REPRESENTING GUARDEDNESS

SERGEY GONCHAROV
FAU Erlangen-Nürnberg

FEBRUARY 17, 2022
Setting the Stage: Notion of Guardedness
How do we know that automata q_1 start q_2 are equivalent?

are equivalent?
Proof "by Coinduction"

Equation \((ab)^* = a(ba)^* b + 1\) is true, because \(a(ba)^* b + 1\) is a fixpoint of the same map.
Equation \((ab)^* = a(ba)^*b + 1\) is true, because \(a(ba)^*b + 1\) is a fixpoint of the same map\(^1\):

\[
(a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1
\]

\(^1\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Equation \((ab)^* = a(ba)^* b + 1\) is true, because \(a(ba)^* b + 1\) is a fixpoint of the same map\(^1\):

\[
(a(ba)^* b + 1 = a((ba)(ba)^* + 1)b + 1
= a(ba)(ba)^* b + a1b + 1
\]

\(^{1}\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Proof "by Coinduction"

Equation \((ab)^* = a(ba)^*b + 1\) is true, because \(a(ba)^*b + 1\) is a fixpoint of the same map\(^1\):

\[
a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1 \\
= a(ba)(ba)^*b + ab + 1 \\
= (ab)a(ba)^*b + ab + 1
\]

\(^1\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Equation \((ab)^* = a(ba)^*b + 1\) is true, because \(a(ba)^*b + 1\) is a fixpoint of the same map\(^1\):

\[
a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1
= a(ba)(ba)^*b + a1b + 1
= (ab)a(ba)^*b + ab + 1
= (ab)(a(ba)^*b + 1) + 1
\]

\(^1\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Equation \((ab)^* = a(ba)^* b + 1\) is true, because \(a(ba)^* b + 1\) is a fixpoint of the same map\(^1\):

\[
\begin{align*}
(a(ba)^* b + 1) &= a((ba)(ba)^* + 1)b + 1 \\
&= a(ba)(ba)^* b + a1b + 1 \\
&= (ab)a(ba)^* b + ab + 1 \\
&= (ab)(a(ba)^* b + 1) + 1
\end{align*}
\]

\(^1\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Proof "by Coinduction"

Equation \((ab)^* = a(ba)^* b + 1\) is true, because \(a(ba)^* b + 1\) is a fixpoint of the same map:\(^1\)

\[
\begin{align*}
(a(ba)^* b + 1) &= a((ba)(ba)^* + 1)b + 1 \\
&= a(ba)(ba)^* b + a1b + 1 \\
&= (ab)a(ba)^* b + ab + 1 \\
&= (ab)(a(ba)^* b + 1) + 1
\end{align*}
\]

- This only works because \(x \mapsto abx + 1\) is **guarded**
- \(x \mapsto (a + 1)x + 1\) is **un-guarded** and has infinitely many fixpoints

\(^1\)A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
Bouncing ball is a simple Newtonian system specified by differential equation $\ddot{h} = -g \ (g \approx 9.8)$ whose solution is

$$h(t) = h_0 + v_0 t - \frac{gt^2}{2}$$

with initial values:

- $v_0 = 0, \ h_0 \neq 0$ (peak height)
- $h_0 = 0, \ v_0 \neq 0$ (zero height)

This system is progressive: every iteration consumes non-zero time (although it keeps getting smaller – Zeno behaviour)

Non-progressive (chattering) behaviour is often regarded a modelling artefact
Basic Process Algebra (BPA):

\[P, Q, \ldots ::= \checkmark \mid a \in A \mid P + Q \mid P \cdot Q \]

E.g. we can specify a 2-cell FIFO, storing bits:

\[
\begin{align*}
B_0 &= \text{in}_0 \cdot B_1^0 + \text{in}_1 \cdot B_1^1 \\
B_1^i &= \text{in}_0 \cdot B_2^{0,i} + \text{in}_1 \cdot B_2^{1,i} + \text{out}_i \cdot B_0 \\
B_2^{i,j} &= \text{out}_j \cdot B_1^i
\end{align*}
\]

\[(i \in \{0, 1\}) \quad (i, j \in \{0, 1\})\]

Solutions are unique for **guarded** specifications. Otherwise not: \(X = X \) has infinitely many solutions.
We can model previous examples with monads, augmented with partially defined iteration operators

\[
\begin{align*}
 f : X &\to T(Y + X) \\
 f^\uparrow : X &\to TY
\end{align*}
\]

w.r.t. a co-Cartesian category (=category with finite coproducts)

1. \(TX = \mathcal{P}(A^* \times X)\)
 - an automaton over \(n\) states is a Kleisli map \(h : n \to \mathcal{P}(A^* \times (1 + n))\)
 - languages, recognized by states: \(h^\uparrow : n \to \mathcal{P}(A^*)\)

2. \(TX = \mathbb{R}_{\geq 0} \times X + \mathbb{R}_{\geq 0}\)
 - \(\mathbb{R}_{\geq 0}\) and \(\mathbb{R}_{\geq 0}\) model finite and infinite durations
 - For \(h : X \to T(2 \times X) \cong T(X + X)\), \(h^\uparrow : X \to TX\) is a while-loop on \(h\)

3. \(TX = \nu_\gamma. \mathcal{P}_{\omega_1} (X + A \times \gamma)\) (\(\nu_\gamma. F_\gamma\) is a final \(F\)-coalgebra)
 - \(h : n \to T(\{\sqrt{\} + n)\) is a system of \(n\) recursive process definitions
 - \(h^\uparrow : n \to \nu_\gamma. \mathcal{P}_{\omega_1} (\{\sqrt{\} + A \times \gamma)\) is a solution
Guarded v.s. Unguarded

Most of the time, guarded fixpoint operators are restrictions of unguarded ones. But the guarded ones are better behaved:

- Often unique, hence enable reasoning by coinduction
- If not unique, often computed as least fixpoints
- Foundation-independent
- Simpler to define and to work with

This motivates a type discipline for propagating guardedness over structures
A guardedness predicate identifies for all objects X, Y, Z guarded morphisms $C\diamondsuit(X, Y, Z) \subseteq C(X, Y + Z)$, such that

\[
\begin{align*}
(\text{trv}_+) & \quad \frac{f : X \to Y}{\inl f : X \to Y \triangleright Z} \\
(\text{par}_+) & \quad \frac{f : X \to V \triangleright W \quad g : Y \to V \triangleright W}{[f, g] : X + Y \to V \triangleright W} \\
(\text{cmp}_+) & \quad \frac{f : X \to Y \triangleright Z \quad g : Y \to V \triangleright W \quad h : Z \to V + W}{[g, h] f : X \to V \triangleright W}
\end{align*}
\]

where $f : X \to Y \triangleright Z$ means $f \in C\diamondsuit(X, Y, Z)$

- A category with a guardedness predicate is called guarded
- A monad is guarded if its Kleisli category is guarded
Every category/monad is guarded with $f : X \to Y \triangleright Z$ iff f factors through \text{inl}: Y \to Y + Z$ (trivial iteration)

Every category/monad is guarded with $C\diamond(X, Y, Z) = C(X, Y + Z)$ (total iteration)

- $f : X \to \mathcal{P}(A^{\ast} \times (Y + Z))$ is guarded if it factors through
 $$\mathcal{P}(A^{\ast} \times Y + A^{\ast} \times Z) \leftrightarrow \mathcal{P}(A^{\ast} \times Y + A^{\ast} \times Z) \cong \mathcal{P}(A^{\ast} \times (Y + Z))$$

- $f : X \to \mathbb{R}_{\geq 0} \times (Y + Z) + \mathbb{R}_{\geq 0}$ is guarded if it factors through
 $$\mathbb{R}_{\geq 0} \times Y + \mathbb{R}_{\geq 0} \times Z + \mathbb{R}_{\geq 0} \leftrightarrow \mathbb{R}_{\geq 0} \times Y + \mathbb{R}_{\geq 0} \times Z + \mathbb{R}_{\geq 0}$$
 $$\cong \mathbb{R}_{\geq 0} \times (Y + Z) + \mathbb{R}_{\geq 0}$$

- $f : X \to \nu\gamma. T((Y + Z) + H\gamma)$ is guarded if it factors through
 $$T(Y + H(\nu\gamma. \ldots)) \leftrightarrow T((Y + Z) + H(\nu\gamma. \ldots)) \cong \nu\gamma. T((Y + Z) + H\gamma)$$
Call-by-Value with Effects
Very Simple Metalanguage (VSML)

- **Sorts** A, B, C, \ldots
- **Signature** Σ_v of pure programs $f : A \to B$, and signature Σ_c of effectful programs $f : A \to B$
- **Semantics of** (Σ_v, Σ_c) w.r.t. identity-on-objects functor $J : V \to C$:
 - an object $\llbracket A \rrbracket \in |V|$ to each sort A
 - a morphism $\llbracket f \rrbracket \in V(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f : A \to B \in \Sigma_v$
 - a morphism $\llbracket f \rrbracket \in C(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f : A \to B \in \Sigma_c$
- **Terms in single-variable (!) context**:
 \[
 \frac{f : A \to B \in \Sigma_v}{\Gamma \vdash_v v : A} \quad \frac{f : A \to B \in \Sigma_c}{\Gamma \vdash_c f(v) : B} \\
 \frac{\Gamma \vdash_v f(v) : B}{\Gamma \vdash_v x : A} \quad \frac{\Gamma \vdash_c return v : A}{\Gamma \vdash_c p : A \quad x : A \vdash_c q : B}
 \]
 \[
 \frac{x : A \vdash_v x : A}{\Gamma \vdash_v x : A} \quad \frac{\Gamma \vdash_c return v : A}{\Gamma \vdash_c p : A \quad x : A \vdash_c q : B}
 \]
 \[
 \frac{\Gamma \vdash_c p : A \quad x : A \vdash_c q : B}{\Gamma \vdash_c x \leftarrow p ; q : B}
 \]
- **Semantics**:
 - $\llbracket x : A \vdash_v x : A \rrbracket = \text{id}$
 - $\llbracket \Gamma \vdash_v f(v) : B \rrbracket = \llbracket f \rrbracket \llbracket \Gamma \vdash_v v : A \rrbracket$
 - $\llbracket \Gamma \vdash_c f(v) : B \rrbracket = \llbracket f \rrbracket J \llbracket \Gamma \vdash_v v : A \rrbracket$
 - $\llbracket \Gamma \vdash_c \text{return} v : A \rrbracket = J \llbracket \Gamma \vdash_v v : A \rrbracket$
 - $\llbracket \Gamma \vdash_c x \leftarrow p ; q : B \rrbracket = \llbracket x : A \vdash_c q : B \rrbracket \llbracket \Gamma \vdash_c p : A \rrbracket$
Variable contexts can normally carry a list of variables \(\Gamma = \langle x_1 : A_1, \ldots, x_n : A_n \rangle \), e.g. variable introduction now looks like this:

\[
\frac{
}{x_1 : A_1, \ldots, x_n : A_n \vdash x_i : A_i}
\]

This yields fine-grained call-by-value (FGCBV)\(^2\) metalanguage. It can be interpreted over a Freyd category:

- \(V \) is a category with finite products
- \textbf{action} \(V \times C \to C \) of \(V \) on \(C \)
- \(J : V \to C \) is an identity-on-objects functor, preserving the action

\(^2\)P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002
Originally, Moggi3 interpreted call-by-value over strong monads

- A functor \(F : \mathcal{C} \to \mathcal{D} \) between monoidal \(\mathcal{C} \) and \(\mathcal{D} \) is strong if there is (natural in \(A, B \)) strength \(\tau_{A,B} : A \otimes FB \to F(A \otimes B) \), such that

\[
\begin{align*}
I \otimes FX & \cong FX \\
\tau \downarrow & \\
F(I \otimes X) & \cong FX \\
\end{align*}
\]

\[
\begin{align*}
(X \otimes Y) \otimes FZ & \xrightarrow{\tau} F((X \otimes Y) \otimes Z) \\
\tau \downarrow & \\
X \otimes (Y \otimes FY) & \xrightarrow{\tau} X \otimes F(Y \otimes Z) \\
\tau \downarrow & \\
F(X \otimes (Y \otimes Z)) & \\
\end{align*}
\]

- A monad \((T, \eta, \mu)\) on \(\mathcal{C} \) is strong if \(T \) is strong additionally \(\eta, \mu \) are strong:

\[
\begin{align*}
X \otimes Y & \xrightarrow{\tau} X \otimes Y \\
X \otimes \eta & \downarrow \\
X \otimes TY & \xrightarrow{\tau} T(X \otimes Y) \\
X \otimes \mu & \downarrow \\
X \otimes TY & \xrightarrow{\tau} T(X \otimes Y) \\
\end{align*}
\]

\[
\begin{align*}
X \otimes TTY & \xrightarrow{\tau} T(X \otimes TY) \\
X \otimes \tau & \downarrow \\
TT(X \otimes Y) & \xrightarrow{\tau} \\
\end{align*}
\]

Theorem (4)

In monoidal closed categories, strength is equivalent to enrichment

3E. Moggi, Notions of Computation and Monads, 1991

4A. Kock, Strong Functors and Monoidal Monads, 1972
If we want to implement higher order:

\[
\begin{align*}
\Gamma, x : A &\vdash_c p : B \\
\Gamma &\vdash \lambda x. p : A \to B \quad &\quad \Gamma \vdash f : A \to B \\
\Gamma &\vdash f v : B
\end{align*}
\]

we need to have a semantics \([A \to B] = U([A], [B]),\) such that

\[
\mathbf{C}(J(X \times A), B) \cong \mathbf{V}(X, U(A, B))
\]

naturally in \(A\)

Theorem (5)

The following are equivalent:

- \(\mathbf{C}(J(X \times A), B) \cong \mathbf{V}(X, U(A, B))\) for some \(U : \mathbf{V} \times \mathbf{C} \to \mathbf{V},\) naturally in \(A\)
- Presheaves \(\mathbf{C}(J(X \times (-)), B) : \mathbf{V}^{\text{op}} \to \text{Set}\) are representable
- \(\mathbf{C}\) is isomorphic to a Kleisli category of a strong monad \(T\) on \(\mathbf{V}\) and all exponentials \((TB)^A\) exist

5Essentially: P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002
If we do not care about strength, we have a simpler characterization

Theorem

Given id-on-objects functor $J: V \to C$, the following are equivalent:

- J is a left adjoint
- Presheaves $C(J(-), B): V^{op} \to \text{Set}$ are representable
- C is isomorphic to a Kleisli category of a monad

and then:

Theorem

Given a Freyd category $J: V \to C$, the following are equivalent:

- J is a left adjoint
- Presheaves $C(J(-), B): V^{op} \to \text{Set}$ are representable
- C is isomorphic to a Kleisli category of a strong monad
Intermediate Summary

- Monads → Strong monads
- Representability
- Id.-on-obj. functors → Freyd categories
- Strength
Call-by-Value Meets Guardedness
We stick to guarded C, and identity-on-objects $J : V \to C$ strictly preserving finite coproducts.

Modify the type system:

<table>
<thead>
<tr>
<th>\emptyset \diamond-type</th>
<th>A \diamond-type</th>
<th>$A \diamond$-type $B \diamond$-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \diamond$-type</td>
<td>$A \diamond$-type</td>
<td>$A + B \diamond$-type</td>
</tr>
<tr>
<td>$\Diamond A$ type</td>
<td>A type</td>
<td>$A + B$ type</td>
</tr>
</tbody>
</table>

So, e.g. $A + (\Diamond B + \Diamond C)$ indicates that we are guarded in B and in C.

Let \preceq be partial order on types, generated by the rules:

- $\Diamond A \preceq A$
- $A \preceq C, B \preceq D \Rightarrow A + B \preceq C + D$

This allows us to compute “guarded” $[A] \diamond$ and “un-guarded” $[A] \diamond$ part of every type A, and $[A \preceq B] \in V([A] \diamond, [B] \diamond) \times V([A] \diamond, [B] \diamond + [B] \diamond)$.
We interpret

\[[x : A \vdash v : B] \in \mathbf{V}([A] \Diamond, [B] \Diamond) \times \mathbf{V}([A] \Diamond, [B] \Diamond + [B] \Diamond), \]

\[[x : A \vdash_c p : B] \in \mathbf{C}^\Diamond([A] \Diamond, [B] \Diamond, [B] \Diamond) \times \mathbf{C}([A] \Diamond, [B] \Diamond + [B] \Diamond). \]

For example, variable introduction incorporates weakening:

\[
\frac{A \trianglelefteq B}{x : A \vdash v : B}
\]

So, \([x : A \vdash v : B] = [A \trianglelefteq B]\)

We then can type guarded iteration:

\[
\frac{\Gamma \vdash_c p : A \quad x : A \vdash_c q : B + \Diamond A}{\Gamma \vdash_c \text{iter } x \leftarrow p; q : B}
\]
Definition

Given \(J : V \to C \), as before and guarded \(C \), we call the guardedness predicate \(C \otimes (J-) \) representable if for all \(A, B \in |C| \) the presheaves

\[
C \otimes (J(-), A, B) : V^{\text{op}} \to \text{Set}
\]

are representable

Note that \(C \otimes (X, A, \emptyset) \cong C(X, A) \), hence

Lemma

If \(C \otimes \) is representable, \(J \) is a left adjoint. In this case, \(C \) is a Kleisli category of some monad on \(V \)
Recall, that a bifunctor \(\# : V \times V \to V \) is a **parametrized monad**\(^6\) if

- Every \((-) \# X\) is a monad
- Every \((-) \# f\) is a monad morphism

Theorem (Main)

\(C^\downarrow \) is representable iff

1. There is a parametrized monad \(\# \) on \(V \), such that \(C \) is isomorphic to the Kleisli category of \((-) \# \emptyset\)

2. There is a family of monics \(\epsilon_{X,Y} : X \# Y \to (X + Y) \# \emptyset \) natural in \(X, Y \), such every \(\epsilon_{-} : - \# X \to (- + X) \# \emptyset \) is a monad morphism

3. There is natural \(\zeta_{X,Y} : (X \# Y) \# ((X + Y) \# \emptyset) \to X \# Y \) such that

\[
\begin{align*}
(X \# Y) \# ((X + Y) \# \emptyset) & \xrightarrow{\epsilon_{X \# Y, (X + Y) \# \emptyset}} (X \# Y + (X + Y) \# \emptyset) \# \emptyset \\
& \xrightarrow{\mu_{X + Y, \emptyset}} (X + Y) \# \emptyset \\
& \xrightarrow{\epsilon_{X,Y}} X \# Y
\end{align*}
\]

Then, up to isomorphism, \(f : X \to Y \to Z \) iff \(f \) factors through \(\epsilon \)

\(^6\)T. Uustalu, Generalizing Substitution, 2003
Examples

- Trivial guardedness corresponds to $X \# Y = TX$, i.e. $X \# Y$ does not depend on the parameter
- Total guardedness corresponds to $X \# Y = T(X + Y)$ (exception monad transformer)
- Automata: $X \# Y = \mathcal{P}(A^* \times X + A^+ \times Y)$
- Hybrid systems: $X \# Y = \mathbb{R}_{\geq 0} \times X + \mathbb{R}_{\geq 0} \times Y + \mathbb{I}\mathbb{R}_{\geq 0}$
- Generalized processes: $X \# Y = T(X + H(\nu \gamma. T((X + Y) + H\gamma))))$
If J is not a left adjoint, guardedness is not representable. But this is boring. Is there other counterexamples?

Theorem

Suppose, every morphism in \mathcal{V} factorizes as a regular epic, followed by a monic. Let \mathbf{T} be a guarded monad on \mathcal{V}. Then a family of monos $(\epsilon_{X,Y} : X \# Y \hookrightarrow T(X + Y))_{X,Y \in \mathcal{V}}$ extends to a guarded parametrized monad iff

- every $\epsilon_{X,Y}$ is the **largest** guarded subobject of $T(X + Y)$
- for every $f : X \to T(Y + Z)$ and a regular epic $g : X' \to X$, if fg is guarded then f is guarded

Example

In the category of topological spaces, let $f : X \to Y \upharpoonright Z$ if Z is compact. This is not Id-representable, since there is no “largest compact subspace of X” (e.g. $X = \mathbb{N}$ under cofinite topology)
Most sophisticated case:
- \(J : V \to C \) is a Freyd category
- \(V \) and \(C \) are co-Cartesian and \(J \) strictly preserves coproducts

Theorem

Presheaves

\[C(\delta(J(-\times A), B, C)) : V^{\text{op}} \to \text{Set} \]

are representable iff
- There is a guarded parametrized monad \(\# \) on \(V \)
- The monad \((-) \# \emptyset \) is strong
- \(C \) is isomorphic to the Kleisli category of \((-) \# \emptyset \)
- Exponentials \((B \# C)^A \) exist

Proof Idea.

\[C(\delta(J(-\times A), B, C)) \cong V(-\times A, B \# C) \cong V(-, (B \# C)^A) \]
Let additionally:

- \(V \) is distributive i.e. \(A \times (B + C) \cong A \times B + A \times C \)
- The action of \(V \) on \(C \) preserves guardedness: \(f \in V(A, B), g \in C\uplus(X, Y, Z), \)

\[
A \times X \xrightarrow{f \otimes g} B \times (Y + Z) \cong B \times Y + B \times Z
\]

is in \(C\uplus(A \times X, B \times Y, B \times Z) \)

We then call \(J \) guarded Freyd category

Proposition

If \(C\uplus \) is \(J \)-representable then the induced \(\# \) becomes equipped with strength:

\[
X \times (Y \# Z) \to (X \times Y) \# (X \times Z)
\]

Call such \(\# \) **strong guarded parametrized monad**
Total Summary

guarded parametrized monads

monads

id.-on-obj. functors

guarded Freyd categories

strong guarded parametrized monads

strong monads

Freyd categories

guarded id.-on-obj. functors

representability

strength

guardedness
Computational metalanguage a la Moggi w.r.t. guarded parametrized monads?

Combine guardedness with more advanced structures (e.g. effect handling)

Dualize: representation of guarded recursion by comonads
 - It is known already that (guarded) recursion is categorically dual to (guarded) iteration
 - What are instances of comonadic guarded recursion?
 - Representing recursion on casual streams/course-of-value recursion

Implementation