
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Chair for Computer Science 8
Theoretical Computer Science

Development of a Programming
Environment and Interpreter for

LOOP and WHILE

Bachelor Thesis in Computer Science

Michael Gebhard
michael.gebhard@fau.de

Supervised by:

Stefan Milius Tadeusz Litak

Erlangen, November 22, 2018



Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

2



Abstract

In this thesis, we provide an intuitive programming environment for the languages LOOP and
WHILE. Our tool is designed for educational use in introductory lectures on theoretical com-
puter science such as ThInfWiL at FAU. We define syntactic extensions to both languages
(Section 2) in order to make them practically usable in programming exercises, in particular we
introduce macros which allow a programmer to reuse code (Section A.6 and Subsection A.9.16)
and arbitrary identifieres for storage locations (Section A.5). Then we build an interpreter for
these extended languages (Section 3) along with a plugin for the integrated development envi-
ronment IntelliJ IDEA (Section 4), in order to allow students to solve programming exercises
in a familiar environment.

Abstract (Deutsch)

In dieser Arbeit stellen wir eine intuitive Programierumgebung für die Sprachen LOOP und
WHILE bereit. Die Umgebung soll für pädagogische Zwecke in Einführungsorlesungen zur
theoretischen Informatik, wie ThInfWiL an der FAU, verwendet werden. Zunächst definieren
wir syntaktische Erweiterungen beider Sprachen (Section 2), um sie praktisch verwendbar in
Programmierübungen zu machen, ins besondere führen wir Makros, welche Programierenden
erlauben Quelltext wiederzuverwenden (Section A.6 und Subsection A.9.16), und freie Wahl von
Namen für Speicherstellen (Section A.5) ein. Für diese erweiterten Sprachen implementieren
wir dann einen Interpreter (Section 3) sowie ein Zusatzmodul für die Entwicklungsumgebung
IntelliJ IDEA (Section 4), um Studierenden das Bearbeiten von Programieraufgaben in einer
gewohnten Umgebung zu ermöglichen.

3





Contents

1 Introduction 7

2 LOOP and WHILE languages 9
2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Programming Language Processor 13
3.1 Input Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Output Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Comparison of Language Processors . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Our Chosen Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Interpreter Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Lexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Variable Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.5 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.6 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.7 Recursive Macro Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Debugger Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Scope Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.4 Serialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Integrated Development Environment 31
4.1 Necessity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 IntelliJ Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Interpreter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Debugger Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Related Projects 39

6 Conclusion 41

A Extended Syntax 43
A.1 LOOP/WHILE File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Language Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.5 Variable Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5



A.6 Macro Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.7 Conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.8 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.9 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.9.1 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.9.2 Successor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.9.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.9.4 Predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.9.5 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.9.6 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.9.7 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.9.8 Modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.9.9 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.9.10 Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.11 Unequal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.12 Less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.13 Less or Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.14 Greater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.15 Greater or Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9.16 Macro Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Manual - How to use 53
B.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.4 Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6



1 Introduction

This work provides a programming environment for the LOOP and WHILE languages to assist
students in a lecture on theoretical computer science [13]. The lecture uses LOOP and WHILE
to illustrate the distinction between recursion and primitive recursion. It is widely accepted
that learning programming languages is assisted by an intuitive programming environment (see
e.g., [3]). We provide such an environment including a language interpreter which illustrates
the steps taken when executing a LOOP or WHILE program.

In Section 2, we first discuss syntax and semantics and computational properties of the LOOP
and WHILE languages. Then we give syntactic extensions to both in order to turn them into
practically usable programming languages.

In Section 3, we examine different implementations for a language processor, i.e. a tool which
executes LOOP/WHILE programs. We come to the conclusion that an interpreter is the best
choice for our didactic use case. We complete Section 3 with an in-depth discussion of the
interpreter implementation, including debugging functionality.

In Section 4, we elaborate on the implementation of an IntelliJ plugin which provides the
intuitive programming environment we aim for. We first present IntelliJ’s plugin API and the
structure of the plugin, as prescribed by the API. Then we examine the necessary interactions
between IntelliJ, our plugin and our interpreter to provide most of IntelliJ’s debugging features.

In Section 5, we compare our interpreter and plugin to already existing projects that address
similar issues.

Finally in Section 6 we summarize the achievements of our project and outline further features
that could be implemented in future work.

Furthermore, in Appendix A, we provide informal semantics for the extended LOOP and
WHILE syntax, along with textual substitution rules, to transform any LOOP or WHILE
program from extended to basic syntax.

In Appendix B, we give a step-by-step guide to the features of IntelliJ’s GUI and our interpreter’s
command line interface.

7





2 LOOP and WHILE languages

LOOP was introduced by Meyer and Ritchie [12] as a register machine to investigate their
complexity. In later references such as Schöning [15] and Hoffmann [6], LOOP was presented
as an imperative programming language. We are following the same route using Hoffmann [6]
as our main reference.

The syntax of LOOP programs is shown in Figure 2.1. The LOOP language operates on storage
locations [17], here called program variables or just variables. Variable identifiers are arbitrary
strings in contrast to Schöning’s definition [15], where variables are numbered A0 to Am with
m P N. This allows programmers to use meaningful variable identifiers, in order to write
readable code.

Definition 2.1 (LOOP State). The state s of a loop program P is a function s : Var Ñ N,
where Var is the set of strings consisting of all variable identifiers occurring in P . We call spXq
the value of, content of, or number stored in X.

Initially the state s maps all variable identifiers to 0, except for variables designated as input
(Definition 2.4). Each instruction in a LOOP program alters s as described in Definition 2.2.
Saying some instruction alters the value of X to a number n means that the instruction alters
the current state s into a state s1 such that s1pXq “ n and s1pY q “ spY q for all variables Y ‰ X.

Definition 2.2 (LOOP Language Semantics). The LOOP language consists of 4 types of in-
structions.

• X := 0 : Sets the content of variable X to 0.

• X := Y : Copies the content of variable Y into variable X .

• X := X + 1 : Increments the number stored in X by one.

• LOOP X DO P ENDDO : Repeats LOOP program P n times, where n is the number stored
in X before the first execution of P .

The WHILE language, following the definition of Schöning [15], is an extension of the LOOP
language to achieve greater computability. We will go further into the expressive power of both
languages in Section 2.1.

The syntax of WHILE programs is shown in Figure 2.2.

Definition 2.3 (WHILE Language Semantics). The WHILE language follows Definition 2.2
and has one additional instruction type.

• WHILE X != 0 DO P ENDDO : Repeats the WHILE program P until x is equal to 0, where
x is the value stored in X before each execution of P.

One could make the definition of semantics of WHILE fully formal using fixpoints and partial
functions, following the denotational semantics of IMP given by Winskel [17]. The closest
matching semantics for our definition of WHILE are those given by Hoffmann [6, Ch. 6.1.2].

9



program:

instruction

;

instruction:

variable := 0

variable

+ 1

LOOP variable DO program ENDDO

Figure 2.1: Syntax of LOOP Programs

program:

instruction

;

instruction:

variable := 0

variable

+ 1

LOOP variable

WHILE variable != 0

DO program ENDDO

Figure 2.2: Syntax of WHILE Programs

10



2.1 Properties

We define the computability of a programming language by means of the class of functions which
can be computed by a program in that language.

Definition 2.4 (Computing Functions). Let fpx1, x2, ..., xnq be a function Nn ÞÑ N with n P N.
A LOOP or WHILE program P computes f , if variables X1 , X2 through Xn initially contain
x1, x2 through xn and after execution of P variable Y contains fpx1, x2, ..., xnq. X1 , X2

through Xn are called input variables, Y is called the output variable.

In Schöning’s definition of the LOOP language [15], variables have fixed names with indices, A0

through Am , m ą n,m P N. He statically defines A0 as the output variable and A1 through
An as input variables. In our approach we allow input and output variables to be freely declared
in the extended syntax (Definition A.7) since we allow arbitrary variable identifiers.

Listing 2.3: LOOP Example

LOOP X DO

X := X + 1

ENDDO

Y := X

The LOOP program in Listing 2.3 increments X x times and stores the result in Y , where
x is the initial value of X . If X is designated as single input and Y as output variable, the
program computes the function fpxq “ 2x.

The class of functions computable by LOOP programs is exactly the class of the primitive
recursive functions [12].

All LOOP programs terminate, as every LOOP X DO P END block is executed a finite number
of times. The WHILE language introduces non-terminating programs, e.g. Listing 2.4.

Listing 2.4: Infinite loop

X := 0;

X := X + 1;

WHILE X != 0 DO

ENDDO

The class of functions computable by WHILE programs are the µ-recursive functions, making
the WHILE language Turing complete [6].

2.2 Syntactic Sugar

In order to practically use LOOP and WHILE to solve algorithmic problems, while observing
their differences in computability, we introduce several syntactic extensions to both languages
(Figure 2.5). These extensions must not alter the expressive power of either language. To
ensure this, all programs with extended syntax can be transformed into traditional LOOP and
WHILE programs through textual substitution. In order to simplify writing code, the keywords
of LOOP and WHILE are made lower case in the extended syntax. The semantic definitions and
textual substitution rules for the extended syntax are listed in A. The most noteworthy syntactic
addition is macros, see Section A.6 and Subsection A.9.16. A macro is a LOOP/WHILE program

11



with a name, which can be called through its name within another program. This allows a
programmer to reuse the program in the macro without duplicating it. We will discuss the
behaviour of macros in detail throughout Section 3.4 and Section 3.5.

loopwhileFile:

langflag importlist macrodeflist scope

langflag:

#LOOP

#WHILE

importlist:

#IMPORT path

scope:

in_declaration out_declaration aux_declaration program

variablelist:

variable

,

valuelist:

value

,

statement:

assignment

loop

while

if

assignment:

variable := expression

loop:

loop variable do program enddo

while:

while variable != 0 do program enddo

if:

if variable != 0 then program else endif

else:

else program

expression:

value

infix_operation value

prefix_operation ( value

macro ( valuelist

)

infix_operation:

+

-

*

div

%

==

!=

<

<=

>

>=

div

prefix_operation:

succ

pred

value:

variable

integer

variable:

identifier

macro:

identifier

program:

statement ; program

statement

in_declaration:

in: variablelist ;

out_declaration:

out: variable ;

aux_declaration:

aux: variablelist ;

macrodef:

def macro scope enddef ;

macrodeflist:

macrodef

Figure 2.5: Extended Syntax of WHILE Programs

12



3 Programming Language Processor

In this chapter we will discuss different options to implement a tool which can execute a LOOP
or WHILE file (Definition A.1). We will compare the advantages and disadvantages of each
option and outline the implementation details of our chosen approach.

Watt [16] defines broadly a programming language processor as any system that manipulates
programs expressed in some particular programming language. This includes anything from
a simple text editor to a compiler. For our terms we will redefine programming language
processors to the tools directly related to program execution.

Definition 3.1 (Programming Language Processor). We define a programming language pro-
cessor to be one of the following:

• Translators and compilers translate a program from one language to another. A translator
produces a program in another high-level language. A compiler translates a high-level
program into a low-level program.

• Interpreters skip compilation and directly execute a high-level program, by simulating one
instruction after another.

3.1 Input Specification

Both compilers and interpreters typically prepare the program by using a lexer and a parser
to generate an abstract syntax tree (AST, Subsection 3.4.3) from the source file. A compiler
then translates this AST into machine code which is executable by the target computer. An
interpreter operates directly on the AST after optional preprocessing, simulating the instructions
at each node. A translator generates source code in a second high-level language in order to use
existing tools for that language. The translator can work on an AST of the initial source code
or if the syntax of the target language is close enough to that of the source language, it can be
implemented as textual substitution directly on the source code.

3.2 Output Specification

A translator or compiler for a LOOP/WHILE file produces an executable which asks values for
the input variables from the user and prints the value of the variable declared as output after
computing the function described by the LOOP/WHILE file (Definition 2.4).

An interpreter executes a LOOP/WHILE file in the same manner as the executable produced by
a compiler. The interpreter asks the user for values for the input variables and prints the value
of the variable declared as output after computing the function described by the LOOP/WHILE
file (Definition 2.4).

13



Listing 3.1: Simulation of a while loop type node

function execute(while_node) {

while (get_value(while_node.variable) != 0) {

execute(while_node.program)

}

}

3.3 Comparison of Language Processors

In this section we will compare intuitive implementation approaches for an interpreter, a com-
piler and a translator. The discussion of the interpreter is inspired by Watt [16]. The presenta-
tion of the compiler is based on Sarda [14]. The subsection on the translator follows Watt [16],
as well as our own attempt to implement a translator through textual substitution.

These three language processors all differ in performance and complexity of implementation.
The implementation details can be split into three relevant parts for our project.

• Execution of code in case of an interpreter and preparation of code in case of a translator
or compiler.

• Pausing execution at breakpoints

• Serialising state of execution when pausing, to present the current state in a debugger.

All of these language processors must either parse a given program into a processable data
structure or in case of a textual substitution translator, at least check for syntax errors in the
program. The most common approach for this is to use a lexer and a parser generated from
the syntax definition of the programming language. Syntax errors are produced by this lexer
and parser, as described in Subsection 3.4.1 and Subsection 3.4.2, therefore the implementation
complexity for parsing and syntax checking is equal for all of these language processors and will
not be taken into account in this discussion.

No errors can occur at runtime in a syntactically correct LOOP or WHILE program, therefore,
just like parsing errors, we do not have to discuss implementation of runtime errors either.

3.3.1 Interpreter

The disadvantage of an interpreter is its speed of execution. The interpreter has to analyse
every instruction before executing it. The time spent on analysis can be decreased by first
parsing the program into an AST. In this case instructions do not have to be parsed from the
source code every time they are executed. Regardless of optimisation an interpreter cannot be
faster in execution than running compiled code. Even if no time at all were spent on analysing
instructions, the interpreter still has to execute the same functionality as the compiled code,
thus all interpreters have worse execution performance than running compiled code.

An interpreter operating on an AST, such as Figure 3.8 on page 21, needs a piece of code for each
type of node in the AST. This piece of code simulates execution of the source code represented
by the node. Listing 3.1 shows an example for a node of type while loop, where a while

loop node has two children, one of type variable and one of type program. The complexity
of implementing these simulation functions depends on the complexity of each instruction in
the given programming language. The LOOP and WHILE languages contain no intrinsically
complex instructions, therefore simulating the instructions is also simple.

14



Breakpoints at a certain line of code can be implemented by searching through the AST and
marking the first node that was parsed from the given line as a breakpoint. If the interpreter
attempts to execute a node that is marked as a breakpoint, it pauses execution and serialises
the state of execution.

Definition 3.2 (State of execution). The state of execution consists of the current position
in the source code and the bindings of all currently valid variables. The binding of a variable
consists of the variable identifier and the value assigned to this variable.

The interpreter has to keep track of all variable bindings and can achieve this by embedding
the state of execution into its internal state. The interpreter can read the current position in
the source code from the position saved in the AST node which it is currently executing. To
serialise the state of execution, the interpreter can then print out its internal state and the
position from its current AST node.

3.3.2 Compiler

A compiler translates a high-level program into a low-level program. Implementing a compiler
to directly generate low-level programs for all major hardware architectures is a tedious and
unnecessary task. Instead, a compiler implementation can translate the source code into an
intermediate low-level language such as LLVM intermediate representation (IR) [9]. LLVM IR
is independent of the target hardware and highly developed tools for optimising LLVM IR code
already exist and can be used by the compiler.

Producing LLVM IR code from LOOP and WHILE programs is fairly simple. There are two
issues to consider. First, LOOP and WHILE operate on natural numbers, not integers of
limited size. This can be solved by linking in a big integer library and replacing operations
on numbers by calls to this library in the LLVM IR code. Second, LLVM IR has no concept
of loops, therefore loop and while instructions have to be rewritten by the compiler into

jump , compare and goto representation.

Debugging code compiled through LLVM can be done with the debugger LLDB [11]. LLVM
IR code can be annotated with source code positions which eliminates the need to manually
translate a breakpoint line position into position of an LLVM IR instruction. LLDB can then set
breakpoints following these annotations and stop execution at the first LLVM IR instructions
parsed from the given line.

To serialise the state (Definition 3.2) of execution LLVM supports annotations for variable
identifiers. LLDB can then produce the desired serialised variable bindings and execution
position.

3.3.3 Translator

A translator translates a high-level program into another high-level program. If the translation
operates on an AST, all nodes must be translated into source code for equivalent instructions
in the target language. If the target language does not natively support natural numbers, a
big integer library must be included and operations on numbers must be replaced by calls to
this library. Instead of operation on an AST, a translator can also be implemented by textual
substitution if the syntax of the target language is very similar to that of the source language.
For example LOOP and WHILE programs can easily be rewritten to code in the programming
language Python because it shares the only two uncommon features of LOOP and WHILE.

15



• Python natively supports big integers.

• Python allows booleans to be cast into integers to behave like comparison results in LOOP
and WHILE.

The remaining syntax differences are trivially solved by textual substitution.

For a textual substitution translator all syntax checks must be done before translating. This
can be done by running a parser but discarding the resulting AST if all checks succeed. Both
types of translators must ensure that no parsing errors can occur after translation when the
translated program is processed by the tools of the target language. Especially the translators
must rename variables that conflict with keywords in the target language. This can be done by
prefixing every variable name with e.g. var_ in case of Python as target language.

Line breakpoint support can be implemented in the translator from AST by keeping a mapping
from lines in source language to lines in target language. The textual substitution translator to
Python can be implemented to create exactly one line of Python code for each line of LOOP or
WHILE code. Line numbers can then be passed to the target language tools unchanged.

In the serialised state (Definition 2.1) of the target language processor, variable names must be
translated back by removing the prefix described above. In case of the translator from AST the
execution position must also be translated into the respective position in the source language.

3.3.4 Our Chosen Approach

The language processor we aim to provide is intended to ease learning of the LOOP and WHILE
languages. This makes the ability to view and understand the internal state of execution
far more important than the speed of preparation and execution of a program. All three
approaches can produce suitably understandable output about their state of execution, but
differ in implementation complexity and maintainability. The compiler implementation requires
understanding of low-level programming concepts, in order to correctly use the LLVM API.
The translator introduces a dependency on an entirely different programming language. Every
change in the translators target language or the tools and libraries of that language can require
adaptation in the translator. The interpreter remains with an intuitive implementation and
without additional external dependencies, apart from a lexer and a parser. In order to provide
an easily maintainable language processor we chose to implement an interpreter operating on
an AST.

3.4 Interpreter Implementation

In this section we will describe the structure of our LOOP/WHILE interpreter including the
lexer and parser along with the most important implementation choices we made. The in-
terpreter only supports the extended LOOP/WHILE syntax (Figure 2.5), because a program
without a declared output variable (Definition A.7) would provide no feedback to the user and
therefore be of little didactic use. We have chosen the programming language Go [5] along with
the tools Golex [1] and Goyacc [2] for the implementation of this interpreter. Golex and Goyacc

are versions of the Unix utilities Lex and Yacc [10] for the Go programming language.

Figure 3.2 shows the structure and interactions of the different components we chose for the
interpreter. The lexer (Subsection 3.4.1) and parser (Subsection 3.4.2) process a LOOP/WHILE
file into an AST (Subsection 3.4.3). The core of the interpreter executes the instructions encoded
in the AST, asks the user for values of input variables, if there are any, and shows the output
variable to the user after execution. The debugger described in Section 3.5 allows the user

16



Lexer

Parser

LOOP/WHILE file

Character Sequence

Token Sequence

Interpreter

Abstract Syntax Tree

Debugger

Run/Resume/Step

Serialised State

User

Input Variables
Output Variables

 Run/Set Breakpoint/Resume/Step
Variable Bindings, Execution Position

Figure 3.2: Structure of the Interpreter

to control the interpreter through inserting breakpoints into the AST, stepping the execution,
i.e. pausing after every instruction, and resuming normal execution.

In case of errors every individual component can halt the interpreter and print information
about the error to the user.

3.4.1 Lexer

Definition 3.3 (Lexer). A lexer takes a sequence of characters in a source code file as input,
splits it into substrings called tokens and assigns a token type to each of these tokens.

Definition 3.4 (Lexicon). A token type is an arbitrary identifier which declares a token to
belong to a specific group of tokens, e.g. variable identifier or assignment operator. Token
types are defined by an ordered sequence of regular expressions, called lexicon, where each
expression represents one token type.

The tool Golex [1] generates a lexer from a lexical definition of token types. Listing 3.3 shows
simplified example definitions of the token types for the while keyword, the assignment operator,
and identifiers. Note that the lexer cannot distinguish between syntax elements that share
the same regex for their token type, such as variable identifiers and macro identifiers. This
distinction must be done by the parser.

If the generated lexer encounters an input sequence that cannot be matched by any regular
expression from the lexicon, it produces an error message containing the position of the first
unexpected character in the unrecognised token as shown in Listing 3.4.

In addition, the lexer exposes an interface that allows the parser to pass an error. The lexer
then adds information about its current position to the error. This allows the parser to produce
errors containing a source code position, without the need to keep track of the source code
position in the parser itself.

17



Listing 3.3: Example Lexicon

"while" { return token{text , WHILE} }

":=" { return token{text , ASSIGN} }

[a-zA -Z_]([a-zA -Z_]|[0 -9])* { return token{text , IDENTIFIER} }

This example is only an extract of the lexicon we use in the interpreter. For the full lexicon,
see the source code.

Listing 3.4: Example Lexer Error

out: o0

o0 :- 5;

o0 := o0 * 2

Unrecognised token in line 3, pos 4:

o0 :- 5;

^ unexpected character

3.4.2 Parser

Definition 3.5 (Parser). A parser takes a sequence of tokens as input and organises it into an
AST according to a syntax definition.

The most intuitive approach for defining a parser is to supply a syntax definition in Backus-
Naur Form (BNF). A production rule in BNF is written as N ::“ α, where N is a non-terminal
symbol and α is a sequence of terminal and non-terminal symbols or an empty sequence. All
terminal symbols are token types. An AST for a BNF syntax definition can be constructed by
creating the root node representing the start symbol of the definition. For each symbol on the
right hand side of the matching production rule, a child is added to the node representing the
left hand side. If the symbol from the right hand side is a terminal symbol, a token of the type
specified by this symbol must be read from the lexer. The last step is repeated until all leaves
in the AST represent terminal symbols.

The tool Goyacc [2] generates a parser from a BNF. In order to create a tree each BNF produc-
tion rule can be annotated with Go code as seen in Listing 3.5. This piece of code is executed
when its production rule matches. The code can return an AST node by storing it in $$ .
The code for a production rule with n symbols on the right hand side receives the parameters
$1 through $n . If symbol i is a terminal symbol, $i contains an AST node, wrapping the

token returned by the lexer for this terminal symbol. Otherwise $i contains the value stored

in $$ by the annotated code for the production rule of this non-terminal symbol. This code

constructs an AST by adding $1 through $n as children to $$ . We will go further into the
construction of the AST in Subsection 3.4.3.

18



Listing 3.5: Simplified Example Production Rule for Goyacc

assignment: variable ":=" expression

{

$$ = astNode{type: ASSIGNMENT , line: $1.line}

$$.children = {$1 , $3}

}

;

Listing 3.6: Example Parser Error

out: o0

o0 := 5

o0 := o0 * 2

unexpected identifier , expected ’;’ in line 4, pos 1.

o0:= o0 * 2

^ unexpected token

The parser produces an error if it receives a token from the lexer, which can not be matched by
any production rule in the BNF syntax definition. The error informs the programmer that an
unexpected token was encountered. The parser can pass this error to the lexer, allowing it to
add the current source code position to the error message. The parser can also make attempts
to guess a solution for an error, e.g. if an error occurs after a complete instruction, the parser
can suggest that a semicolon is missing before the unrecognised token (Listing 3.6). Producing
meaningful parser error messages for all possible errors is not a generally solved problem and
goes beyond the scope of this thesis.

3.4.3 Abstract Syntax Tree

In the AST most syntactic symbols are represented as tree nodes. Terminal symbols are rep-
resented by leaves, non-terminal symbols by inner nodes or leaves, if its BNF production rule
has an empty right hand side. Leaf nodes created from non-terminal symbols are omitted in
the following examples. Some symbols, e.g. semicolons, serve no purpose after parsing and
therefore are not represented at all in the AST. Sequencing of instructions in a program with
semicolons, as shown in Figure 2.5, creates a degenerate tree. Instead, we flatten instruction
sequences into children of one single program node, see Figure 3.7. For brevity we will only
discuss a representative example here. For a full list of syntactic symbols and their translation
into AST nodes view the source of the parser.

Figure 3.8 shows an example program and the AST generated from it. The AST has one scope
node, called the root scope. This scope limits visibility of variables to the partial tree below it,
as described in Definition A.6 on page 44. We will only need this scope later in Subsection 3.4.6,
to support macros. Each instruction of the LOOP/WHILE program is represented by a partial
tree and grouped with other instructions to form a program. Note that the enddo node is only
necessary for the debugger, so that execution can be stopped after the last iteration of a loop,
see Section 3.5.

19



instruction1;

instruction2

Program

Instruction1 Program

Empty ProgramInstruction2

Program

Instruction1 Instruction2

Figure 3.7: Example for Flattened Instruction Sequences

3.4.4 Variable Bindings

The interpreter has to keep track of all variables and their assigned values. This can be done
through a global variable binding map of variable identifier to value. This is sufficient
for interpretation of a LOOP/WHILE program, but requires variable renaming in macros as
described in Definition A.45. It is unsuitable for a debugger because all alterations in the
executed code have to be reverted when reporting execution positions and variable bindings.
Instead we group the variable bindings into scopes.

Definition 3.6 (Dynamic Scope). A dynamic scope is a triple pP,B,Nq that consists of a
source code position P , a map of variable bindings B : identifier Ñ N and a reference N to
the scope AST node (Definition A.6) of the macro which this scope belongs to.

Note that there are three types of scopes: static scopes as described in Definition A.6, AST scope
nodes which represent a static scope in an AST and dynamic scopes used by the interpreter to
keep track of variable bindings and the execution position.

3.4.5 Execution

The execution operates directly on the AST. Execution starts at the root scope node. The
interpreter keeps track of the state described in Definition 2.1. It then iterates over all instruction
trees below the program node child of this scope. Figure 3.9 shows in green the path which the
execution takes through an AST. Figure 3.10 through Figure 3.14 show the path through the
AST taken by the interpreter to simulate execution of each instruction type. Listing 3.15 and
Listing 3.16 additionally show simulation pseudocode for the assignment and loop instructions
used in the example.

20



out: o0

o0 := 5;

loop o0 do

o0 := o0 * 2

enddo

LOOP/WHILE File

Scope...

Output Program

Assignment

Expression

o0

o0

5

Program

Assignment

Expressiono0

* o0 2

Loop

o0 enddo

Figure 3.8: Example AST

21



AST

Interpreter

runmode : int

program

instruction instruction

Debugger

set_breakpoint()
run()

execute()

await_continue()

execute()

await_continue()

root scope

finish

start()
set_runmode()

Blue edges and nodes represent the AST of a LOOP/WHILE file (Definition A.1). Red arrows
show intervention of the debugger. Green arrows, followed counterclockwise around the tree,
illustrate the path taken by the interpreter when executing the AST. Execution paths for all

instruction types are shown in Figure 3.10 through Figure 3.14

Figure 3.9: Interpreter Execution: Generic

await_continue()

evaluate()

assignment

expression

See Figure 3.9 for context.

Figure 3.10: Interpreter Execution: Assignment

3.4.6 Macros

In order to support macros, as described in Section A.6 and /autorefmacrocallsec, the interpreter
could apply their textual substitution rules to produce a LOOP/WHILE program which can
then be treated as discussed in the previous sections. However, this would introduce a difference
between the code being executed and the code written by the user. When we later implement
a debugger in Section 3.5, it would have to revert those changes, in order to present the state
of execution at a breakpoint to the user. Instead we will treat macros like functions, i.e. inside
a macro the interpreter hide all variables of the surrounding program and only operate on the
variables declared within the macro. This is done by creating a new scope corresponding to
this macro’s scope node when execution enters a macro and copying input values to the macro’s
input variables. When enters leaves the macro, we use the value of its output variable in the
assignment in which the macro was called. Finally we discard the new scope and continue
execution with the old scope. Since this separation of scopes is only necessary to provide
accurate debugging information, we will go into its detailed implementation in Subsection 3.5.1
of the Debugger Implementation Section. Figure 3.17 shows an example program containing
macros and the AST generated from it. Note that the AST root and every macro have their
own scope node.

22



await_continue()

if-else

variable if-program else-program

variable != 0

true

false

run() run()

await_continue()

See Figure 3.9 for context.

Figure 3.11: Interpreter Execution: If-Else

await_continue()

loop

variable program

i = variable

i > 0

true

false

i--; run()

await_continue()

See Figure 3.9 for context.

Figure 3.12: Interpreter Execution: Loop

await_continue()

while

program

variable != 0

true

false

run()

await_continue()

variable

See Figure 3.9 for context.

Figure 3.13: Interpreter Execution: While

23



await_continue()

evaluate()

assignment

macro call

await_continue()

macro definition

program

run()

save_runmode()

restore_runmode()

See Figure 3.9 for context.

Figure 3.14: Interpreter Execution: Assignment with Macro Call

Listing 3.15: Simulation of an assignment instruction

function execute(assignment) {

variable = variable type child node of assignment

expression = expression type child node of assignment

store evaluate(expression) in variable

}

Listing 3.16: Simulation of a loop instruction

function execute(loop) {

variable = variable type child node of loop

program = program type child node of loop

for(i = copy value(variable ); i>0; i--) {

run(program)

}

}

24



def macro0

out: o0

...;

enddef

def macro1

out: o0

...;

enddef

out: o0

...;

LOOP/WHILE File

ScopeMacro List

Definition Definition

macro0 macro1 Scope

Output Program

Scope

Output Program

Figure 3.17: Example AST with Macros

3.4.7 Recursive Macro Checking

Macros must not be recursive, as discussed in Section A.6. This means no macro can call itself
directly or through calling other macros. We can create a directed graph from macro calls
inside macros, as shown in Figure 3.19. In this macro dependency graph each macro definition
is represented by one node. For every macro call inside a macro, a directed edge is added to the
graph, from the caller node to the callee node. If there exists a macro that calls itself through
any chain of macro calls, then the macro dependency graph contains a cycle. Implementing an
algorithm to check for cycles in a directed graph is standard and goes beyond the scope of this
thesis.

3.5 Debugger Implementation

The main application of this project is not just to execute LOOP or WHILE code, but also to
allow the programmer to look into every step the interpreter takes when executing a program.
We enable this through a debugger which can set, remove, and stop at breakpoints and single
step through execution. At every stop the debugger shows the current position of the execution
along with all variables and their values.

25



Listing 3.18: Iterative Integer Square Root

def sqrt

in: i0

out: o0

o0 := sqrt_helper(i0 , i0);

enddef

def sqrt_helper

in: x0 , n

out: x1

aux: fin

x1 := n div x0;

x1 := x0 + x1;

x1 := x1 div 2;

fin := x0 != x1;

if fin != 0 then

x1 := sqrt_helper(x1 , n);

endif;

enddef

in: i0

out: o0

o0 := sqrt(i0);

sqrt

sqrt_helper

!

Figure 3.19: Example Macro Dependency Graph

26



Listing 3.20: Iterative Integer Square Root

1 def macro2

2 in: i0

3 out: o0

4
5 o0 := i0 / 2;

6 enddef

7
8 in: i0

9 out: o0

10
11 o0 := macro2(i0);

12 if o0 != 0 then

13 o0 := macro2(o0);

14 endif

Figure 3.21: Example with multiple Macro Calls

Figure 3.14 shows the path of execution for a macro call. Note that execution jumps from the
AST subtree which contains the call to the subtree of the macro definition. In this case the
execution position cannot only consist of the line number in the source code because the same
position could be reached from different macro calls. In Figure 3.21 the macro macro2 is called
several times. If we stop execution at line 5, we also need to know where this macro is called
from. Not only positions inside a macro pose a problem, also variable identifiers may overlap
with those outside of the macro. We can solve both problems by using a stack of scopes.

3.5.1 Scope Stack

When execution enters a macro, we push a new scope onto a stack, called scope stack, and
remove it, when execution leaves the macro again. The scope on top of the stack is called the
active scope.

Recall that a scope is a triple pP,B,Nq, as described in Definition 3.6. The source position
P always points to an instruction below the node N belonging to this scope. During a macro
call execution leaves the subtree under the current scope, as shown in Figure 3.14. We create
a new scope for the called macro and leave the position in the previous scope unchanged until
the execution returns from the macro call. We achieve this by only updating the position in
the scope on top of the stack. Figure B.33 illustrates this behaviour, where each stack trace

element corresponds to a scope on the scope stack.

The variable bindings B are treated similarly. Assignments inside a macro only affect the
variables in the scope of this macro, as described in Definition A.9. Values for input variables
of a macro are copied from the previously active scope into the new scope when executing a
macro call. Values of output variables are copied back from the scope of the macro to the scope
in which the macro call happened.

3.5.2 Breakpoints

The debugger can set breakpoints via marking an instruction node in the AST, illustrated by
the set_breakpoint() call in Figure 3.9. The interpreter checks this breakpoint marker with

27



the await_continue() call and pauses execution in front of the instruction if the marker is
set.

If execution is paused the debugger can send a signal to wake up the interpreter. It then resumes
execution until the next breakpoint.

3.5.3 Stepping

The debugger can put the interpreter into stepping mode through the set_runmode() call,
shown in Figure 3.9. Possible run modes are run, pause, step into, step over, and step

out.

When the interpreter issues an await_continue() call, as depicted by Figure 3.9 through
Figure 3.14, it checks for a breakpoint marker and the current run mode and acts accordingly.

• run: Continue execution.

• breakpoint set, pause, step into/over/out: Pause execution and wait for a command
from the debugger.

If execution is paused, we can send a resume, step into, step over, or step out command
to the interpreter. Each command sets the run mode to run, step into, step over and step

out respectively and continues execution. Note that step into, step over, and step out

each name a command as well as a run mode. In the following each refers to the command,
unless it is explicitly stated, that the run mode is set to that value.

• resume: Resume normal execution, only stop at next breakpoint.

• step into: Execute the current instruction node and stop at the next one.

• step over: Same as step into, unless the current instruction is a macro call. In this
case execute the entire macro and stop before the first instruction after the call.

• step out: Execute the remainder of the current macro and stop before the first instruction
after the call to it.

We will take a closer look at stepping over and out of macros. Implementation of this behaviour
gets slightly more complex when execution can reach a breakpoint while taking a step.

For stepping over, the interpreter can store the current run mode ( save_runmode() ) at the
node of a macro call, set it to run, resume normal execution until it is back at this macro call
node and restore it ( restore_runmode() ), as illustrated by Figure 3.14. Only if a breakpoint is
reached intermediately, the interpreter should not pause when returning to the macro call node.
To do this, the interpreter registers the step over mark in a global list. When the interpreter
reaches a breakpoint, it sets a notification flag on all entries in this list. Upon returning to the
macro call, the interpreter checks the matching notification flag and only pauses if the flag is
not set.

Stepping out behaves like stepping over for all instructions in the current macro and pauses if
execution is at the end of a macro after a step. This is only the case at the end of the current
macro, not at the end of intermediate macro calls, as the run mode is reset to run for the
duration of the intermediate macros.

3.5.4 Serialisation

Whenever execution is paused, the debugger serialises the scope stack (Subsection 3.5.1) into a
JSON string. This string consists of a list of quadruples pF,L,M,Bq each representing one scope,

28



where M is root or the macro to which the scope belongs (see Subsection 3.4.3), F is the path
to the file containing the macro M , L is the line at which the execution inside M currently is
and B is a map of variable bindings as described in Definition 3.6, with each variable annotated
whether it is a input, output or auxiliary variable. Listing 3.22 shows the serialised scope stack
corresponding to Figure B.33.

Listing 3.22: Example Serialised Scope Stack

[

{"file ":"/ home /[...]/ src/loop_while_exercises.lw",

"line":6,

"macro ":"exp",

"bindings ":[

{" VarType ":" input",

"Ident ":" base",

"Val":5

},

{" VarType ":" input",

"Ident ":"exp",

"Val":7

},

{" VarType ":" output",

"Ident ":"res",

"Val":1

}

]

},

{"file ":"/ home /[...]/ src/loop_while_exercises.lw",

"line ":13,

"macro ":" root",

"bindings ":[

{" VarType ":" input",

"Ident ":"i0",

"Val":5

},

{" VarType ":" input",

"Ident ":"i1",

"Val":7

},

{" VarType ":" output",

"Ident ":"o0",

"Val":0

}

]

}

]

29





4 Integrated Development Environment

So far we have discussed the tools working in the background for the programmer. In this
chapter we will focus on the user interface providing access to these tools. We will discuss
implementation of this user interface as a plugin to the IntelliJ IDEA integrated development
environment (IDE) [8].

4.1 Necessity

An IDE can combine the functionality of our interpreter and debugger, with that of an editor.
This allows us to provide easily understandable errors and feedback to programmers by embed-
ding error messages and debugging information into the source code shown in the editor. The
immediate feedback on syntax errors shown while typing in new code greatly assist learning
the syntax of a new programming language. When using the debugger, highlighting the cur-
rent position in the editor allows the programmer to follow the execution, without the need to
manually look up source positions.

In order to use the wide range of features existing IDEs have, we build a plugin for IntelliJ,
instead of implementing our own IDE.

4.2 IntelliJ Plugin

IntelliJ is a widely used IDE for Java with differently named versions for many other languages,
e.g. C++, Python. IntelliJ provides a plugin API which allows us to use all existing features
of the IDE. Using this API we only need to implement language specific interfaces.

An IntelliJ language plugin consists of an XML file stating which parts of the plugin API are
implemented and, with some exceptions, Java classes implementing these API parts. The API
ranges from a replication of the language grammar, in order to provide syntax highlighting, to
a server sending commands to our debugger through a TCP socket. Figure 4.1 shows the API
elements we implemented, grouped by their functionality.

• Static GUI: This group handles the non-interactive graphical appearance of our plugin,
such as icons and buttons labels.

• Interactive GUI: This group provides dynamic feedback on user input, such as highlighting
errors and correct syntax.

• Execution Environment: This group handles communication between the IDE and the
interpreter/debugger.

For details on the static GUI group, see the source code.

The core of the interactive GUI group is a parser which is a duplicate of the parser used in
the interpreter, built with IntelliJ’s own parser generator. The syntax highlighter provides
a mapping from syntax elements produced by the parser to text colors, in order to make the
LOOP/WHILE code more readable. IntelliJ invokes the parser with every new input in its

31



Debug Runner

Program Runner

Execution Environment

Annotator

Parser

Syntax Highlighter

Color Settings

Interactive GUI

SDK Type

Breakpoint Type

Module Type

File Type

Run Configuration Type

Static GUI

File Creation

IntelliJ API
This Figure show the elements of IntelliJ’s API which our plugin implements. In addition to
green and red highlighted interpreter and debugger components, shown in Figure 3.9 through
Figure 3.14, Figure 4.1 through Figure 4.6 show elements highlighted in turquoise. These are

parts of IntelliJ’s API.

Figure 4.1: IntelliJ Plugin API

editor. If the parser encounters an error, the faulty source code is marked while the user
types. For the user’s convenience, all colors used by the highlighter can be customised in a
color settings page. In addition to syntactic checks, the annotator can be used for semantic
checks. IntelliJ invokes the annotator on every successfully parsed input token. We use the
annotator to mark undeclared variables by walking the AST upwards until we encounter a
scope node and check if a declaration for the variable identifier in the input token exists.

The execution environment group is, despite implementing only two API elements, the most
complex of the three. We will discuss it in detail in the following section.

Due to lack of documentation for IntelliJ language plugins, the source code for our plugin is in
large parts taken from an existing plugin for the programming language Erlang [7] and modified
to work with LOOP and WHILE.

32



Program Runner

Interpreter
Interface

Debugger
 Interface

Debug Runner

Debugger Node

Interpreter Debugger

GUI Frontend

IntelliJ

Input
Variables

 Output
Variable

Command
Response/
Serialised
State

Start/Stop/Step/Breakpoint

Stack Trace,
Source Position

 Start,
 Stop,
 Step,
Breakpoint

Start

Start

Stack Trace,
Source Position

IntelliJ Plugin
(Execution Environment)

IntelliJ Core

IntelliJ API interpreter debugger
This Figure shows interaction of IntelliJ’s core with the interpreter and debugger through the

execution environment part of the plugin, shown in Figure 4.1. All queries from IntelliJ
originate in its GUI. We discuss the various interactions in detail in Subsection 4.3.1 and

Subsection 4.3.2.

Figure 4.2: IntelliJ API: Execution Environment

4.3 Execution Environment

The task of the execution environment is to pass input and commands from the GUI to our
interpreter and present the responses in the GUI. Figure 4.2 shows the simplified interactions of
the plugin elements, the GUI, the interpreter and the debugger. The elements in the plugin box
will be explained in Subsection 4.3.1 and Subsection 4.3.2. The execution environment interacts
with various elements of IntelliJ’s GUI frontend.

• The editor contains the source code for the execution. We pass this code to the interpreter
and mark the current execution position at breakpoints in the editor.

• The debugger menu contains buttons to issue debugger commands, such as start, stop,

step and set breakpoint, as well as a window to show a stack trace and variable

bindings. We translate the debugger commands from IntelliJ’s internal representation to
the command strings which our debugger understands and translate serialised states

from the debugger into IntelliJ’s internal stack trace data type.

• The run configuration settings page allows the user to set the path to the interpreter
executable used by our plugin, and the command line arguments which we pass to the
interpreter.

Figure 4.5 shows IntelliJ’s GUI and highlights parts that interact with our plugin.

33



Listing 4.3: LOOP File Template

#LOOP

in: i0;

out: o0;

o0 := i0;

Listing 4.4: WHILE File Template

#WHILE

in: i0;

out: o0;

o0 := i0;

4.3.1 Interpreter Interface

The interpreter interface, shown in Figure 4.2, is responsible for starting our interpreter
and setting up its visual representation in IntelliJ’s GUI. It assembles the command line of
the interpreter from the run-configuration, stored in the program runner, starts execution and
connects input and output to the runner view (Figure 4.5). When the interpreter now asks
for input variable values or prints the output variable, it directly interacts with the GUI.

In order to build the command line, we simply take the executable path and command line
arguments from the run-configuration, but we also have to find a LOOP/WHILE file to execute.
Many bigger programming languages, e.g. C or go, have a concept of a main function which is
the starting point for execution. This main function is typically only present once per project
and running a project means running the main function. Similarly, LOOP/WHILE files contain
either only macro definitions or macro definitions and exactly one functions which can be viewed
as its main function. However our use case for a project is not to have a large collection of
macro definitions which form one single executable, but rather to have a collection of stand-
alone exercises where each LOOP/WHILE file solves a certain task and can be run on its own.
Therefore we need to determine which file to execute. We leave this choice to the user by
executing the file which is currently open in IntelliJ’s editor. If there is no suitable open file,
we ask the user to open one.

4.3.2 Debugger Interface

The debugger interface handles communication between IntelliJ’s debug menu (Figure 4.6)
and our debugger. It translates IntelliJ’s debug commands into commands understood by our
debugger and converts the serialised state from our debugger into IntelliJ’s internal stack trace

format.

IntelliJ calls functions of our plugin representing debugger commands, e.g. set breakpoint,
and passes a source position as parameter if it is required for the command. Our plugin has a
predefined string for each debugger command, e.g. "setbreakpoint", concatenates this with
the ASCII representation of the line number from the source position and enqueues this string
to be sent to our debugger.

34



Project View Editor

Runner View

Run Configuration Start  Debug  Stop

Interpreter Input/Output

IntelliJ API interpreter

• The project view lists the files in the current project. A user can add, open and delete
files in this view. When the user adds a file, IntelliJ calls our plugin through the file

creation interface shown in Figure 4.1. Our plugin then creates a new LOOP/WHILE
file from a template. We provide an empty template and the two shown in Listing 4.3 and
Listing 4.4.

• The editor lets the user alter LOOP/WHILE files in the current project. The file in focus
in the editor is also the one being run, when the user presses the start button.

• The runner view displays input and output directly from our interpreter.

• The run configuration button opens a menu to edit the parameters passed to the in-
terpreter and the path to its executable.

• The start, debug and stop buttons trigger the plugin to execute or terminate interpreter
and debugger.

Figure 4.5: IntelliJ Editing/Running GUI

35



Debugger Output

Debugger View

Execution positionBreakpoint

Debug  Stop

IntelliJ API Debugger l Button implementedˆ Button not implemented The
debugger can be started and stopped with the debug and stop buttons. During debugging,

the runner view, seen in Figure 4.5, is replaced by a debugger view.

• Input and output from the interpreter is then shown in the console tab of the debugger

view.

• The debugger tab shows a stack trace and variable bindings as described in detail
in Subsection 4.3.2.

• The execution position and breakpoints are shown in the editor.

• Features of IntelliJ’s debugger interface which are supported by our debugger, are marked
in green. Ones that require further work are marked in red.

Figure 4.6: IntelliJ Debugging GUI

36



When the debugger responds to one of IntelliJ’s debug commands, it either states that execution
has been resumed or that it has been stopped.

If execution is resumed after the command, our plugin informs IntelliJ that the program is
running again. IntelliJ then hides any previously shown stack traces or variable bindings

and instead displays a "program is running" message.

If execution is stopped after a debug command, the debugger also sends a JSON encoded seri-
alisation of the interpreter’s execution state. The plugin then decodes this JSON string into a
temporary Java object which closely resembles the internal data type in our interpreter. We
use this temporary Java object to construct a stack trace object of IntelliJ’s internal data
type. Our plugin passes that object to IntelliJ, which presents the stack trace along with the
contained variable bindings to the user.

37





5 Related Projects

We set out to provide an intuitive programming environment for the LOOP and WHILE lan-
guages. Alexander Dietsch created a project called lw-simulator [4] which addresses similar
issues.

The simulator is a standalone interpreter like ours, but its implementation follows closer to
Meyer and Ritchie’s register machine than we do. The simulator enforces register names ( x0
through xn ) in the root scope (Subsection 3.4.3). The output register is hard-wired to x0 .
Input registers are not marked as such, instead the user can edit the initial value of all regis-
ters, before starting execution. Input, output and auxiliary registers of macros must have the
identifiers i0 through i0 , o0 through on and a0 through an respectively. These register
names do not correspond to any actual registers, instead every macro call assigns a xi register
to each register used in the macro. Our interpreter improved on this by operating on variables.
This especially means, that variable names can be freely chosen and macros can declare new
variables without the need to pass a register name for every internal register.

The simulator checks for recursive macros at runtime, which means syntactically incorrect
programs only trigger an error if the recursive code path is taken with the given input. Our
interpreter does all checks before execution. This makes it easier for a user to understand errors,
since any errors will always appear regardless of input values for the program.

The simulator has no debugging functionality, instead it allows the user to set a stepping speed,
i.e. it waits for a specified amount of time after every instruction, as well as pausing at any
time. When the simulator is paused it shows the execution position in the editor and the user
can edit values stored in all registers. Our interpreter includes a debugger which allows setting
breakpoints at any line of code, single stepping and stepping over and out of macros. When the
interpreter is paused, it also shows the current execution position in the editor, but also includes
a stack trace showing the chain of macro calls that led to the current position. Variables can
also be edited and are grouped by macro scope, to provide an overview over which variables are
used in the current scope.

Finally the simulator includes a self-made GUI which lacks responsiveness in syntax highlighting
has no instant error feedback. Our GUI is IntelliJ which comes with a wide range of features,
including instant syntax highlighting and marking of syntax errors as the user types.

39





6 Conclusion

As discussed in Section 5, our interpreter exceeds previous projects in three aspects. The first
aspect is syntactic extensions to LOOP and WHILE, especially the ability to give arbitrary
identifiers to variables and macro support. The second aspect is IntelliJ as a well-known
and responsive front-end. The third aspect is a set of debugging functionalities, consisting
of setting breakpoints, stepping, viewing stack traces and editing variable values at runtime.
The combination of these features allow users to focus on implementing algorithmic exercises
without being held back the simplicity of these languages.

In future work our interpreter and plugin could still be extended with various features. The
plugin can be extended with further IntelliJ API parts, such as refactoring for variable names.
One could also implement the remaining debugging features of IntelliJ in our debugger,
these are running to the current cursor position, pausing at any time without a breakpoint and
setting watch-points on variables, to stop if the value of that variable changes. The command
line interface of the debugger could be equipped with completion for debug commands and
human-readable stack trace output.

41





A Extended Syntax

In this appendix, we give informal definitions of the semantics of all extended LOOP/WHILE
syntax elements, in the order in which they may appear in a syntax tree. We also give tex-
tual substitution rules to transform all LOOP/WHILE programs in extended syntax into basic
LOOP or WHILE programs, in order to show that these extensions do not alter the computabil-
ity of both languages.

A.1 LOOP/WHILE File

Definition A.1. A LOOP/WHILE file consists of a language constraint (Definition A.2), a list
of imports (Definition A.4), a list of macro definitions (Definition A.9), variable declarations
(Definition A.7), and finally a LOOP or WHILE program.

No additional textual substitution is necessary to transform a LOOP or WHILE file into a
traditional LOOP or WHILE program if all elements of the file are already transformed.

A.2 Language Constraint

Definition A.2 (Language Constraint). The #LOOP and #WHILE flags declare whether the
given file is a LOOP or a WHILE file. If present, the language flag must be the first statement
in the LOOP or WHILE file.

Definition A.3 (Language Constraint: Substitution Rule). If the file starts with #LOOP , but
contains at least one while X != 0 do P enddo instruction, the file is invalid. Otherwise
remove the language constraint.

A.3 Import

Definition A.4 (Import). #IMPORT <path> allows importing macro definitions (Definition A.9)

from other LOOP/WHILE files. <path> must be a valid path to a file in the file system. All

macros defined in the file at <path> may be called from this file. Imports must be substituted

before checking the language constraint (Definition A.2), before checking validity of macro def-
initions (Definition A.9) and before substituting any macro calls (Definition A.45). Imports are
allowed to be nested. All imports that have already been substituted once in this LOOP/WHILE
file will be ignored. Imports must occur right after the optional language constraint and before
any macro definitions.

Definition A.5 (Import: Substitution Rule). If the <path> is not a valid path in the file

system, the LOOP/WHILE file is invalid. If the file at <path> is not a valid LOOP/WHILE

file, this file is also invalid. If the file at <path> has already been imported into this file,

remove this import. Otherwise replace #IMPORT <path> by all imports in the file at <path> ,

43



followed by all macro definitions from that file. Apply this substitution rule to all remaining
and new imports.

A.4 Scope

Definition A.6 (Static Scope). A static scope is a 4-tuple pI,O,A, P q that consists of an
output variable declaration O, a LOOP/WHILE program P , and an input and an auxiliary
variable declaration I and A. I and A can also be empty. The variable declarations I, O, or A
are only binding within P .

A.5 Variable Declaration

Definition A.7 (Variable Declaration). Every LOOP or WHILE file must contain a declaration
of the output variable and may contain declarations of input and auxiliary variables before the
first instruction. Input and output variables are treated in the sense of Definition 2.4. All
variables that are neither input nor output must be declared as auxiliary variables.

• in: Xi1, Xi2, ... Xin : Declares Xi1 through Xin as input variables, with n P N.

• out: Xo : Declares Xo as output variable.

• aux: Xa1, Xa2, ... Xam : Declares Xa1 through Xam as auxiliary variables, with
m P N.

All variables used in the file must occur in exactly one of these three declarations within the
scope (Definition A.6) of the LOOP/WHILE program they are part of. Variable identifiers do
not have to be enumerated the way they are in this example, instead arbitrary identifiers are
allowed, if they do not conflict with keywords of LOOP and WHILE.

Definition A.8 (Variable Declaration: Substitution Rule). If the file contains any variables that
are not declared in the matching scope, the file is invalid. Otherwise remove the declarations.

A.6 Macro Definition

A macro defines a LOOP or WHILE program that can be reused by calling the macro (Defini-
tion A.45) to avoid copying code.

Definition A.9 (Macro Definition). def F D P enddef : Defines a macro F with variable
declarations D

( in: Xi1, Xi2, ... Xin out: Xo aux: Xa1, Xa2, ... Xam ), such that a

macro call F(X1, X2, ... Xn) results in the value xo, where xo is the value of Xo after

execution of the program P , with the contents of X1 through Xn copied to Xi1 through
Xin . P must only contain variables declared in D in the sense of Definition A.7. Variables
declared in D are only valid in the scope of F , i.e. a variable X declared in D is a separate
variable from the variable X declared in the file or macro from which F is called. Therefore
altering the value of X within P does not alter the value of X outside of the macro F .

Textual substitution on a recursive macro would lead to an infinitely large LOOP/WHILE
program, therefore we do not allow macros to contain calls to themselves, directly or through a
chain of other macros.

44



Listing A.1: Conditional: Substitution

Y1 := 0;

Y2 := 0;

Y2 := Y2 + 1;

loop X do

Y2 := 0;

Y1 := Y1 + 1

enddo;

loop Y1 do

P1

enddo;

loop Y2 do

P2

enddo

Definition A.10 (Macro Definition: Substitution Rule). If the macro contains a variable that
is not declared in the macro’s variable declarations, the entire LOOP/WHILE file is invalid.
If the macro is recursive, the file is invalid. If there is more than one macro definition for
the name F , this file is invalid. Otherwise substitute all calls to this macro as described in
Definition A.46. After all calls to this macro are substituted, remove this macro definition.

A.7 Conditional

Definition A.11 (If Else Conditional). if X != 0 then P1 else P2 endif : Let x be the
value of X . If x equals 0, execute P2 , otherwise execute P1 . A conditional may also be of
the form if X != 0 then P endif which is treated as if X != 0 then P else Pe endif ,
where Pe is the empty instruction sequence.

Definition A.12 (Conditional: Substitution Rule). Replace if X != 0 then P1 else P2 endif

by the program in Listing A.1, where Y1 and Y2 are variables that do not occur in the
LOOP/WHILE file.

A.8 Assignment

Definition A.13 (Assignment). Assignments in extended syntax are X := <expression>

where the resulting value of <expression> is copied into X . <expression> may be any
expression defined in Section A.9.

Definition A.14 (Assignment: Substitution Rule). If <expression> matches no expression

described in Section A.9, the LOOP/WHILE file is invalid. Otherwise apply the substitution
specified for the instance of <expression> .

A.9 Expression

Definition A.15 (Expression). An expression is either the right hand side of one of the as-
signment instructions of the LOOP language (Definition 2.2), or one of the expressions defined
in this section.

45



Listing A.2: Addition: Substitution

Y := <atom2 >;

X := <atom1 >;

loop Y do

X := X + 1

enddo

In the following <integer> refers to any sequence of decimal digits, <atom> refers to an

<integer> or a variable. The value stored in <atom> refers to the number represented by

the <integer> , if <atom> is an <integer> , and refers to the value stored in the variable, if

<atom> is a variable.

A.9.1 Constant

Definition A.16 (Constant). X := <integer> : Stores the number represented by <integer>

in X .

Definition A.17 (Constant: Substitution Rule). Replace X := <integer> by X := 0 fol-

lowed by i instructions X := X + 1 , where i is the number represented by <integer> .

A.9.2 Successor

Definition A.18 (Successor). X := succ(<atom>) : Stores a` 1 in X , where a is the value
stored in <atom> .

Definition A.19 (Successor: Substitution Rule). Replace X := succ(<atom>) by X := <atom>

followed by X := X + 1 . If <atom> is an <integer> , replace the assignment of <atom>

following the substitution rule in Definition A.17.

A.9.3 Addition

Definition A.20 (Addition). X := <atom1> + <atom2> : Stores the sum of <atom1> and
<atom2> in X .

Definition A.21 (Addition: Substitution Rule). Replace X := <atom1> + <atom2> by the
program in Listing A.2, where Y is a variable that does not occur in the LOOP/WHILE file. If
either <atom> is an <integer> , replace assignments of this <atom> following the substitution
rule in Definition A.17.

A.9.4 Predecessor

Definition A.22 (Predecessor). X := pred(<atom>) : Stores a´1 in X , where a is the value

stored in <atom> and a´ 1 equals a´ 1 if a ě 1 and is zero otherwise.

Definition A.23 (Predecessor: Substitution Rule). Replace X := pred(<atom>) by the pro-

gram in Listing A.3, where A and Y are variables that do not occur in the LOOP/WHILE
file. If <atom> is an <integer> , replace the assignment of <atom> following the substitution
rule in Definition A.17.

46



Listing A.3: Predecessor: Substitution

A := <atom >;

Y := 0;

X := 0;

loop A do

X := Y;

Y := Y + 1

enddo

Listing A.4: Subtraction: Substitution

Y := <atom2 >;

X := <atom1 >;

loop Y do

X := pred(X)

enddo

A.9.5 Subtraction

Definition A.24 (Subtraction). X := <atom1> - <atom2> : Stores a1 ´ a2 in X , where a1
and a2 are the values stored in <atom1> and <atom2> respectively. a1 ´ a2 equals a1´ a2 if
a1 ě a2 and is zero otherwise.

Definition A.25 (Subtraction: Substitution Rule). Replace X := <atom1> - <atom2> by the
program in Listing A.4, where Y is a variable that does not occur in the LOOP/WHILE file. If
either <atom> is an <integer> , replace assignments of this <atom> following the substitution

rule in Definition A.17. Replace pred(X) following the substitution rule in Definition A.23.

A.9.6 Multiplication

Definition A.26 (Multiplication). X := <atom1> * <atom2> : Stores the product of a1 and
a2 in X , where a1 and a2 are the values stored in <atom1> and <atom2> respectively.

Definition A.27 (Multiplication: Substitution Rule). Replace X := <atom1> * <atom2>

by the program in Listing A.5, where Y1 and Y2 are variables that do not occur in the
LOOP/WHILE file. If either <atom> is an <integer> , replace assignments of this <atom>

following the substitution rule in Definition A.17.

Listing A.5: Multiplication: Substitution

Y1 := <atom1 >;

Y2 := <atom2 >;

X := 0;

loop Y1 do

loop Y2 do

X := X + 1

enddo

enddo

47



Listing A.6: Division: Substitution

Y1 := <atom1 >;

Y2 := <atom2 >;

X := 0;

if Y2 != 0 then

loop Y1 do

if Y1 != 0 then

X := X + 1;

Y1 := Y1 - Y2

endif

enddo;

X := pred(X)

endif

A.9.7 Division

Definition A.28 (Division). X := <atom1> div <atom2> : Stores the integer quotient of a1
and a2 in X , if a2 ą 0, and 0 otherwise. a1 and a2 are the values stored in <atom1> and
<atom2> respectively.

Definition A.29 (Division: Substitution Rule). Replace X := <atom1> div <atom2> by the
program in Listing A.6, where Y1 and Y2 are variables that do not occur in the LOOP/WHILE
file. If either <atom> is an <integer> , replace assignments of this <atom> following the

substitution rule in Definition A.17. Replace if Y != 0 then P endif and Y1 := Y1 - Y2

following the substitution rules in Definition A.12 and Definition A.25 respectively.

A.9.8 Modulo

Definition A.30 (Modulo). X := <atom1> % <atom2> : Stores the remainder of a1{a2 in

X , if a2 ą 0, and 0 otherwise. a1 and a2 are the values stored in <atom1> and <atom2>

respectively.

Definition A.31 (Modulo: Substitution Rule). Replace X := <atom1> % <atom2> by the

program in Listing A.7, where Y1 and Y2 are variables that do not occur in the LOOP/WHILE
file. If either <atom> is an <integer> , replace assignments of this <atom> following the

substitution rule in Definition A.17. Replace if Y != 0 then P endif and Y1 := Y1 - Y2

following the substitution rules in Definition A.12 and Definition A.25 respectively.

A.9.9 Comparison

Comparing variables and integers is implemented in the extended syntax as expressions, which
evaluate to 1, if the condition is true, and to 0 otherwise.

Definition A.32 (Comparison: Substitution Rule). All comparison expressions can be substi-
tuted by the program in Listing A.8, with <greater> , <less> , and <equal> each replaced
by 1 or 0 according to the substitution rule of the expression instance. After the instance specific
substitutions, if either <atom> is an <integer> , replace assignments of this <atom> follow-

ing the substitution rule in Definition A.17 and replace if X != 0 then P1 else P2 endif ,
X := Y1 - Y2 and X := 1 following the substitution rules in Definition A.12, Definition A.25
and Definition A.17 respectively.

48



Listing A.7: Modulo: Substitution

Y1 := <atom1 >;

Y2 := <atom2 >;

X := 0;

if Y2 != 0 then

loop Y1 do

if Y1 != 0 then

X := Y1;

Y1 := Y1 - Y2

endif

enddo

endif

Listing A.8: Comparison: Substitution

Y1 := <atom1 >;

Y2 := <atom2 >;

X := Y1 - Y2;

if X != 0 then

X := <greater >

else

X := Y2 - Y1;

if X != 0 then

X := <less >

else

X := <equal >

endif

endif

49



A.9.10 Equal

Definition A.33 (Equal). X := <atom1> == <atom2> : Stores 1 in X if a1 equals a2 and 0
otherwise. a1 and a2 are the values stored in <atom1> and <atom2> respectively.

Definition A.34 (Equal: Substitution Rule). Replace X := <atom1> == <atom2> by the
program in Listing A.8. Replace <greater> , <less> , and <equal> with 0 , 0 , and 1

respectively. Follow the substitution rule in Definition A.32.

A.9.11 Unequal

Definition A.35 (Unequal). X := <atom1> != <atom2> : Stores 1 in X if a1 does not equal
a2 and 0 otherwise. a1 and a2 are the values stored in <atom1> and <atom2> respectively.

Definition A.36 (Unequal: Substitution Rule). Replace X := <atom1> != <atom2> by the
program in Listing A.8. Replace <greater> , <less> , and <equal> with 1 , 1 , and 0

respectively. Follow the substitution rule in Definition A.32.

A.9.12 Less

Definition A.37 (Less). X := <atom1> < <atom2> : Stores 1 in X if a1 is less than a2 and
0 otherwise. a1 and a2 are the values stored in <atom1> and <atom2> respectively.

Definition A.38 (Less: Substitution Rule). Replace X := <atom1> < <atom2> by the pro-
gram in Listing A.8. Replace <greater> , <less> , and <equal> with 0 , 1 , and 0 respec-
tively. Follow the substitution rule in Definition A.32.

A.9.13 Less or Equal

Definition A.39 (Less or Equal). X := <atom1> <= <atom2> : Stores 1 in X if a1 is less
than or equal to a2 and 0 otherwise. a1 and a2 are the values stored in <atom1> and <atom2>

respectively.

Definition A.40 (Less or Equal: Substitution Rule). Replace X := <atom1> <= <atom2> by
the program in Listing A.8. Replace <greater> , <less> , and <equal> with 0 , 1 , and 1

respectively. Follow the substitution rule in Definition A.32.

A.9.14 Greater

Definition A.41 (Greater). X := <atom1> > <atom2> : Stores 1 in X if a1 is greater than
a2 and 0 otherwise. a1 and a2 are the values stored in <atom1> and <atom2> respectively.

Definition A.42 (Greater: Substitution Rule). Replace X := <atom1> > <atom2> by the
program in Listing A.8. Replace <greater> , <less> , and <equal> with 1 , 0 , and 0

respectively. Follow the substitution rule in Definition A.32.

A.9.15 Greater or Equal

Definition A.43 (Greater or Equal). X := <atom1> >= <atom2> : Stores 1 in X if a1 is
greater than or equal to a2 and 0 otherwise. a1 and a2 are the values stored in <atom1> and
<atom2> respectively.

50



Definition A.44 (Greater or Equal: Substitution Rule). Replace X := <atom1> >= <atom2>

by the program in Listing A.8. Replace <greater> , <less> , and <equal> with 1 , 0 , and

1 respectively. Follow the substitution rule in Definition A.32.

A.9.16 Macro Call

Definition A.45 (Macro Call). X := <macro>(<atom1>, <atom2>,... <atom_n>) : Calls

the macro <macro> and stores then resulting value, as defined in Definition A.9, in X .
<macro> must be a macro defined in a macro definition in this LOOP/WHILE file.

Definition A.46 (Macro Call: Substitution Rule). If <macro> is defined anywhere in the
LOOP/WHILE file as def <macro> D P enddef , remove the calling assignment

X := <macro>(<atom1>, <atom2>,... <atom_n>) . For each input variable Xi declared in

D , insert Xi := <atomi> . Insert P , followed by X := Xo , where Xo is the variable declared
as output in D . Rename all Xi in the first n inserted lines, Xo and all variables in P to
names that do not occur in the LOOP/WHILE file. If <macro> is not defined in this manner,
the file is invalid. If the number n of parameters <atom1> through <atom_n> is not equal to

the number of input variables declared in D , the file is invalid.

51





B Manual - How to use

In this chapter we will discuss how to work with our IntelliJ plugin and our interpreter. For
general instructions on IntelliJ, refer to the website of the IntelliJ project [8].

This manual contains examples of IntelliJ version 2018.1.3 on a Linux system. Installation and
usage on a Windows system will slightly differ in representation of file system paths. Usage
on both macOS and Windows might also differ in the placement and labeling of buttons in
IntelliJ’s GUI, even at the same version which is used in this manual.

B.1 Installation

Download and install IntelliJ, following their installation guide [8]. Download the IntelliJ plugin
(LoopWhileLanguagePlugin.jar) and the LOOP/WHILE interpreter executable (lwre) from
https://www8.cs.fau.de/tools:loopwhile. In addition, the sources can be found at
https://gitlab.cs.fau.de/i8/intellij-lw-plugin and
https://gitlab.cs.fau.de/i8/LoopWhile-yacc-interpreter. Start IntelliJ and follow the
screenshots and descriptions in Figure B.1 through Figure B.21

If this is the very first start of IntelliJ, Figure B.1 through Figure B.9 will guide your through
the initial setup. If you have used IntelliJ before, skip to Figure B.10.

Figure B.1

53

https://www8.cs.fau.de/tools:loopwhile
https://gitlab.cs.fau.de/i8/intellij-lw-plugin
https://gitlab.cs.fau.de/i8/LoopWhile-yacc-interpreter


Select a color scheme and click Next.

Figure B.2

Click Next.

Figure B.3

54



Click Next.

Figure B.4

Optional: Disable Android and Plugin Development to save disk space.

Figure B.5

55



Click Next.

Figure B.6

Click Start using Intelij IDEA.

Figure B.7

56



Wait for the loading screen to finish.

Figure B.8

Click Configure, then click Plugins. Skip to Figure B.11.

Figure B.9

57



This step differs between IntelliJ versions. Mouse over File and click Settings.... If you
have an IntelliJ IDEA button in the top bar, the Settings... will be in that menu, instead

of in the File menu.

Figure B.10

Click Plugins in the left column.

Figure B.11

58



Click Install plugin from disk....

Figure B.12

Navigate to the LoopWhileLanguagePlugin.jar file which you downloaded in Section B.1
and click OK.

Figure B.13

59



Click Restart IntelliJ IDEA in the top right corner and wait for IntelliJ to restart.

Figure B.14

Click Create New Project.

Figure B.15

60



Select LoopWhile in the left column and click New... in the top right corner.

Figure B.16

This step differs between IntelliJ versions. Navigate to the interpreter executable (lwre)
which you downloaded in Section B.1 and select it. If you only see directories in this dialog,

but not files, just select the directory which contains the lwre executable. Click OK.

Figure B.17

61



Click Next.

Figure B.18

Optional: Select a suitable name for this project. Click Finish.

Figure B.19

62



Optional: Untick Show tips on startup. Click Close.

Figure B.20

You are ready to write your first LOOP/WHILE program.

Figure B.21

63



B.2 Programming

After completing the installation (Section B.1) you can start writing code. Figure B.22 through
Figure B.28 guide you to your first working LOOP program.

Type your program into the editor. The editor is the window on the right.

Figure B.22

Hit the Run button .

Figure B.23

64



We have made a mistake. The window on the bottom shows the error message from the
interpreter. In addition, you can hover the mouse over the underlined piece of code to view an

error message from the IntelliJ plugin. We need to put a ’;’ between the two statements.

Figure B.24

Correct the error and hit .

Figure B.25

65



Success! The program is running, as indicated by the green dot next to the button. The
interpreter asks you for a value for i0 .

Figure B.26

Enter a value for i0 and hit Return.

Figure B.27

66



The program finished successfully and shows the resulting value of o0 .

Figure B.28

67



B.3 Debugging

IntelliJ’s debugger interface can help you both to investigate logic errors in a program and to
analyse the control flow of a LOOP or WHILE program. This section demonstrates the available
features through our IntelliJ plugin and our debugger.

Type your program into the editor. The editor is the window on the right. Figure B.29
through Figure B.45 demonstrate the use of the debugger in IntelliJ.

Figure B.29

Set a breakpoint in line 6, by clicking directly to the right of the line-number ’6’.

Figure B.30

68



Hit the Debug button , to start the debugger.

Figure B.31

The debugger started. Enter values for the input variables.

Figure B.32

69



The debugger reached your breakpoint. The debugger view (Figure 4.6) shows the stack

trace and variable bindings. The stack trace on the left shows through which macro
calls the execution reached the current line. In our case, the current macro exp was called

from the root program at line 13. The variables view on the right show all declared
variables and their values for the scope which is selected in the stack trace.

Figure B.33

In the variables view you can right click on a variable and change its value, by clicking on
Set Value....

Figure B.3470



Enter a new value for base .

Figure B.35

You can select a different scope in the stack trace on the left. The editor now highlights the
line from which the current macro was called. The variables view shows the variables in the

selected scope. Note that i0 , which was used as input for the base variable, was not
changed along with base .

Figure B.36
71



Now hit Resume to continue execution.

Figure B.37

The debugger reached our breakpoint in the next loop iteration. Note that our changed base

value has now been multiplied onto res .

Figure B.38

72



You can hit Step Over to move through the current macro line by line. Step Over will not
descend into any macro calls. You could use Step Into for that. With Step Into you can

execute every single instruction in a program one by one.

Figure B.39

The stack trace and the editor now show you, that execution is in line 5, at the loop
condition. With another step, execution will go back to line 6, until after the last loop

iteration.

Figure B.40 73



Remove the breakpoint in line 6, by clicking on the breakpoint icon next to the line-number.

Figure B.41

Hit Step Out to continue execution up to the first instruction after the call the macro we
currently are inside.

Figure B.42

74



Execution stopped in line 14, right after the call to exp . Note that o0 now contains 37,

since we altered the value of base in exp . Hit Resume to finish the program.

Figure B.43

Execution has finished. You can click on Console to switch back to the console view in the
debugger view and view the output of the interpreter.

Figure B.44

75



The program successfully computed 37 ´ 5.

Figure B.45

B.4 Command Line

The interpreter and debugger can also be run without the IntelliJ plugin from command line.
The interpreter produces the same output on command line as it does in IntelliJ’s runner

view. Listing B.46 shows how to run the interpreter from command line, along with the output
it produces with the example code from Figure B.26.

Listing B.46: Running Interpreter from Command Line

> /path/to/lwre /path/to/example/file.lw

Please type in values for global input variables:

i0: 15

o0: 25

text : user input

Listing B.47 shows the debugging example from Section B.3 run on commandline. The inter-
preter can be started in debugging mode by adding the -d flag. It then waits for debugging
commands, such as setbreakpoint <line> <file> , until given the run command. Now it
asks for input variable values if there are any, runs to the first breakpoint, prints a stack trace
and awaits more debugging commands. Then it executes each debugging command until the
program is finished. Finally it prints the resulting value of the output variable.

76



Listing B.47: Running Debugger from Command Line

> /path/to/lwre -d /path/to/example/file.lw

setbreakpoint 6 file.lw

1 6 0# Breakpoint 0 set.

run

Please type in values for global input variables:

i0: 5

i1: 7

0 6 0 [{" file ":"/ path/to/example/file.lw","line ":6," macro ":"exp",

"bindings ":[{" VarType ":" input","Ident ":" base","Val ":5} ,{" VarType"

:"input","Ident ":" exp","Val ":7} ,{" VarType ":" output","Ident ":" res"

,"Val ":1}]} ,{" file ":"/ path/to/example/file.lw","line ":13 ," macro":

"root","bindings ":[{" VarType ":" input","Ident ":"i0","Val ":5} ,{" Var

Type ":" input","Ident ":"i1","Val ":7} ,{" VarType ":" output","Ident ":"

o0","Val ":0}]}]# Breakpoint 0 reached.

setvariable exp base 3

resume

0 6 0 [{..." Ident ":" base","Val ":3...}]# Breakpoint 0 reached.

stepover

2 5 -1 [{...}]# Stepped.

clearbreakpoint 6 file.lw

stepout

2 14 -1 [{" file ":"/ path/to/example/file.lw","line ":14," macro ":"ro

ot","bindings ":[{" VarType ":" input","Ident ":"i0","Val ":5} ,{" VarTyp

e":" input","Ident ":"i1","Val ":7} ,{" VarType ":" output","Ident ":"o0"

,"Val ":2187}]}]# Stepped.

resume

o0: 2182

text : user input

77





Bibliography

[1] Golex. https://godoc.org/github.com/cznic/golex.

[2] Goyacc. https://godoc.org/golang.org/x/tools/cmd/goyacc.

[3] Marilza Antunes de LEMOS and Leliane Nunes de BARROS. A didactic interface in a pro-
gramming tutor. In Proceedings of 11th International Conference on Artificial Intelligence
in Education (AIED2003), 2003.

[4] Alexander Dietsch. A Simulator for LOOP and WHILE. https://cal8.cs.fau.de/

redmine/projects/lw-simulator, 2016.

[5] Google. Golang. https://golang.org/.

[6] Dirk W Hoffmann. Theoretische Informatik. Carl Hanser Verlag GmbH Co KG, 2018.

[7] Sergey Ignatov. Erlang Plugin. https://github.com/ignatov/intellij-erlang.

[8] JetBrains. IntelliJ IDEA. https://www.jetbrains.com/idea/.

[9] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code Gen-
eration and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages
75–, Washington, DC, USA, 2004. IEEE Computer Society.

[10] John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc (2Nd Ed.). O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1992.

[11] Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM Core Libraries. Packt
Publishing, 2014.

[12] Albert R. Meyer and Dennis M. Ritchie. The complexity of loop programs. In Proceedings
of the 1967 22Nd National Conference, ACM ’67, pages 465–469, New York, NY, USA,
1967. ACM.

[13] Stefan Milius. Theoretische Informatik für Wirtschaftsinformatik und Lehramt. https:

//www8.cs.fau.de/ss18:tiet.

[14] Suyog Sarda and Mayur Pandey. LLVM Essentials. Packt Publishing, 2015.

[15] Uwe Schöning. Theoretische Informatik. Vorlesungsskript, 1995.

[16] David A. Watt. Programming Language Processors. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[17] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge, MA, USA, 1993.

79

https://godoc.org/github.com/cznic/golex
https://godoc.org/golang.org/x/tools/cmd/goyacc
https://cal8.cs.fau.de/redmine/projects/lw-simulator
https://cal8.cs.fau.de/redmine/projects/lw-simulator
https://golang.org/
https://github.com/ignatov/intellij-erlang
https://www.jetbrains.com/idea/
https://www8.cs.fau.de/ss18:tiet
https://www8.cs.fau.de/ss18:tiet

	Introduction
	LOOP and WHILE languages
	Properties
	Syntactic Sugar

	Programming Language Processor
	Input Specification
	Output Specification
	Comparison of Language Processors
	Interpreter
	Compiler
	Translator
	Our Chosen Approach

	Interpreter Implementation
	Lexer
	Parser
	Abstract Syntax Tree
	Variable Bindings
	Execution
	Macros
	Recursive Macro Checking

	Debugger Implementation
	Scope Stack
	Breakpoints
	Stepping
	Serialisation


	Integrated Development Environment
	Necessity
	IntelliJ Plugin
	Execution Environment
	Interpreter Interface
	Debugger Interface


	Related Projects
	Conclusion
	Extended Syntax
	LOOP/WHILE File
	Language Constraint
	Import
	Scope
	Variable Declaration
	Macro Definition
	Conditional
	Assignment
	Expression
	Constant
	Successor
	Addition
	Predecessor
	Subtraction
	Multiplication
	Division
	Modulo
	Comparison
	Equal
	Unequal
	Less
	Less or Equal
	Greater
	Greater or Equal
	Macro Call


	Manual - How to use
	Installation
	Programming
	Debugging
	Command Line


