An Implementation of a Solver for Systems of Fixpoint Equations

Master's Thesis

Paula Welzenbach

Advisors: Daniel Hausmann and Stefan Milius

21 July 2020

Chair for Theoretical Computer Science Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Motivation

Goal. Use generalized parity game algorithms to solve systems of fixpoint equations. (Image from Wikipedia)

Theoretical Background & Setting

Least & Greatest Fixpoint (Knaster & Tarski)

 $h: \mathcal{P}(U) \to \mathcal{P}(U)$ monotone

- LFP $h = \bigcap \{ V \in \mathcal{P}(U) | h(V) \subseteq V \}$
- GFP $h = \bigcup \{ V \in \mathcal{P}(U) | V \subseteq h(V) \}$

Setting

 $f_i: \mathcal{P}(U)^{k+1} \to \mathcal{P}(U)$, U finite and f_i monotone

Theoretical Background: Systems of Fixpoint Equations

Format

$$X_i =_{\eta_i} f_i(X_0, \dots, X_k),$$

where $\eta_i = \text{GFP}$ if i even, LFP otherwise.

Semantics

$$\begin{split} & [\![X_i]\!]^\sigma = \eta_i X_i.f_i^\sigma \text{ with } \sigma: [k] \rightharpoonup \mathcal{P}(U), \\ & \text{where} \\ & f_i^\sigma(A) = f_i([\![X_0]\!]^{\sigma'}, \ldots, [\![X_{i-1}]\!]^{\sigma'}, A, ev(\sigma', i+1), \ldots, ev(\sigma', k)), \\ & \sigma' = \sigma[i \mapsto A], \\ & (\sigma[i \mapsto A])(j) = A, \text{ if } j = i, \text{ } \sigma(j) \text{ otherwise,} \\ & ev(\sigma, i) = \sigma(i), \text{ if } i \in dom(\sigma), \ [\![X_i]\!]^\sigma \text{ otherwise.} \end{split}$$

[Long et al., 1994, Seidl, 1996]

Examples

• Parity game: $(U, E \subseteq U \times U, \Omega : U \to \mathbb{N}), \ U = V_\exists \cup V_\forall$ $f_0(V_0, \dots, V_k) = \{v \in V_\exists | E(v) \cap V_{\Omega(v)} \neq \emptyset\} \cup$ $\{v \in V_\forall | E(v) \subseteq V_{\Omega(v)}\}$ $f_i(V_0, \dots, V_k) = V_{i-1}$ $0 < i \le k$

• Double powerset equation system: $U \subseteq \mathcal{P}(\mathbb{N})$

$$f_{0}(V_{0},...,V_{k}) = \{V \in V_{0} | \exists U' \in U.U' \subsetneq V\}$$

$$f_{i}(V_{0},...,V_{k}) = \{V \in V_{i-1} | \forall U' \in U.V \subseteq U'\}$$

$$f_{k}(V_{0},...,V_{k}) = V_{0} \cup V_{k}$$

$$0 < i < k$$

Theoretical Background

 $(\tilde{n}, \tilde{k}+1)$ -Universal Graph [Czerwinski et al., 2018, Colcombet et al. 2018] Even graph $G=(Z, L\subseteq Z\times [\tilde{k}]\times Z)$ with labels from $[\tilde{k}]$, such that for all even graphs G' with labels from $[\tilde{k}]$ and $|G'|\leq \tilde{n}$ there is a homomorphism from G' to G which transforms nodes but maintains labels.

Theoretical Background

 $(\tilde{n}, \tilde{k}+1)$ -Universal Graph [Czerwinski et al., 2018, Colcombet et al. 2018] Even graph $G=(Z, L\subseteq Z\times [\tilde{k}]\times Z)$ with labels from $[\tilde{k}]$, such that for all even graphs G' with labels from $[\tilde{k}]$ and $|G'|\leq \tilde{n}$ there is a homomorphism from G' to G which transforms nodes but maintains labels.

Product Equation [Hausmann, Schröder, 2019]

$$Y =_{\nu} g(Y)$$
 with $g : \mathcal{P}(U \times [\tilde{k}] \times Z) \to \mathcal{P}(U \times [\tilde{k}] \times Z)$, where

- $g(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \in f_p(X_0^q, \dots, X_{\tilde{k}}^q)\}$
- $X_i^q = \{u \in U | \exists s \in L_i(q).(u, i, s) \in Y\}$ $L_i(q) = \{q' | (q, i, q') \in L\}$

Theoretical Background

Theorem [Hausmann, Schröder, 2019]

For
$$0 \le i \le \tilde{k}$$
: $u \in [X_i]_f \Leftrightarrow (u,i) \in \tau[[Y]]$, where $\tau(v,p,q) = (v,p)$

 \sim Use universal graph (UG) and product equation to solve fixpoint equation systems.

Theoretical Background: Universal Graph & Product Fixpoint

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph [Colcombet et al., 2018]

- Nodes: $(m_{k+1}, m_{k-1}, \dots, m_1)$, $m_i \in [n(k+1)]$ (k even) \sim "Timeouts": How often is a priority still allowed to occur?
- Size: $(n(k+1))^{k/2+1}$

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph [Colcombet et al., 2018]

- Nodes: $(m_{k+1}, m_{k-1}, \dots, m_1)$, $m_i \in [n(k+1)]$ (k even) \sim "Timeouts": How often is a priority still allowed to occur?
- Size: $(n(k+1))^{k/2+1}$

Quasi-polynomial Universal Graph [Calude et al., 2017]

- Nodes: (b_[log(n(k+1))],...,b₀), b_i ∈ [k]
 → "History": How often has a priority occurred?
- Size: $(k+1)^{\lceil \log(n(k+1)) \rceil + 1}$

(n(k+1), k+1)-Universal Graphs: Exponential & Quasi-polynomial

Exponential Universal Graph:

$$|G| = (n(k+1))^{k/2+1}$$

Quasi-polynomial Universal Graph:

$$|G| = (k+1)^{\lceil \log(n(k+1)) \rceil + 1}$$

Theoretical Background: Universal Graphs & Product Fixpoint

Product Fixpoint: Three Variants

"Negative" Variant $\rightsquigarrow Y =_{\nu} g(Y)$

- $g(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \in f_p(X_0^q, \dots, X_{\tilde{k}}^q)\}$
- $X_i^q = \{u \in U | \exists s \in L_i(q).(u,i,s) \in Y\}$
- $\exists q.(v,\tilde{k},q) \in Y$

Product Fixpoint: Three Variants

"Negative" Variant $\rightsquigarrow Y =_{\nu} g(Y)$

- $g(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \in f_p(X_0^q, \dots, X_{\tilde{k}}^q)\}$
- $\bullet \ X_i^q = \{u \in U | \exists s \in L_i(q).(u,i,s) \in Y\}$
- $\exists q.(v, \tilde{k}, q) \in Y$

"Dual Negative" Variant $\rightsquigarrow Y =_{\mu} \overline{g}(Y)$

- Using the principle of duality: $\mu g = \overline{\nu \overline{g}}$ with $\overline{g}(Y) \coloneqq g(\overline{Y})$
- $\overline{g}(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \notin f_p(\overline{X_0}^q, \dots, \overline{X_{\tilde{k}}}^q) \}$
- $\overline{X_i}^q = \{u \in U | \exists s \in L_i(q).(u,i,s) \notin Y\}$
- $\exists q.(v,\tilde{k},q) \notin Y$

Product Fixpoint: Three Variants

"Negative" Variant $\rightsquigarrow Y =_{\nu} g(Y)$

- $g(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \in f_p(X_0^q, \dots, X_{\tilde{k}}^q)\}$
- $X_i^q = \{u \in U | \exists s \in L_i(q).(u, i, s) \in Y\}$
- $\exists q.(v, \tilde{k}, q) \in Y$

"Dual Negative" Variant $\rightsquigarrow Y =_{\mu} \overline{g}(Y)$

- Using the principle of duality: $\mu g = \overline{\nu \overline{g}}$ with $\overline{g}(Y) \coloneqq g(\overline{Y})$
- $\overline{g}(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \notin f_p(\overline{X_0}^q, \dots, \overline{X_{\tilde{k}}}^q) \}$
- $\overline{X_i}^q = \{u \in U | \exists s \in L_i(q).(u,i,s) \notin Y\}$
- $\exists q.(v, \tilde{k}, q) \notin Y$

"Positive" Variant $\rightsquigarrow Y =_{\mu} g(Y)$

- $g(Y) = \{(v, p, q) \in U \times [\tilde{k}] \times Z | v \in f_p(X_1^q, \dots, X_{\tilde{k}+1}^q) \}$
- $\bullet \ X_i^q = \{u \in U | \forall s \in L_i(q).(u, i-1, s) \in Y\}$
- $(v, \tilde{k}, max) \in Y$

Theoretical Background: Universal Graphs & Product Fixpoint

Two Algorithms for the Product Fixpoint: "All"/"Less" Nodes

Is it necessary to compute the whole universal graph in advance?

- Negative variant: Yes.
- Positive/Dual Negative variant: No!
 - → Start with leaves and investigate their predecessors
 - Start with $Y := \{(v, p, q) | v \in U, p \in [\tilde{k}] \text{ odd}, L_p(q) = \emptyset\}$
 - p-leaves for the exp. UG: $m_p=1$
 - p-leaves for the qp. UG: only odd entries
 - → Less nodes in the graph, faster execution!

Universal Graphs & Product Fixpoint: Full Overview

Implementation: Architecture

Strict encapsulation, "Strategy" design pattern \sim simple extensibility

Implementation: Data Structures

```
(* Universal Graph *)
type graph = {
  edges: node NodeLabelHT.t;
                                    (* ((n,p),m) *)
  predecessors: (unit NodeHT.t) NodeHT.t; (* (m,N) *)
  leaves: unit NodeLabelHT.t;
                                    (* ((n,p),()) *)
                                        (* (n,()) *)
  nodes: unit NodeHT.t;
 n: int;
 k: int
(* Exponential/Quasi-polynomial Graph *)
type node = int array
(* Task *)
module AbstractUSet = Set.S with type t=utype
```

Implementation: "All Nodes"

Negative Variant

```
procedure FPAPPROXIMATION(f, U, \tilde{n}, \tilde{k})
      G \leftarrow \text{NEGATIVEGRAPH}(\tilde{n}, \tilde{k})
      Y \leftarrow U \times [\tilde{k}] \times G.nodes
     Y' \leftarrow \emptyset
     firstRun ← true
     while Y' \neq Y do
           if not firstRun then
                 Y \leftarrow Y'
           firstRun ← false
           for q in G.nodes do
                for i from 0 to \tilde{k} do
                      X_i^q \leftarrow \{u \in U | \exists s \in L_i(q).(u, i, s) \in Y\}
                temp \leftarrow \emptyset
                 for i from 0 to \tilde{k} do
                      res \leftarrow f_i(X_0^q, \dots, X_i^q)
                      \mathsf{temp} \leftarrow \mathsf{temp} \cup \{(v, i, q) | v \in \mathsf{res}\}
                 Y' \leftarrow \mathsf{temp}
     return Y
```

Implementation: "Less Nodes"

Positive Variant

```
procedure FPAPPROXIMATION(f, U, \tilde{n}, \tilde{k})
     G \leftarrow \text{EMPTYPOSITIVEGRAPH}(\tilde{n}, \tilde{k})
     G \leftarrow ADDLEAVES(G)
     Y \leftarrow \emptyset
     Y' \leftarrow \emptyset
    relevantNodes ← G.leaves
    do
         Y \leftarrow Y'
         for a in relevantNodes do
              for i from 1 to \tilde{k} + 1 do
                  X_i^q \leftarrow \text{COMPUTE} X_i^q(G, i, q)
              for i from 0 to \tilde{k} do
                  res \leftarrow f_i(X_1^q, \ldots, X_{\tilde{i}+1}^q)
                   Y' \leftarrow Y' \cup \{(v, i, q) | v \in res\}
         interestingNodes \leftarrow q' from Y for which a (v', j, q') was added to Y and q' is a
non-leaf node in G with X_i^{q'} \neq \emptyset
         relevantNodes ← GETPREDECESSORS(interestingNodes, G.predecessors)
    while Y \neq Y'.
    return Y
```

Implementation: "Less Nodes"

Dual Negative Variant

```
procedure FPAPPROXIMATION(f, U, \tilde{n}, \tilde{k})
     G \leftarrow \text{EMPTY} \frac{\text{DUALNEGATIVE}}{\text{GRAPH}(\tilde{n}, \tilde{k})}
     G \leftarrow ADDLEAVES(G)
     Y \leftarrow \emptyset
     Y' \leftarrow \emptyset
     relevantNodes ← G leaves
     dο
          Y \leftarrow Y'
          for q in relevantNodes do
                for i from 0 to \tilde{k} do
                    \overline{X_i}^q \leftarrow \text{COMPUTE} \overline{X_i}^q (G, i, q)
                for i from 0 to \tilde{k} do
                    \operatorname{res} \leftarrow f_i(\overline{X_0}^q, \dots, \overline{X_i}^q)
                     Y' \leftarrow Y' \cup \{(v, i, a) | v \in U \setminus res\}
          interesting Nodes \leftarrow q' from Y for which a (v', j, q') was added to Y and q' is a
non-leaf node in G with X_i^{q'} \neq \emptyset
          relevantNodes \leftarrow GETPREDECESSORS(interestingNodes, G.predecessors)
     while Y \neq Y'.
     return Y
```

Evaluation: Dimensions

- CPU time
- Number of iterations
- Number of nodes in the UG
- Memory usage

Evaluation: Tools

perf stat

```
Performance counter stats for './testing gx pg --file=Games/dandelion 5.pg --graph=jurdzinsky --less-nodes=true
--variant=positive --debugging=false' (5 runs):
                                                       0.152 CPUs utilized
                                                                                       ( +- 13.58% )
             4.49 msec task-clock:u
                       context-switches:u
                                                       0.000 K/sec
                       cpu-migrations:u
                                                       0.000 K/sec
                       page-faults:u
                                                       0.169 M/sec
                                                                                             0.63%
        9,071,124
                                                       2.021 GHz
                                                                                             0.79%
       19,041,133
                                                       2.10 insn per cycle
                                                                                             0.00%
        3,975,835
                                                     885.949 M/sec
                                                                                             0.00%
                       branches:u
           40.046
                       branch-misses:u
                                                       1.01% of all branches
           0.0296 +- 0.0250 seconds time elapsed ( +- 84.40% )
```

ullet valgrind + massif + massif-visualizer 1

• Environment: Intel® CoreTM i7-6500U CPU @ 2.50GHz, 4GB RAM

 $[\]mathbf{1}_{\texttt{https://github.com/KDE/massif-visualizer}}$

P. Welzenbach - An Implementation of a Solver for Systems of Fixpoint Equations

Evaluation: Tasks

- Testing: parity games (standard, probabilistic, graded), double powerset equation system
- Performance: parity games

 ${\tt Simple chain\ parity\ games}$

Dandelion parity games

Simplechain_less parity games

Evaluation: Number of Nodes

Simplechain parity games: number of nodes in the UG

Evaluation: Number of Iterations

Simplechain_less parity games: number of iterations

Evaluation: CPU Time (1)

Simplechain parity games: CPU time

Evaluation: CPU Time (2)

Dandelion parity games: CPU time

Evaluation: Memory Usage (1)

Simplechain parity games: Heap peak

Evaluation: Memory Usage (2)

Dandelion parity games: Heap peak

Analysis: CPU Time Comparison with COOL (1)

Simplechain parity games: Comparison of CPU time

[https://git8.cs.fau.de/software/cool/]

P. Welzenbach – An Implementation of a Solver for Systems of Fixpoint Equations

Analysis: CPU Time Comparison with COOL (2)

 ${\tt Dandelion\ parity\ games:\ Comparison\ of\ CPU\ time}$

Evaluation: Results

- Exponential graph: number of nodes growing fast, CPU time highly dependent on task.
- Quasi-polynomial graph: number of nodes growing in steps, CPU time grows steadily.
- Number of iterations: not directly related to number of nodes, but similar growth curve.
- Memory usage: dependent on *n*, *k*.
- → "Dual negative" variant with "less nodes" and quasi-polynomial UG has best performance over all.

Conclusion & Future Work

Conclusion:

- Implemented solver for FP equation systems.
 - Modular architecture → "Designed for extension".
 - Compared different variants \sim Use "QP LN dual negative" variant.
- Inconvenient effect on all dimensions for increasing n and k.
- Solver comparable to COOL for small n and k.
- Solver not comparable to PGSolver, but solves more general problems. [https://github.com/tcsprojects/pgsolver]

Conclusion & Future Work

Conclusion:

- Implemented solver for FP equation systems.
- Inconvenient effect on all dimensions for increasing n and k.
- Solver comparable to COOL for small n and k.
- Solver not comparable to PGSolver, but solves more general problems. [https://github.com/tcsprojects/pgsolver]

Future work:

- Add more task modules for more equation systems.
- Integrate with COOL.
- Further improve performance.
- Implement other algorithms: Progress Measures [Jurdzinsky et al., 2017], General Zielonka

Questions?

https://git8.cs.fau.de/theses/masterarbeit-paula-welzenbach