An Implementation of a Solver for Systems of
Fixpoint Equations

Master's Thesis

Paula Welzenbach
Advisors: Daniel Hausmann and Stefan Milius

21 July 2020

Chair for Theoretical Computer Science
Friedrich-Alexander Universitdt Erlangen-Niirnberg, Germany

Motivation

f; - P(U)+! = P(U), U C P(N)

fE)(V().‘..A Vk) = {V = VOHU/ e U.UV (& V}
(Voo Vi) = {V € Vi VU € UV C U'}
(Vs ... Vi) = Vo U V4

Xi =cep (X0, -- -, X,) if j even

Xj =LFP fJ(Xo Xk) Ifj odd

Goal. Use generalized parity game algorithms to solve systems of fixpoint
equations. (Image from Wikipedia)

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations

Theoretical Background & Setting

Least & Greatest Fixpoint (Knaster & Tarski)
h:P(U) = P(U) monotone

e LFP h={V € P(U)|h(V) C V}
e GFP h=J{V € P(U)|V C h(V)}

Setting
f; : P(U)k*1 — P(U), U finite and f; monotone

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 2

Theoretical Background: Systems of Fixpoint Equations

Format
Xi =y, i(Xo, ..., X)),
where 7); = GFP if i even, LFP otherwise.

Semantics
[Xi]° = niX;.f7 with o : [k] = P(V),
where

f7(A) = i([X]7 .., [Xi-1]7 , A, ev(o’, i+ 1),...,ev(d’, k)),
o =ali— A

(ali = AD() = A, if j=1i, o(j) otherwise,

ev(o,i) =a(i), if i € dom(c), [Xi]? otherwise.

[Long et al., 1994, Seidl, 1996]

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 3

e Parity game: (U,ECUx U,Q:U—=N), U=V3U W
fo(Vo, ..., Vi) ={v € Va|E(v) N Vo) # 0} U

{ve WIE(v) € Vaw}
f;'(\/07"'7vk):\/i—l

0<i<k
e Double powerset equation system: U C P(N)
fb(\/o, RN Vk) :{V S V0|3U/ c UV - \/}
i(Vo,..., k) ={V e Vi1 VU € U.V C U} 0<i<k

fk(v()v"'v Vk) :VOU Vk

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations

Theoretical Background

(A, k + 1)-Universal Graph [Czerwinski et al., 2018, Colcombet et al. 2018]

G =(Z,L C Z x [k] x Z) with labels from [k], such that
for all even graphs G’ with labels from [k] and |G’| < i there is a
from G’ to G which but

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 5

Theoretical Background

(A, k + 1)-Universal Graph [Czerwinski et al., 2018, Colcombet et al. 2018]

G =(Z,L C Z x [k] x Z) with labels from [k], such that
for all even graphs G’ with labels from [k] and |G’| < i there is a
from G’ to G which but

Product Equation [Hausmann, Schroder, 2019]
Y =, g(Y) with g : P(U x [k] x Z) = P(U x [k] x Z), where
o g(Y)={(v.p,q) € Ux [kl x Z|v € fp(X{,..., X{)}

o X7 ={ueU|3seLiq)(uis)eY}
Li(q) = {q'l(q.i,q") € L}

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 5

Theoretical Background

Theorem [Hausmann, Schroder, 2019]
For 0<i<k: ue[X]r < (u,i)€r[[Y]], where 7(v, p,q) = (v, p)

~» Use universal graph (UG) and product equation to solve fixpoint
equation systems.

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 6

Theoretical Background: Universal Graph & Product Fixpoint

Universal
Graph

Product
Fixpoint

[Xe]

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 7

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph [Colcombet et al., 2018]

e Nodes: (myi1, Mk—1,...,m1), m; € [n(k + 1)] (k even)
~ : How often is a priority still allowed to occur?

e Size: (n(k + 1))k/2+1

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 8

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph [Colcombet et al., 2018]

e Nodes: (myi1, Mk—1,...,m1), m; € [n(k + 1)] (k even)
~ : How often is a priority still allowed to occur?

e Size: (n(k + 1))k/2+1

Quasi-polynomial Universal Graph [Calude et al., 2017]

e Nodes: (b“og (n(k-+1))]5 ++» bo) b; € [k]
~ : How often has a priority occured?
o Size: (k + 1)[fos(n(k+1))1+1

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 8

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph: Quasi-polynomial Universal Graph:
|G| — (n(k + 1))k/2+1 |G| _ (k 4 1)(Iog(n(k+1))]+1

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 9

Theoretical Background: Universal Graphs & Product Fixpoint

Universal

Graph

Product
Fixpoint

[X]¢

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 10

Product Fixpoint: Three Variants

" Negative” Variant ~ Y =, g(Y)
e g(Y)={(v.p,q) € Ux [kl x Z|v € fp(X{,..., X{)}
o X7 ={ue U3s € Li(q).(u,i,5) € Y}
e 3g.(v,k,q) e Y

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 11

Product Fixpoint: Three Variants

”Negative” Variant ~ Y =, g(Y)
e g(Y)={(v.p,q) € Ux [kl x Z|v € fp(X{,..., X{)}
o X7 ={ueU|3seLiq)(uis)eY}
e 3g.(v,k,q) e Y

”Dual Negative” Variant ~ Y =, g(Y)
e Using the . ug = vg with g() = g(v)
e g(Y)={(v,p,q) e Ux [kl x Z|v & £,(Xo", ..., X;)}
o X;"={ue U3se L(q).(u,i,s) €Y}

e 3g.(v,k,q) & Y

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 11

Product Fixpoint: Three Variants

”Negative” Variant ~ Y =, g(Y)
e g(Y)={(v.p,q) € Ux [kl x Z|v € fp(X{,..., X{)}
o X7 ={ueU|3seLiq)(uis)eY}
e 3g.(v,k,q) e Y

”Dual Negative” Variant ~ Y =, g(Y)
e Using the . ug = vg with g(Y) = ﬁ
e g(Y)={(v,ip,q) e Ux [K] x Z|v & £,(X0", ..., Xz)}
o X;"={ue U3se L(q).(u,i,s) €Y}
e 3g.(v,k,q) & Y
" Positive” Variant ~ Y =, g(Y)
e g(Y)={(v,p,q) e Ux[k] x Z|v e fo(X, X2,)}
o X7 ={ueUVseLiq)(ui—-15s)€eY}
o (v,k,max) ey

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 11

Theoretical Background: Universal Graphs & Product Fixpoint

Universal
Graph

Product
Fixpoint

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 12

Two Algorithms for the Product Fixpoint: " All”

Is it necessary to compute the whole universal graph in advance?

o Negative variant: Yes.

e Positive/Dual Negative variant: No!
~ Start with leaves and investigate their predecessors

— Start with Y == {(v,p,q)lve U,p € [I;] odd, L,(q) = 0}
— p-leaves for the exp. UG: mp, =1
— p-leaves for the gp. UG: only odd entries

~ Less nodes in the graph, faster execution!

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations

13

Universal Graphs & Product Fixpoint: Full Overview

Universal
Graph

Product

»Less” Nodes . .
Fixpoint

LAl Nodes

[Xy]°

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 14

Implementation: Architecture

Universal
Graph

Product
Fixpoint

0 LAl Nodes

,Less“ Nodes

[XI¢

Strict encapsulation, "Strategy” design pattern ~» simple extensibility

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 15

Implementation: Data Structures

(* Universal Graph)
type graph = {

edges: node NodelabelHT .t; (x ((n,p),m) x)
predecessors: (unit NodeHT.t) NodeHT.t; (% (m,N) =)
leaves: unit NodelLabelHT.t; (x ((n,p),()) =)
nodes: unit NodeHT.t; (x (n,()) =)
n: int;
k: int

}

(* Exponential/Quasi—polynomial Graph x)

type node = int array

(% Task =)

module AbstractUSet = Set.S with type t=utype

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 16

Implementation: " All Nodes”

Negative Variant

procedure FPAPPROXIMATION(f, U, i, E)
G + NEGATIVEGRAPH(#, k)
Y + U x [k] x G.nodes
Y 0
firstRun < true
while Y’ # Y do
if not firstRun then
Y+~ Y
firstRun <« false
for g in G.nodes do
for i from 0 to k do
X7 «— {u e U3s € Li(q).(u,i,s) € Y}
temp + 0
for i from 0 to k do
res < f;(Xg, ..., X7)
temp < temp U{(v, i, q)|v € res}
Y’ < temp
return Y

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations

17

Implementation: " Less Nodes”

Positive Variant

procedure FPAPPROXIMATION(F, U, i, k)
G <+ EMPTYPOSITIVEGRAPH(#, k)
G < ADDLEAVES(G)
Y« 0
Y 0
relevantNodes <— G.leaves
do
Y« Y
for g in relevantNodes do
for i from 1 to k + 1 do
X7 <coMPUTEX(G, i, q)
for i from 0 to k do
res < fi(X7, ..., X£+1)
Y < Y U{(v,i,q)|v € res}
interestingNodes < g’ from Y for which a (v/,j, q’) was added to Y and ¢’ is a
non-leaf node in G with X/q/ 0
relevantNodes <~ GETPREDECESSORS(interestingNodes, G.predecessors)
while Y # Y'.
return Y

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 18

Implementation: " Less Nodes”

Dual Negative Variant

procedure FPAPPROXIMATION(, U, fi, I:)
G <+ EMPTYDUALNEGATIVEGRAPH(7, k)
G < ADDLEAVES(G)
Y+ 0
Y 0
relevantNodes <+ G.leaves
do
Y <Y
for g in relevantNodes do
for i from 0 to k do
X;? «—compuTEX;?(G, i, q)
for i from 0 to k do
res <— f;(Yoq, A ,Y;q)
Y +— Y U{(v,i,q)|v € U\ res}
interestingNodes + g’ from Y for which a (v’,j7 q') was added to Y and ¢’ is a
non-leaf node in G with X,q/ #0
relevantNodes <~ GETPREDECESSORS(interestingNodes, G.predecessors)
while Y # Y.
return Y

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 19

Evaluation: Dimensions

CPU time

Number of iterations

Number of nodes in the UG

e Memory usage

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 20

Evaluation: Tools

e perf stat

formance counter stats for './testing gx --file=Games/dandelion 5.pg --grap urdzinsky --less-nodes=
positive --deb lse' (5

.152 CPUs utilized
.000 K/sec
000 K/sec
.169 M/sec
9,071,124 .021 GHz
19,041,133 16 insn per cycle
3,975,835 branches:u 885.949 M/sec

40,046 branch-misses:u .01% of all branches

4.49
0

[}
758

e e 4 R

0.0296 +- 0.0250 seconds time elapsed

1

pen 3¢ Close | Shoren Templates Selct paksrpshot | Toggle ool ost 1ph | Toagedeaie costgaph Staces sigars: 10 |2

o 1183 % Mass D a=

00 sugeror 10
3608 Srspenot 11

e Environment: Intel® Core™ i7-6500U CPU @ 2.50GHz, 4GB RAM

L https://github.con/KDE/massif-visualizer

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 21

https://github.com/KDE/massif-visualizer

Evaluation: Tasks

e Testing: parity games (standard, probabilistic, graded), double
powerset equation system

e Performance: parity games

2

joRoRoRSss

Simplechain parity games

Dandelion parity games

Simplechain_less parity games

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 22

Evaluation: Number of Nodes

SIMPLECHAIN PARITY GAMES

== EXp. AN neg. Exp. INpos. ==p==(P. ANnNeg. e==(QP [Npos. =—#==QP LN dual

5000
8000 K
7000 H

6000 L

5000

4000

NUMBER OF NODES

3000

2000

1000

Simplechain parity games: number of nodes in the UG

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 23

Evaluation: Number of lterations

SIMPLECHAIN_LESS PARITY GAMES
—=—Exp. AN neg. EXp.Npos. —h—OP.ANnes. ——QFLNpos. —#—QF LN dual

as0

200

300

NUMBER OF ITERATIONS

/

12345676 9101112131415161718192021222324252627
Ll

93031323334353637 383940414243 4445464748 4950

Simplechain_less parity games: number of iterations

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 24

Evaluation: CPU Time (1)

SIMPLECHAIN PARITY GAMES

2500 —4—Exp_ ANpos. —B—Exp. ANneg, Exp. AN dus Exp. LN pos.| —#—Exp. LN dusl
=B QP AN pOS. =i OP. AN NEE. ==memOF. AN dual ==em=mF LN pos. | =#==0OF LN dual

2000
1500
]
1000
500
o gl e a0 2SR N VAT TN —
1 2 3 4 5 B T E 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 70 80 90 100110

Simplechain parity games: CPU time

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 25

: CPU Time (2)

DANDELION PARITY GAMES

—+—Exp. AN pos. —s—Exp. AN neg. Exp. AN dual Exp. LN pos. —s—Exp. LN dual

—e—0P ANpos ——0P ANneg —=— QP ANdual —=—QP LNpos. —&—OP N dual

CPU TIME [5]

2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 30 40 50 60 70 80 50 100
i

Dandelion parity games: CPU time

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 26

Evaluation: Memory Usage (1)

SIMPLECHAIN PARITY GAMES

=—=—EXp. AN pOS. == EXP. AN neg. Exp. AN dual Exp. LN pos. —#—Exp. LN dual
—8—QP. AN p0s. ==t=QP. AN neg. =——=0Qp. AN dual =———QP LN pos. =—¢=—0QP LN dual
1000

100

HEAP PEAK [MIB]

Simplechain parity games: Heap peak

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 27

Evaluation: Memory Usage (2)

DANDELION PARITY GAMES

—&—Exp. AN pos. —8—Exp. AN neg. Exp. AN dual Exp. LN pos.
== Exp. LN dual —#—QP. AN pos. ==+=—QP. AN neg. =——QP. AN dual

=———QP LN pos. =—#—QP LN dual

P~
wn

44

~
w

»
N

HEAP PEAK [MIB]
-
[¢]

w
b »

2 5 10 15 20 25 30 40 50 60 70 80 90 100 110
U]

Dandelion parity games: Heap peak

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 28

CPU Time Comparison with COOL (1)

SIMPLECHAIN PARITY GAMES

=t (1P, LN pOs. =il 0P LN dual ool

Simplechain parity games: Comparison of CPU time

[https://git8.cs.fau.de/software/cool/]

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 29

https://git8.cs.fau.de/software/cool/

Analysis: CPU Time Comparison with COOL (2)

DANDELION PARITY GAMES

—4—0QP.[Npos. =—@—QP.LN dual cooL

25

20

15

CPU TIME [5)

10

H
w
IS
«
B
o
®
©
5

1Vl

Dandelion parity games: Comparison of CPU time

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 30

Evaluation: Results

e Exponential graph: number of nodes growing fast, CPU time
highly dependent on task.

e Quasi-polynomial graph: number of nodes growing in steps, CPU
time grows steadily.

e Number of iterations: not directly related to number of nodes, but
similar growth curve.

e Memory usage: dependent on n, k.

~ "Dual negative” variant with "less nodes” and quasi-polynomial UG
has best performance over all.

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 31

Conclusion & Future Work

Conclusion:

e Implemented solver for FP equation systems.

— Modular architecture ~ " Designed for extension”.
— Compared different variants ~ Use "QP LN dual negative” variant.

e Inconvenient effect on all dimensions for increasing n and k.

e Solver comparable to COOL for small n and k.

e Solver not comparable to PGSolver, but solves more general
problems. [https://github.com/tcsprojects/pgsolver]

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 32

https://github.com/tcsprojects/pgsolver

Conclusion & Future Work

Conclusion:

e Implemented solver for FP equation systems.

— Modular architecture ~ " Designed for extension”.
— Compared different variants ~ Use "QP LN dual negative” variant.

e Inconvenient effect on all dimensions for increasing n and k.
e Solver comparable to COOL for small n and k.

e Solver not comparable to PGSolver, but solves more general
problems. [https://github.com/tcsprojects/pgsolver]

Add more task modules for more equation systems.
Integrate with COOL.
Further improve performance.

Implement other algorithms: Progress Measures [Jurdzinsky et al.,
2017], General Zielonka

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations 32

https://github.com/tcsprojects/pgsolver

Questions?

https://git8.cs.fau.de/theses/masterarbeit-paula-welzenbach

P. Welzenbach — An Implementation of a Solver for Systems of Fixpoint Equations

38

https://git8.cs.fau.de/theses/masterarbeit-paula-welzenbach

