Pushing the Limits of

Kleene Algebra

Sergey Goncharov
FAU Erlangen-Nurnberg

RAMICS-AIML 2024, 19-22 August 2024

Overview

What | will talk about:
Compositionality
Modularity
Genericity

Design
Semantics m

What | wont talk about:
m Efficiency
m Optimization
m Computation Complexity

Background

@ Goncharov, “Shades of Iteration: From Elgot to Kleene”, 2023,
WADT 2022

@ Goncharov and Uustalu, “A Unifying Categorical View of
Nondeterministic Iteration and Tests”, 2024, CONCUR 2024

Historical Overture

Regular Events

REPRESENTATION OF EVENTS IN NERVE NETS AND
FINITE AUTOMATA
Ss Ce Kleene
RM=TOL
15 December 1951
standalone/kleene-photo. jp:

7.2 An algebraic transformation: We 1ist several equiva—

lences:

(1) (EvP)VG =EV(FVG). }

(2) (ER)a = E(Fe). Assoclative laws
(3) (EsF)c = E#(F).

(4) (EVF)6 = EGVFG.

(5) E(Fve) = EFVEG. Distributive laws
(6) E*(Fyc) = E*Fv EG.

(7) E*F = FVE*(EF).

(8) E*F = FVE(E'F).

m Kleene star e — e* ’(b+a(ab*a)b)*(1+aa)‘

m Kleene theorem start 5 ;

» Syntax for finite state machines b (:é/—\./\;_/@ b
~—_
b a

» Algebraic equational reasoning

Language Interpretation

Regular expressions over X:
e,e,e:=(acX)|o|1]|e +e,|ee,|e*
m Language interpretation:

[ol = {} [ese2] = {xy | x € [eq].y € [e2]}
[1] = {e} [e1+ 2] = [es] v [e2]
[e*] ={e}ue] u[ee]u...

m Language L < X* is regular iff L = [e] for some regular expression e
with [a] =aforae X

@ Other interpretations
» Yes, e.g. relational one!

@ Complete reasoning system for regular expressions

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b

is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

1+ a(ba)*b =1+ a(1+ (ba)(ba)*)b

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

1+ a(ba)*b =1+ a(1+ (ba)(ba)*)b
=1+ a1b +a(ba)(ba)*b

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

1+ a(ba)*b =1+ a(1+ (ba)(ba)*)b
=1+ a1b +a(ba)(ba)*b
=1+ab + (ab)a(ba)*b

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

1+ a(ba)*b =1+ a(1+ (ba)(ba)*)b
=1+ a1b +a(ba)(ba)*b
=1+ab + (ab)a(ba)*b
=1+ (ab)(a(ba)*b)

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

:1+a(1+(ba)(ba)*)b

=1+ a1b + a(ba)(ba)*b
=1+ ab + (ab)a(ba)*b

=1+ (ab)(|1+ a(ba)*b |

Equivalence of Expressions

Example proof "by coinduction":
(ab)* =1+ a(ba)*b
is true, because 1+ a(ba)*b is a fixpoint of the map that defines (ab)*

:1+a(1+(ba)(ba)*)b

=1+ a1b + a(ba)(ba)*b
=1+ ab + (ab)a(ba)*b

=1+ (ab)(|1+ a(ba)*b |

m This only works because x — 1+ abx is guarded
m X — 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

Salomaa’s Complete Axiomatization

m eis guarded if
» eis a letter
> e=0
» e = e,e, with e, or e, guarded
» e —=e, + e, with e; and e, guarded
m Salomaa originally defined dual standalone/salomaa-photo.
empty word property (ewp):
e has epw iff it is not guarded
m ... and, proposed complete
axiomatization* w.r.t. language
model:
» A finite number of sound identities
» plus rule:

v=e+uv u guarded
v =u*e

*A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

- 6

No Finite Equational Axiomatization

Redko* noticed that
m All identities (power identities)

e* = (e*(1+e+...+ef M

AT standalone/redko-phot

m Any finite set of sound equations
entails only finitely many of them
m Hence, no finite axiomatizability
(even on one-letter alphabet)

So,

@ How to choose infinite set of non-obvious axioms of iteration?
@ How would we know that this choice is correct?

*V. N. Redko, On defining relations for the algebra of regular events, 1964

0.7

Conway’s Monograph

Conway* came up with various insights:

m Power identities do not suffice,
e.g. they do not imply

(e+u)* = ((e+u)(u+(eu*)"2e))*

=22

(1+(e+u)), (eu*))

standalone/conway-photo. j

m Made several conjectures on
potential complete axiomatization

m Observed that algebraic laws
of regular expressions transfer to
matrices of regular expressions

Q = Bridge between algebra and automata (represented by matrices)

*). H. Conway, Regular Algebra and Finite Machines, 1971

8]

Matrices of Regular Expressions

m (n x n)-matrices of regular expressions support same operations.

Forn =2:
s - |1 © a b " a b’|_lat+ta b+b’
0o 1 c d ¢ d c+c d+d
“wis o—|° © a b||a" b’|_laa’+bc" ab’+ bd’
“|lo o c d||c d ca’+dc’ cb’+dd’

m ldea for A*: | + A+ A%+ ...
Q Key insight: there is closed form for A* as matrix of regular expressions

€ e

o } = A*, ej; represents language of 2-state
21 22

m Intuition: in {

automaton where i - initial, j - final

Automata and Matrices

ol 2 7Tl

117 [((a+b)b*a)* ((a+ b)b*a)*] [1
{o] {(b*a(amn*a b*(a(a+b))*} M

)
((a+ b)b*a)*

Automata and Matrices

m Automata are triples Stirt ab
Ac{0,1}", Be ", Ce {0,1}" @’Qb
& - certain class of regular expressions 4
11" [o a+b]*[1
o] a b o]
)
117 [((a+b)b*a)* ((a+ b)b*a)*] [1
o] (b*a(a+b))*a b*(ala+b))*| |0
()
((a+ b)b*a)*

Automata and Matrices

m Automata are triples Stirt ab
Ac{0,1}", Be ", Ce {0,1}" @’Qb
& - certain class of regular expressions 4
m Accepted language: 117 To a=+bl*[1
o] a b 0
[ATB*(] @
117 [((a+b)b*a)* ((a+ b)b*a)*] [1
o] (b*a(a+b))*a b*(ala+b))*| |0
()
((a+ b)b*a)*

Automata and Matrices

m Automata are triples Stil’t ab
Ae{0,1}", Be ™" Ce{0,1}" OQT‘/.Qb
&€ - certain class of regular expressions 0

m Accepted language:
[ATB*(]

m Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

|

1
0]

'l

((@a+b)b*a)* ((a+b)b*a)*| |1
b*a(a+b))*a b*(a(a+b))*| |0

)
((a+ b)b*a)*

Kleene Algebra

m Kozen defined Kleene algebra:

1. ldempotent semiring

2. e*u - least pre-fixpoint of u + e(—):

u+ew<w
efusw standalone/kozen-phot

using: x < yiffx+y=y
3. ue* - least pre-fixpoint of u + (—)e

u+ee*u=e*u

m Completeness: given [e;] = [e.],
1. e, -~ ATB¥C,, e, ~ A]BIC,
2. eliminate e-transitions

0.7

3. determinize

4. minimize
5. show that all ensuing transitions ATB*C = AT B*C are provable

m Corollary: Language interpretation = free Kleene algebra

Key Design Features

m Not tailored to language model - complete also over relational model
m Algebraic, i.e. closed under substitution, in contrast to Salomaa’s rule

W=u-+ew e guarded
w = e*u

m All fixpoints are least (pre-)fixpoints
» in Salomaa’s system: particular fixpoints are unique fixpoints

m Induction rules

u+ew < w u+we<w
e*u<w ue* <w

encompass infinitely many identities, critical for completeness

Tests for Control

m Another reading: Algebra elements = programs

» 0 - divergence and/or deadlock, 1 - neutral program, etc.
m Kleene algebra with tests (KAT) adds control via tests:

» Kleene sub-algebra B

» B is Boolean algebra under (0,1, ;,+)

m This enables encodings:

» Branching (if bthenpelseq) as b;p+b;q

» Looping (while b do p) as (b;p)*;b
» Hoare triples {a} p {b} as a;p;b=a;p
Example:

while b do p = if bthen p else (while b do p)

Kleene Algebra Today

]

]

]

]

]
>
>
>
>
>
>
>

]

Regular expressions

Algebraic language of finite state machines and beyond
Relational semantics of programs

Relational reasoning and verification, e.g. via dynamic logic
Plenty of extensions:

modal = modal Kleene algebra (Struth et al.)

stateful = KAT + B! (Grathwohl, Kozen, Mamouras)

concurrent = concurrent Kleene algebra (Hoare et al.)

nominal = nominal Kleene algebra (Kozen et al.)

differential equations = differential dynamic logic (Platzer et al.)
network primitives = NetKAT (Foster et al.)

etc,, etc,, etc.

decidability and completeness (most famously w.r.t. language

interpretation and relational interpretation)

Pushing Limits

Scenario |: Exceptions

B Assumming programs raise exceptions: raise e; = “raise exception e;”,

raise e, = raisee,;0 = 0 = raisee,; 0 = raise e,

m So, we cannot have more than one exception
» ... unless we discard the law

p;0=0

Scenario ll: Branching Time

Processes

are famously non-bisimular, failing Kleene algebra law

p;(q+r)=p;q+p;r

Scenario lll: Divergence

m |dentity
(p+1)* = p*

is provable in Kleene algebra, because p* is a least fixpoint
m Alternatively:

1% =1
m Hence deadlock = divergence

@ How to undo this

What is generic core of Kleene iteration?

m Core reasoning principles
m Robustness under adding features (e.g. exceptions)
m Generic completeness argument

m Compatibility with classical program semantics
= Soundness of while-loop encoding

What is generic core of Kleene iteration?

m Core reasoning principles
m Robustness under adding features (e.g. exceptions)
m Generic completeness argument

m | Compatibility with classical program semantics ‘
= Soundness of while-loop encoding

Categorifying lteration

From Algebras to Categories

m Categories ~ many-sorted monoids:

p:A—B qg:B—C
p;q:A—C

12: A — A (unit) (multiplication)

» Objects A, B, ... - sorts, Morphisms p: A — B - programs
» Fact: monoid = single-object category

m Kleene-Kozen categories - additionaly

p:A—B qg:A—B p:A—A
p+q:A—B p*:A—A

OA,BZA — B

subject to Kleene algebra laws

» Fact: Kleene algebra = single-object Kleene-Kozen category
» Example: Category of relations = relational interpretation

m Tests = particular morphisms b: A — A

Coproducts and Elgot Iteration

m Coproducts A @ B can be thought of
as disjoint unions A w B

m Elgot iteration:

p:A— B®DA
pl:A—B))
standalone/esik-photo. jpg
» Intuitively: keep running p until
reached a result in B
m (—)' is subject to rich and elaborated
equational theory of iteration*®

© Very general

© Stable under adding features
®© Does not hinge on non-determinism

® Hinges on coproducts

® Quasi-equational axiomatizations little explored

*S. Bloom, Z. Esik, Iteration Theories, 1993

Coproducts and Elgot Iteration

m Coproducts A @ B can be thought of ||

as disjoint Ur There is only one theory of iteration
m Elgot iteration:

p:A— B®A
pl:A—B))
standalone/esik-photo. jpg
» Intuitively: keep running p until
reached a result in B
m (—)' is subject to rich and elaborated
equational theory of iteration*®

© Very general

© Stable under adding features
®© Does not hinge on non-determinism

® Hinges on coproducts

® Quasi-equational axiomatizations little explored

*S_ Bloom, Z. Esik, Iteration Theories, 1993

Program Features

m Given Elgot iteration operator, fix carrier of exceptions E

m Exception-raising morphisms A — B @ E themeselves form a category
m Elgot iteration and its laws carry over
» This fails for Kleene-Kozen categories

m Elgot iteration’s laws are thus stable under exception monad
transformer

m Similarly: state, reading, writing, adjoining process algebra actions

Uniform Conway lteration

Bloom and Esik’s iteration = Conway identities + commutative identities

finitely many infinitely many

Commutative identities < Uniformity rule

hard simple, standard

@ Can we formulate uniform Conway iteration via familiar while-loops

Control in Category

m Call morphisms of the form d: A — A @ A decisions
» In particular: ff - left injection, tt - right injection

m We then can express if-then-else:

d:A—>ADA p:A—B qg:A—B
ifdthenpelse g: A — B

» |n particular: ~d = if dthen ffelse tt, (d || e) = if dthen ttelse e
m Various expected laws are entailed, but some are not, e.g.

d ||ttt

Uniform Conway While-Operator

Theorem*: if the class of decisions is large enough, uniform Conway
iteration is equivalent to while-loops

Axioms:

while d do p = if dthen p; (while d d

p) else 1

while (d || e) do p = (while d do p); while e do (p;while d do p)
while (d &6 (e || tt)) do p = while d do (if ethen p else p)

Uniformity Rule:

u;if dthenp;ttelse ff = if ethengq;u;ttelse v; ff
u; while d do p = (while e do q);v

where u, v come from a selected class of programs

*S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Tests and Decisions

m In presence of non-determinism, decisisons d: A — A@ A
decompose:

d = b: tt +b: ff (b,B:A—>A)
m Test-based ‘if’ and ‘while’:
Axioms:
while bdo p = if bthen p; (while bdo p) else 1
while (b v ¢) do p = (while bdo p); while cdo (p; while bdo p)
Uniformity:

u;b;p=cqu u;b==cv
u; whilebdo p = (whilecdoq); v

Reaxiomatizing Kleene Algebra

Alternative axiomatization: idempotent semiring, and
* . n¥k * _ k. . k)%
p*=1+p;p (p+q)* =p*;(q;p*)

u,p=q,u
u,p* =qg*;u

17 = 7

m This is true for Kleene-Kozen categories = Kleene algebra

m Removing 1* = 1 yields may-diverge Kleene algebras, (—)* is no
longer least fixpoint

m Uniformity is postulated for all u

Restricting Uniformity

u,p=q,u

u,p* =q*;u

Restricting Uniformity

raise e =raise e;1=1;raise e =raise e

raise e

= raise e; 1* =

1*: raise e

Restricting Uniformity

raise e =raise e;1=1;raise e =raise e

raise e

= raise e; 1* =

1*: raise e

o Need not hold in may-diverge Kleene algebras

Restricting Uniformity

u;p=gq;u
u,p* =q*;u

o Need not hold in may-diverge Kleene algebras
= Restrict to linear u:

u:0=0 u,(p+q)=u;p+uq

Kleene-iteration category with tests (KiCT)
m Category with coproducts and nondeterminism
m Selected class of tests
m Selected class of linear tame morphisms
m Kleene iteration
m Laws:

O;p=0 (p+q)ir=pir+qgr
p*=1+p;p* (p+q)* =p* (g p*)*
u,p*=q*;u
u,p=q;u

with tame u

m KiCT + (1% = 1) with all morphisms tame = Kleene-Kozen with tests
and coproducts

m KiCT with expressive tests = tame-uniform Conway iteration +
non-determinism

m Free KiCT = non-deterministic rational trees w.r.t. may-diverge
nondeterminism

What is generic core of Kleene iteration?

KiCT:

© Core reasoning principles

® Robustness under adding features

®© Generic completeness argument

®© Compatibility with classical program semantics

What is generic core of Kleene iteration?

KiCT:

© Core reasoning principles

® Robustness under adding features

®© Generic completeness argument

®© Compatibility with classical program semantics

But what is KiCT without coproducts?

Hypothetical Route

KiCT Matrix construction KiCT Free
without @ /Kleene theorem Model

m If everything is tame (Kleene algebra), this is essentially what
happens

m What if nothing is tame (Process algebra)?

Milner’s Conundrum

m Milner* realized that “regular

behaviours” are properly more
general than “s-behaviours"

m Simplest example

standalone/milner-pho

X=1+aY
Y=1+b;X

We can passto X =1+ a; (1+ b; X),
but not to X = (ab)*(1+ a)

m This descrepancy =~ failure of

t0.]

matrix construction/Kleene theorem
m Milner’s solution is equivalent to using coproducts in the language

m He also proposed a modification of Salomaa’s system for
x-behaviours - proven complete only recently (Grabmayer)

*R. Milner, A complete inference system for a class of regular behaviours, 1984

Conclusions

m KiCTs reframe Kleene algebra principles in categorical setting and
succeed with various yardsticks

m KiCTs without coproducts would be a hypothetical most basic
notions of Kleene iteration

m Open Problem: Can it ever be found?

33/33

	Historical Overture
	Pushing Limits
	Categorifying Iteration

