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A HIDDEN MOTIF

Switching context

« Lutz Schroder and Paul Wild. “Characteristic Logics for Behavioural Metrics via
Fuzzy Lax Extensions”. In: CONCUR (2020)

« Dirk Hofmann and Pedro Nora. “Hausdorff coalgebras”. In: Applied Categorical
Structures (2020)



A HIDDEN MOTIF

Switching context

« Lutz Schroder and Paul Wild. “Characteristic Logics for Behavioural Metrics via
Fuzzy Lax Extensions”. In: CONCUR (2020)

« Dirk Hofmann and Pedro Nora. “Hausdorff coalgebras”. In: Applied Categorical
Structures (2020)

Tholen:
(...) Fuzzy (...)? Perhaps they should work with V-categories.
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Definition
A (small) category C consists of:
- a set of objects;
- for each pair x,y of objects, a of morphisms C(x, y);

- for each triple x,y,z of objects, a oxy.z: C(X,¥) x C(y,z) — C(x,2);
- for each object x, a % 1 — C(x,X);

such that ...

Definition

A functor F: X — Y consists of:

« a function from the objects of X to the objects of Y;

- for each pair of objects x,x’ of X a Fxx : X(X,x") = Y(Fx, Fx")
such that ...
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A THIN MONOIDAL CATEGORY

Definition
A V = (V,®,R) is a complete lattice V equipped with a commutative
monoid structure ®, with identity k, such that, for eachu €V,

u® —: YV —V hasarightadjoint hom(u,—): vV — V.

Recall
+ A preordered set (X, <) can be understood as a category where for each pair
of objects x, y there is at most one morphism between x and y.

A quantale is a symmetric monoidal closed category.
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DON’T GET LOST IN TRANSLATION

Category
- a set of objects;

- for each pair x, y of objects, an , C(x, ¥);
- for each triple x, y, z of objects, the C(x,y) @ C(y,2) < C(x,2);
- for each object x, the kR < C(x,x);

Functor

- a function from the objects of X to the objects of Y;
- for each pair of objects x, x’ of X the X(x,x") < Y(Fx, Fx')



QUANTALE-ENRICHED CATEGORIES AND FUNCTORS

Definition
Let V = (V, ®, R) be a quantale.
< A is a pair (X, a) consistingofasetXandamapa: X x X — V
satisfying

k < a(x,x) and a(x,y) @ a(y,2) < a(x,2),

forallx,y,z € X.
« A f: (X,a) — (Y, b) between V-categories isa map f: X — Y such
that
a(x,x’) < b(f(x).f(x)),
for all x,x" € X.
- V-categories and V-functors define the category
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CATEGORIES OF QUANTALE-ENRICHED CATEGORIES

Example
If V is the trivial quantale, then 1-Cat ~ Set.

Example
If V is the two element chain 2 = {0, 1} with ® = &. Then 2-Cat ~ Ord.

Example
Consider the quantales based on the extended real half line m ordered by the
“greater or equal” relation > and

- the tensor product given by addition +, denoted by er;

+ or with ® = max, denoted as WA.

Then [0, oo -Cat ~ Met is the category of (generalised) metric spaces and
non-expansive maps and [0, co],-Cat ~ UMet is the category of (generalised)
ultrametric spaces and non-expansive maps.



Example

If V is the quantale [0, 1] given by the unit interval [0, 1] with the “greater or
equal” relation > and the tensor u @ v = min{1,u + v}. Then [0, 1]g-Cat ~ BMet is
the category of (generalised) bounded-by-one metric spaces and non-expansive
maps.



Example

If V is the quantale [0, 1] given by the unit interval [0, 1] with the “greater or
equal” relation > and the tensor u @ v = min{1,u + v}. Then [0, 1]g-Cat ~ BMet is
the category of (generalised) bounded-by-one metric spaces and non-expansive
maps.

Do not forget to reverse the order!
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QUANTALE-VALUED RELATIONS

Definition
Let V = (V, ®, R) be a quantale, and X, Y and Z sets.
- A fromXtoVY,X — Y,isamapXxY — .

e Forr: X +—Yands: Y +— Z the S.-r: X +— Zis calculated
pointwise by

(S'I’)(X,Z) = \/ r(X,y)®S(y,z),

yeYy
foreveryx e Xand z € Z
+ Sets and V-relations define the category V-Rel.

Remark

The structure of a V-category is a reflexive and transitive V-relation. That is, for a
V-category (X,a),1x <aanda-a <a.
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Problem

Given an endofunctor F on a category A and a faithful functor U: X — A, study a
“lifting” of F to an endofunctor F on X. In a strict sense, by “lifting” we mean that
the diagram

F
—

L]

Set — Set.

commutes?.

9Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara Konig. “Coalgebraic Behavioral
Metrics”. In: Logical Methods in Computer Science 14.(3) (2018), pp. 1860-5974.



STRICT FUNCTORIAL LIFTINGS

Problem

Given an endofunctor F on a category A and a faithful functor U: X — A, study a
“lifting” of F to an endofunctor F on X. In a strict sense, by “lifting” we mean that
the diagram

E
_—

L

commutes?.

9Adriana Balan, Alexander Kurz, and Jifi Velebil. “Extending set functors to generalised metric
spaces”. In: Logical Methods in Computer Science 15.(1) (2019).



HOW TO CONSTRUCT STRICT LIFTINGS?

Lax extension

Consider first a lax extension F: V-Rel — V-Rel of the functor F:@
. r<r = Fr<Fr,
2. Fs-Fr< f(s -r),
3. Ff <F(f) and (Ff)° < F(f).

Then, the functor F: Set — Set admits a natural lifting to V-Cat?: the functor
F: V-Cat — V-Cat sends a V-category (X, a) to (FX, Fa).

9Gavin J. Seal. “Canonical and op-canonical lax algebras”. In: Theory and Applications of Categories
14.(10) (2005), pp. 221-243.

®Walter Tholen. “Ordered topological structures”. In: Topology and its Applications 156.(12) (2009),
pp. 2148-2157.
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LAX EXTENSIONS

Remark

One advantage of this type of lifting is that allows us to use the calculus of
V-relations.

Proposition

F: V-Cat — V-Cat preserves initial V-functors.

Proof.
Letf: (X,a) — (Y,b) be a V-functor witha =f°-b -f. Then Fa= Ffe Fb- Ff. O
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The Wasserstein lifting

One possible way to construct lax extensions based on a (lax) T-algebra structure
&: TV — Vis devised in%: for every V-relationr: X x Y — V and for all x € TX and
peTY,

~

wgmy:V{ngm‘meﬂXanmmn:gﬁdmy:@.

2Dirk Hofmann. “Topological theories and closed objects”. In: Advances in Mathematics 215.(2)
(2007), pp. 789-824.



HOW TO CONSTRUCT LAX EXTENSIONS?

The Wasserstein lifting

One possible way to construct lax extensions based on a (lax) T-algebra structure
&: TV — Vis devised in%: for every V-relationr: X x Y — V and for all x € TX and
peTY,

~

wgmy:V{gwmmwmeTaxvymmm:;Jmmnzg}

2Dirk Hofmann. “Topological theories and closed objects”. In: Advances in Mathematics 215.(2)
(2007), pp. 789-824.
Remark

The lax extension T preserves the involution on V-Rel, that is, T(r°) = (Tr)° for all
V-relations r: X -— Y.
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TOPOLOGICAL CATEGORIES

Definition
A functor U: X — A is called whenever each cone C = (A — UX;)jc in A
admits a U-initial lifting. In this case we say that X is topological over A.

Example
 The category Top is topological over Set.

- For every quantale V), the categories V-Cat and V-Cat,y,, are topological over
Set.

Proposition
If X is a topological over a category A, then X has limits of shape | if and only if A
has limits of shape I.
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HOW TO CONSTRUCT STRICT LIFTINGS?

Notation
For a functor F: A — A and A-morphisms ¢: A— Aand o: FA — A, let ¢0: FA — A

denote the composite FA — Y s FA —7 4 A,

The Kantorovich lifting

Consider a category X equipped with a topological functor U: X — A, and an
X-object X whose underlying set UX carries the structure o: FUX — UX of a
F-algebra. Then (¢°: FUX — U)?)wGX(XX) is a U-structured cone, and we define FX
to be the domain of the initial lift of this cone.



KANTOROVICH LIFTING

Theorem

1.

The construction of the previous slide defines a strict lifting F: X — X of the
functor F: A — A.

For every 1»: X — X in X, ¢° is an X- morphism ¥0: FX — X. In particular,
o =1 is an X-morphism o : X — X

If X iis injective with respect to initial morphisms, then F: X — X preserves
initial morphism.

Let o: F = G be a natural transformation such that og - a5 = of. Then « lifts to

a natural transformation between the corresponding X-functors.
If F = Tis part of a monad T = (T, m,e) on A and o: T|X| — |X| is a T-algebra,
then T lifts naturally to a monad T = (T, m, e) on X.
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LIMITS IN CATEGORIES OF COALGEBRAS OF STRICT LIFTING

Theorem
Consider the following commutative diagram of functors.

F
—_—

c
> <— X
> <— X
c

F

1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point, then
neither does F.

2. IfU: X — Ais topological, then so is U: CoAlg(F) — CoAlg(F).

In particular, the category CoAlg(F) has limits of shape I if and only if CoAlg(F)
has limits of shape I.
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KRIPKE POLYNOMIAL FUNCTORS

Previous work

Dirk Hofmann, Renato Neves, and Pedro Nora. “Limits in categories of Vietoris
coalgebras”. In: Mathematical Structures in Computer Science 29.(4) (2019),
pp. 552-587

Definition

We call a functor whenever it belongs to the smallest class of
endofunctors on Set that contains the identity functor, all constant functors and is
closed under composition with a powerset functor, products and sums of functors.

Remark

The class of Kripke polynomial functors is well-behaved in regard to the existence
of limits in their respective categories of coalgebras — if the powerset functor is
submitted to certain cardinality restrictions.



A BRIEF HISTORY OF “POWERFULL” FUNCTORS

Recall
 The terminal coalgebra for F: C — C is a fix-point of F. ¢

9Joachim Lambek. “A fixpoint theorem for complete categories”. In: Mathematische Zeitschrift
103.(2) (1968), pp. 151-161.
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« The power-set functor P: Set — Set does not have a fix-point; hence P does
not admit a terminal coalgebra. @

9Georg Cantor. “Uber eine elementare Frage der Mannigfaltigkeitslehre”. In: Jahresbericht der
Deutschen Mathematiker-Vereinigung 1 (1891), pp. 75-78.



A BRIEF HISTORY OF “POWERFULL” FUNCTORS

Recall
+ The terminal coalgebra for F: C — C is a fix-point of F.

« The power-set functor P: Set — Set does not have a fix-point; hence P does
not admit a terminal coalgebra.

- The finite power-set functor P,_: Set — Set admits a terminal coalgebra (for
instance, because P, _ is finitary). @

IMichael Barr. “Terminal coalgebras in well-founded set theory”. In: Theoretical Computer Science
114.(2) (1993), pp. 299-315.



A BRIEF HISTORY OF “POWERFULL” FUNCTORS

Recall

The terminal coalgebra for F: C — C is a fix-point of F.

The power-set functor P: Set — Set does not have a fix-point; hence P does
not admit a terminal coalgebra.

The finite power-set functor P, : Set — Set admits a terminal coalgebra (for
instance, because P, is finitary).

Somehow more general: the Vietoris functor V: CompHaus — CompHaus
admits a terminal coalgebra®

9Here: V preserves codirected limits. This result appears as an exercise in Ryszard Engelking.
General topology. 2nd ed. Vol. 6. Sigma Series in Pure Mathematics. Berlin: Heldermann Verlag, 1989.
viii + 529.



A BRIEF HISTORY OF “POWERFULL” FUNCTORS

Recall

The terminal coalgebra for F: C — C is a fix-point of F.

The power-set functor P: Set — Set does not have a fix-point; hence P does
not admit a terminal coalgebra.

The finite power-set functor P, : Set — Set admits a terminal coalgebra (for
instance, because P._is finitary).

fin
Somehow more general: the Vietoris functor V: CompHaus — CompHaus
admits a terminal coalgebra (and the same is true for

V: PosComp — PosComp).??

9Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950.
®Dirk Hofmann, Renato Neves, and Pedro Nora. “Limits in categories of Vietoris coalgebras”. In:
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A BRIEF HISTORY OF “POWERFULL” FUNCTORS

Recall

The terminal coalgebra for F: C — C is a fix-point of F.

The power-set functor P: Set — Set does not have a fix-point; hence P does
not admit a terminal coalgebra.

The finite power-set functor P, : Set — Set admits a terminal coalgebra (for
instance, because P._is finitary).

fin
Somehow more general: the Vietoris functor V: CompHaus — CompHaus
admits a terminal coalgebra (and the same is true for

V: PosComp — PosComp).

A bit more general: the compact Vietoris functor V.: Top — Top admits a
terminal coalgebra.

A bit surprising(?): Also the lower Vietoris functor V: Top — Top admits a
terminal coalgebra.
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A NATURAL CANDIDATE: THE HAUSDORFF MONAD ON V-Cat

Definition
Letf: (X,a) — (Y,b) be a V-functor.
1. ForeveryAC X, put1?A={y e X|R<\/,a(x,y)}
2. We call a subset A C X of (X, a) whenever A = 19 A.

3. We consider the V-category HX = {A C X | A is increasing}, equipped with

Ha(A,B) = A \/ a(x,y), for all A, B € HX.
yeB xeA

4. The map Hf: H(X,a) — H(Y, b) sends an increasing subset A C X to 1° f(A).
5. The functor H is part of a Kock-Zoberlein monad H = (H, w, £) on V-Cat.

fix: X — HX, wy: HHX — HX.
X — X A»—>UA
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Theorem
Let X be a partially ordered set. Then there is no embedding »: Up(X) — X. @

9Robert P. Dilworth and Andrew M. Gleason. “A generalized Cantor theorem”. In: Proceedings of the
American Mathematical Society 13.(5) (1962), pp. 704-705.

Corollary
The upset functor Up: Ord — Ord does not admit a terminal coalgebra.

Remark
The category CoAlg(Up) has equalisers.
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COALGEBRAS FOR THE HAUSDORFF FUNCTOR

Theorem

Let V be a non-trivial quantale and (X, a) be a V-category. There is no embedding
of type H(X, a) — (X, a).

Corollary

Let V be a non-trivial quantale. The Hausdorff functor H: V-Cat — V-Cat does not
admit a terminal coalgebra, neither does any possible restriction to a full
subcategory of V-Cat.

Remark

In particular, the (non-symmetric) Hausdorff functor on Met does not admit a
terminal coalgebra, and the same applies to its restriction to the full subcategory
of compact metric spaces. Passing to the symmetric version of the Hausdorff
functor does not remedy the situation.



ADDING TOPOLOGY
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GENERALISED NACHBIN SPACES

Extending the Ultrafilter monad
We assume that V is a completely distributive quantale, then
UV —v, v— \\/A

Aco
is the structure of an U-algebra on V (the Lawson topology). Therefore we obtain

a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.

Its algebras are V-categories equipped with a compatible compact Hausdorff
topology 2°; we call them ,and denote the

corresponding Eilenberg-Moore category by V-CatCH.

9Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950.

®Walter Tholen. “Ordered topological structures”. In: Topology and its Applications 156.(12) (2009),
pp. 2148-2157.
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GENERALISED NACHBIN SPACES

Extending the Ultrafilter monad

We assume that V is a completely distributive quantale, then
UV —v, v— \\/A

Aco
is the structure of an U-algebra on V (the Lawson topology). Therefore we obtain

a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.

Its algebras are V-categories equipped with a compatible compact Hausdorff
topology; we call them , and denote the
corresponding Eilenberg-Moore category by V-CatCH.

Theorem
For a V-category (X, a) and a U-algebra (X, «), the following are equivalent.

(i) a: U(X,a) — (X,a) is a V-functor.

(i) a: (X, ) x (X,a) — (V,&<) is continuous.
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Lemma

Let (X, a,«) be a V-categorical compact Hausdorff space and A, B C X so that
ANB=g,Aisincreasing and compact in (X, a<)°? and B is compact in (X, a<).
Then there exists some u < kR so that, forallx e Aandy € B, u £ a(x,y).
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TOowARDS “URYSOHN"

Lemma

Let (X, a,«) be a V-categorical compact Hausdorff space and A, B C X so that
ANB=g,Aisincreasing and compact in (X, a<)°? and B is compact in (X, a<).
Then there exists some u < kR so that, forallx e Aandy € B, u £ a(x,y).

Corollary

For every compact subset A C X of (X, a<)°P, 19A = 1= A. In particular, for every
closed subset A C X of (X, ), 1A = 1= A.

Theorem (Nachbin)

Let A C X be closed and decreasing and B C X be closed and increasing with
AN B = @. Then there exist V C X open and co-increasing and W C X open and
co-decreasing with

ACV, BCW, VAW=go.



THE HAUSDORFF MONAD (AGAIN)

Definition
For a V-categorical compact Hausdorff space X = (X, a, a), we put

HX = {A C X | Ais closed and increasing}

with the restriction of the Hausdorff structure to HX and the
(Vietoris topology). That is, the topology generated by the sets

VO={AcHX|ANV #£ 2} (V open, co-increasing)

and
WE={AcHX|AC W} (W open, co-decreasing).
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Definition
For a V-categorical compact Hausdorff space X = (X, a, a), we put
HX = {A C X | Ais closed and increasing}

with the restriction of the Hausdorff structure to HX and the
(Vietoris topology).

Proposition

For every V-categorical compact Hausdorff space X, HX is a V-categorical compact
Hausdorff space.

Compare with:
For a compact metric space, the Hausdorff metric induces the Vietoris topology.
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THE HAUSDORFF MONAD (AGAIN)

Definition
For a V-categorical compact Hausdorff space X = (X, a, a), we put
HX = {A C X | Ais closed and increasing}

with the restriction of the Hausdorff structure to HX and the
(Vietoris topology).

Proposition

For every V-categorical compact Hausdorff space X, HX is a V-categorical compact
Hausdorff space.

Theorem
The construction above defines a functor H: V-CatCH — V-CatCH.

In fact, we obtain a Kock-Zoberlein monad.
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COALGEBRAS FOR HAUSDORFF FUNCTORS

Proposition
The diagrams of functors commutes.

ordcH — " ordcH

() ()

V-CatCH — V-CatCH

Proposition
The Hausdorff functor on V-CatCH preserves codirected initial cones with respect
to the forgetful functor V-CatCH — CompHaus.

Theorem
The Hausdorff functor H: V-CatCH — V-CatCH preserves codirected limits.
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COALGEBRAS FOR THE HAUSDORFF FUNCTOR

Theorem

For H: V-CatCH — V-CatCH, the forgetful functor CoAlg(H) — V-CatCH is
comonadic. Moreover, V-CatCH has equalisers and is therefore complete.

Theorem

The category of coalgebras of a Hausdorff polynomial functor on V-CatCH is
(co)complete.

Definition

We call a functor whenever it belongs to the smallest class
of endofunctors on V-Cat that contains the identity functor, all constant functors
and is closed under composition with H, products and sums of functors.
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