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Fuzzy Lax Extensions”. In: CONCUR (2020)
• Dirk Hofmann and Pedro Nora. “Hausdor� coalgebras”. In: Applied Categorical

Structures (2020)

Tholen:
(. . . ) Fuzzy (. . . )? Perhaps they should work with V-categories.
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Quantale-enriched category theory



What are categories made of?

Definition
A (small) category C consists of:
• a set of objects;
• for each pair x,y of objects, a set of morphisms C(x, y);
• for each triple x,y,z of objects, a function ◦x,y,z : C(x, y)× C(y, z)→ C(x, z);
• for each object x, a function 1X : 1→ C(x, x);

such that . . .

Definition
A functor F : X→ Y consists of:
• a function from the objects of X to the objects of Y;
• for each pair of objects x, x′ of X a function Fx,x′ : X(x, x′)→ Y(Fx, Fx′)

such that . . .
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A thin monoidal category

Definition
A quantale V = (V,⊗, k) is a complete lattice V equipped with a commutative
monoid structure ⊗, with identity k, such that, for each u ∈ V ,

u⊗− : V −→ V has a right adjoint hom(u,−) : V −→ V .

Recall
• A preordered set (X,≤) can be understood as a category where for each pair

of objects x, y there is at most one morphism between x and y.

• A quantale is a symmetric monoidal closed category.
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Don’t get lost in translation

Category
• a set of objects;

•
•
•

Functor
• a function from the objects of X to the objects of Y;
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Quantale-enriched categories and functors

Definition
Let V = (V,⊗, k) be a quantale.
• A V-category is a pair (X,a) consisting of a set X and a map a : X × X −→ V

satisfying

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z),

for all x, y, z ∈ X.
• A V-functor f : (X,a) −→ (Y,b) between V-categories is a map f : X −→ Y such

that
a(x, x′) ≤ b(f (x), f (x′)),

for all x, x′ ∈ X.
• V-categories and V-functors define the category V-Cat.



Categories of quantale-enriched categories

Example
If V is the trivial quantale, then 1-Cat ∼ Set.

Example
If V is the two element chain 2 = {0, 1} with ⊗ = &. Then 2-Cat ∼ Ord.

Example

Consider the quantales based on the extended real half line
←−−−
[0,∞] ordered by the

“greater or equal” relation > and
• the tensor product given by addition +, denoted by

←−−−
[0,∞]+;

• or with ⊗ = max, denoted as
←−−−
[0,∞]∧.

Then
←−−−
[0,∞]+-Cat ∼ Met is the category of (generalised) metric spaces and

non-expansive maps and
←−−−
[0,∞]∧-Cat ∼ UMet is the category of (generalised)

ultrametric spaces and non-expansive maps.
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V-Cat

Example

If V is the quantale
←−−
[0, 1]⊕ given by the unit interval [0, 1] with the “greater or

equal” relation > and the tensor u⊕ v = min{1,u + v}. Then
←−−
[0, 1]⊕-Cat ∼ BMet is

the category of (generalised) bounded-by-one metric spaces and non-expansive
maps.

Alert
Do not forget to reverse the order!
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Quantale-valued relations

Definition
Let V = (V,⊗, k) be a quantale, and X, Y and Z sets.
• A V-relation from X to Y, X −→7 Y, is a map X × Y → V .
• For r : X −→7 Y and s : Y −→7 Z, the composite s · r : X −→7 Z is calculated

pointwise by
(s · r)(x, z) =

∨
y∈Y

r(x, y)⊗ s(y, z),

for every x ∈ X and z ∈ Z.
• Sets and V-relations define the category V-Rel.

Remark
The structure of a V-category is a reflexive and transitive V-relation. That is, for a
V-category (X,a), 1X ≤ a and a · a ≤ a.
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Strict functorial liftings

Problem
Given an endofunctor F on a category A and a faithful functor U : X→ A, study a
“lifting” of F to an endofunctor F on X. In a strict sense, by “lifting” we mean that
the diagram

X X

A A.

F

F

commutes.
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Strict functorial liftings

Problem
Given an endofunctor F on a category A and a faithful functor U : X→ A, study a
“lifting” of F to an endofunctor F on X. In a strict sense, by “lifting” we mean that
the diagram

V-Cat V-Cat

Set Set.

F

F

commutesa.
aAdriana Balan, Alexander Kurz, and Jiří Velebil. “Extending set functors to generalised metric

spaces”. In: Logical Methods in Computer Science 15.(1) (2019).



How to construct strict liftings?

Lax extension

Consider first a lax extension F̂ : V-Rel→ V-Rel of the functor F:a

1. r ≤ r′ =⇒ F̂r ≤ F̂r′,
2. F̂s · F̂r ≤ F̂(s · r),
3. Ff ≤ F̂(f ) and (Ff )◦ ≤ F̂(f ◦).

Then, the functor F : Set→ Set admits a natural lifting to V-Catb: the functor
F : V-Cat→ V-Cat sends a V-category (X,a) to (FX, F̂a).

aGavin J. Seal. “Canonical and op-canonical lax algebras”. In: Theory and Applications of Categories
14.(10) (2005), pp. 221–243.

bWalter Tholen. “Ordered topological structures”. In: Topology and its Applications 156.(12) (2009),
pp. 2148–2157.



Lax extensions

Remark
One advantage of this type of lifting is that allows us to use the calculus of
V-relations.

Proposition

F : V-Cat→ V-Cat preserves initial V-functors.

Proof.

Let f : (X,a)→ (Y,b) be a V-functor with a = f ◦ · b · f . Then F̂a = Ff ◦ · F̂b · Ff .
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How to construct lax extensions?

The Wasserstein lifting
One possible way to construct lax extensions based on a (lax) T-algebra structure
ξ : TV → V is devised ina: for every V-relation r : X × Y → V and for all x ∈ TX and
y ∈ TY,

T̂r(x, y) =
∨{

ξ · Tr(w)
∣∣∣ w ∈ T(X × Y), Tπ1(w) = x, Tπ2(w) = y

}
.

aDirk Hofmann. “Topological theories and closed objects”. In: Advances in Mathematics 215.(2)
(2007), pp. 789–824.

Remark

The lax extension T̂ preserves the involution on V-Rel, that is, T̂(r◦) = (T̂r)◦ for all
V-relations r : X −→7 Y.
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Topological categories

Definition
A functor U : X→ A is called topological whenever each cone C = (A→ UXi)i∈I in A
admits a U-initial lifting. In this case we say that X is topological over A.

Example
• The category Top is topological over Set.

• For every quantale V , the categories V-Cat and V-Catsym are topological over
Set.

Proposition
If X is a topological over a category A, then X has limits of shape I if and only if A
has limits of shape I.
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How to construct strict liftings?

Notation

For a functor F : A→ A and A-morphisms ψ : A→ Ã and σ : FÃ→ Ã, let ψ♦ : FA→ Ã
denote the composite FA Fψ−−−−−→ FÃ σ−−−−→ Ã.

The Kantorovich lifting
Consider a category X equipped with a topological functor U : X→ A, and an
X-object X̃ whose underlying set UX̃ carries the structure σ : FUX̃ → UX̃ of a
F-algebra. Then (ψ♦ : FUX → UX̃)

ψ∈X(X,X̃) is a U-structured cone, and we define FX
to be the domain of the initial lift of this cone.
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Kantorovich lifting

Theorem
1. The construction of the previous slide defines a strict lifting F : X→ X of the

functor F : A→ A.
2. For every ψ : X → X̃ in X, ψ♦ is an X-morphism ψ♦ : FX → X̃. In particular,
σ = 1X̃

♦ is an X-morphism σ : FX̃ → X̃.

3. If X̃ is injective with respect to initial morphisms, then F : X→ X preserves
initial morphism.

4. Let α : F⇒ G be a natural transformation such that σG · αX̃ = σF. Then α lifts to
a natural transformation between the corresponding X-functors.

5. If F = T is part of a monad T = (T,m, e) on A and σ : T|X̃| → |X̃| is a T-algebra,
then T lifts naturally to a monad T̄ = (T,m, e) on X.



Limits in categories of coalgebras of strict lifting

Theorem
Consider the following commutative diagram of functors.

X X

A A

F

U U

F

1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point, then
neither does F.

2. If U : X→ A is topological, then so is U : CoAlg(F)→ CoAlg(F).

In particular, the category CoAlg(F) has limits of shape I if and only if CoAlg(F)

has limits of shape I.
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Hausdorff Coalgebras



Kripke polynomial functors

Previous work
Dirk Hofmann, Renato Neves, and Pedro Nora. “Limits in categories of Vietoris
coalgebras”. In: Mathematical Structures in Computer Science 29.(4) (2019),
pp. 552–587

Definition
We call a functor Kripke polynomial whenever it belongs to the smallest class of
endofunctors on Set that contains the identity functor, all constant functors and is
closed under composition with a powerset functor, products and sums of functors.

Remark
The class of Kripke polynomial functors is well-behaved in regard to the existence
of limits in their respective categories of coalgebras — if the powerset functor is
submitted to certain cardinality restrictions.
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A brief history of “powerfull” functors

Recall
• The terminal coalgebra for F : C→ C is a fix-point of F. a

• The power-set functor P : Set→ Set does not have a fix-point; hence P does
not admit a terminal coalgebra.

• The finite power-set functor Pfin : Set→ Set admits a terminal coalgebra (for
instance, because Pfin is finitary).

• Somehow more general: the Vietoris functor V : CompHaus→ CompHaus
admits a terminal coalgebra

(and the same is true for
V : PosComp→ PosComp).

• A bit more general: the compact Vietoris functor Vc : Top→ Top admits a
terminal coalgebra.

aJoachim Lambek. “A fixpoint theorem for complete categories”. In: Mathematische Zeitschrift
103.(2) (1968), pp. 151–161.
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aMichael Barr. “Terminal coalgebras in well-founded set theory”. In: Theoretical Computer Science
114.(2) (1993), pp. 299–315.
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General topology. 2nd ed. Vol. 6. Sigma Series in Pure Mathematics. Berlin: Heldermann Verlag, 1989.
viii + 529.
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Recall
• The terminal coalgebra for F : C→ C is a fix-point of F.
• The power-set functor P : Set→ Set does not have a fix-point; hence P does

not admit a terminal coalgebra.
• The finite power-set functor Pfin : Set→ Set admits a terminal coalgebra (for

instance, because Pfin is finitary).
• Somehow more general: the Vietoris functor V : CompHaus→ CompHaus

admits a terminal coalgebra (and the same is true for
V : PosComp→ PosComp).

• A bit more general: the compact Vietoris functor Vc : Top→ Top admits a
terminal coalgebra.

• A bit surprising(?): Also the lower Vietoris functor V : Top→ Top admits a
terminal coalgebra.



A natural candidate: the Hausdorff monad on V-Cat

Definition
Let f : (X,a)→ (Y,b) be a V-functor.

1. For every A ⊆ X, put ↑a A = {y ∈ X | k ≤
∨

x∈A a(x, y)}.

2. We call a subset A ⊆ X of (X,a) increasing whenever A = ↑a A.
3. We consider the V-category HX = {A ⊆ X | A is increasing}, equipped with

Ha(A,B) =
∧
y∈B

∨
x∈A

a(x, y), for all A,B ∈ HX.

4. The map Hf : H(X,a) −→ H(Y,b) sends an increasing subset A ⊆ X to ↑b f (A).
5. The functor H is part of a Kock–Zöberlein monad H = (H,w , h) on V-Cat.
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1. For every A ⊆ X, put ↑a A = {y ∈ X | k ≤
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x∈A a(x, y)}.
2. We call a subset A ⊆ X of (X,a) increasing whenever A = ↑a A.
3. We consider the V-category HX = {A ⊆ X | A is increasing}, equipped with

Ha(A,B) =
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∨
x∈A

a(x, y), for all A,B ∈ HX.

4. The map Hf : H(X,a) −→ H(Y,b) sends an increasing subset A ⊆ X to ↑b f (A).
5. The functor H is part of a Kock–Zöberlein monad H = (H,w , h) on V-Cat.

hX : X −→ HX, w X : HHX −→ HX.

x 7−→ ↑x A 7−→
⋃
A



About the upset funtor

Theorem
Let X be a partially ordered set. Then there is no embedding ϕ : Up(X)→ X. a

aRobert P. Dilworth and Andrew M. Gleason. “A generalized Cantor theorem”. In: Proceedings of the
American Mathematical Society 13.(5) (1962), pp. 704–705.

Corollary
The upset functor Up : Ord→ Ord does not admit a terminal coalgebra.

Remark
The category CoAlg(Up) has equalisers.
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Coalgebras for the Hausdorff functor

Theorem
Let V be a non-trivial quantale and (X,a) be a V-category. There is no embedding
of type H(X,a)→ (X,a).

Corollary
Let V be a non-trivial quantale. The Hausdor� functor H : V-Cat→ V-Cat does not
admit a terminal coalgebra, neither does any possible restriction to a full
subcategory of V-Cat.

Remark
In particular, the (non-symmetric) Hausdor� functor on Met does not admit a
terminal coalgebra, and the same applies to its restriction to the full subcategory
of compact metric spaces.

Passing to the symmetric version of the Hausdor�
functor does not remedy the situation.
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Adding topology



Generalised Nachbin spaces

Extending the Ultrafilter monad
We assume that V is a completely distributive quantale, then

ξ : UV −→ V, v 7−→
∧
A∈v

∨
A

is the structure of an U-algebra on V (the Lawson topology).

Therefore we obtain
a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.
Its algebras are V-categories equipped with a compatible compact Hausdor�
topology; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

Theorem
For an ordered set (X,≤) and a U-algebra (X, α), the following are equivalent.

(i) α : (UX,U≤)→ (X,≤) is monotone.

(ii) G≤ ⊆ X × X is closed.
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ξ : UV −→ V, v 7−→
∧
A∈v

∨
A

is the structure of an U-algebra on V (the Lawson topology). Therefore we obtain
a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.
Its algebras are V-categories equipped with a compatible compact Hausdor�
topology ab; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

aLeopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950.
bWalter Tholen. “Ordered topological structures”. In: Topology and its Applications 156.(12) (2009),

pp. 2148–2157.
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Generalised Nachbin spaces

Extending the Ultrafilter monad
We assume that V is a completely distributive quantale, then

ξ : UV −→ V, v 7−→
∧
A∈v

∨
A

is the structure of an U-algebra on V (the Lawson topology). Therefore we obtain
a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.
Its algebras are V-categories equipped with a compatible compact Hausdor�
topology; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

Theorem
For a V-category (X,a) and a U-algebra (X, α), the following are equivalent.

(i) α : U(X,a)→ (X,a) is a V-functor.
(ii) a : (X, α)× (X, α)→ (V, ξ≤) is continuous.



Towards “Urysohn”

Lemma
Let (X,a, α) be a V-categorical compact Hausdor� space and A,B ⊆ X so that
A ∩ B = ∅, A is increasing and compact in (X, α≤)op and B is compact in (X, α≤).
Then there exists some u� k so that, for all x ∈ A and y ∈ B, u 6≤ a(x, y).

Corollary

For every compact subset A ⊆ X of (X, α≤)op, ↑a A = ↑≤ A. In particular, for every
closed subset A ⊆ X of (X, α), ↑a A = ↑≤ A.

Theorem (Nachbin)
Let A ⊆ X be closed and decreasing and B ⊆ X be closed and increasing with
A ∩ B = ∅. Then there exist V ⊆ X open and co-increasing and W ⊆ X open and
co-decreasing with

A ⊆ V, B ⊆ W, V ∩W = ∅.
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The Hausdorff monad (again)

Definition
For a V-categorical compact Hausdor� space X = (X,a, α), we put

HX = {A ⊆ X | A is closed and increasing}
with the restriction of the Hausdor� structure to HX and the hit-and-miss topology
(Vietoris topology). That is, the topology generated by the sets

V♦ = {A ∈ HX | A ∩ V 6= ∅} (V open, co-increasing)

and
W� = {A ∈ HX | A ⊆ W} (W open, co-decreasing).

Proposition
For every V-categorical compact Hausdor� space X, HX is a V-categorical compact
Hausdor� space.

Theorem
The construction above defines a functor H : V-CatCH −→ V-CatCH.

In fact, we obtain a Kock–Zöberlein monad.
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Coalgebras for Hausdorff functors

Proposition
The diagrams of functors commutes.

OrdCH OrdCH

V-CatCH V-CatCH

H

H

Proposition
The Hausdor� functor on V-CatCH preserves codirected initial cones with respect
to the forgetful functor V-CatCH→ CompHaus.

Theorem
The Hausdor� functor H : V-CatCH→ V-CatCH preserves codirected limits.
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Coalgebras for the Hausdorff functor

Theorem
For H : V-CatCH→ V-CatCH, the forgetful functor CoAlg(H)→ V-CatCH is
comonadic. Moreover, V-CatCH has equalisers and is therefore complete.

Theorem
The category of coalgebras of a Hausdor� polynomial functor on V-CatCH is
(co)complete.

Definition
We call a functor Hausdor� polynomial whenever it belongs to the smallest class
of endofunctors on V-Cat that contains the identity functor, all constant functors
and is closed under composition with H, products and sums of functors.
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