exercise 2 Automation through Reflection (15 Points)

The point of the present exercise is to build a simplifier for integer expressions, analogously to
the simplifier for list expressions from the lecture.

1. Use the following type for representing integer expressions build of zero, one, negation, sum-
mation and multiplication correspondingly over the expressions of the form z〈n〉 where z is an
element of Z and n is a priority parameter for rearranging sums and products by commutativity.

data Zr : Set where

_〈_〉 : Z → N → Zr

0r : Zr

1r : Zr

-r_ : Zr → Zr

_+r_ : Zr → Zr → Zr

_×r_ : Zr → Zr → Zr

2. Define the semantic map

ZJ_K : Zr → Z

sending expressions to the corresponding values in Z in the expected way (and removing the
priorities).

3. Implement a one-step simplifier Z-simp-step analogous to Lr-simp-step, performing the
following arithmetic simplifications:

x + 0→ x x + 0→ x (x + y) + z → x + (y + z)

x× 1→ x x× 1→ x (x× y)× z → x× (y × z)

x× (y + z)→ x× y + x× z (x + y)× z → x× z + y × z

−(x + y)→ (−x) + (−y) (−x)× y → −(x× y) x× (−y)→ −(x× y)

−0→ 0 − (−x)→ x z〈n〉+ (−z〈m〉)→ 0 (−z〈n〉) + z〈m〉 → 0

z〈n〉+ ((−z〈m〉) + y)→ y (−z〈n〉) + (z〈m〉+ y)→ y

and moreover swapping the arguments in z1〈n〉 + z2〈m〉 and z1〈n〉 × z2〈m〉 if the priority m is
strictly greater than n. Add further rules to ensure that the latter rearrangements remain stable
under associativity of + and ×.

4. Define a simplification function

Z-simp : (t : Zr) → N → Zr

analogous to Lr-simp from the lecture, and prove the soundness property

Z-simp-sound : (t : Zr) (n : N) → ZJ t K ≡ ZJ Z-simp t n K

5. Prove the property of 2 × 2 matrices det(M ∗ N) = (detM) ∗ (detN) from Excerise 1 by
normlizing the left and the right hand sides using Z-simp.

Attention: normalization does not yield the same value, for the left and the right hand sides
– the resulting expressions still must be further slightly rearranged to obtain an identity.

2


	Exercise 1 Cassini's Identity(15 Points)
	Exercise 2 Automation through Reflection(15 Points)

