
Pushing the Limits of
Kleene Algebra

Sergey Goncharov
FAU Erlangen-Nürnberg

RAMICS-AiML 2024, 19-22 August 2024

Overview

What I will talk about:
Compositionality
Modularity
Genericity
Design
Semantics

What I wont talk about:
Efficiency
Optimization
Computation Complexity

3

÷
1 33

Background

 Goncharov, “Shades of Iteration: From Elgot to Kleene”, 2023,
WADT 2022

 Goncharov and Uustalu, “A Unifying Categorical View of
Nondeterministic Iteration and Tests”, 2024, CONCUR 2024

2 33

Historical Overture

Regular Events

standalone/kleene-photo.jpg

start a

b

a

a
b b

(b+ a(ab˚a)b)˚(1+ aa)Kleene star e ÞÑ e˚

Kleene theorem
▶ Syntax for finite state machines
▶ Algebraic equational reasoning

3 33

Language Interpretation

Regular expressions over Σ:

e, e1, e2 ::= (a P Σ) | 0 | 1 | e1 + e2 | e1e2 | e˚

Language interpretation:

J0K = t u Je1e2K = txy | x P Je1K, y P Je2Ku

J1K = tϵu Je1 + e2K = Je1K Y Je2K

Je˚K = tϵu Y JeK Y JeeK Y . . .

Language L Ď Σ‹ is regular iff L = JeK for some regular expression e
with JaK = a for a P Σ

 Other interpretations
▶ Yes, e.g. relational one!

 Complete reasoning system for regular expressions

4 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b
= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b
= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b

= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b
= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b
= 1+ a1b+ a(ba)(ba)˚b

= 1+ ab+ (ab)a(ba)˚b
= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b
= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b

= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b
= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b
= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b

= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b

= 1+ (ab)(1+ a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b

= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b

= 1+ (ab)(1+ a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints

5 33

Salomaa’s Complete Axiomatization

standalone/salomaa-photo.jpg

e is guarded if
▶ e is a letter
▶ e = 0
▶ e = e1e2 with e1 or e2 guarded
▶ e = e1 + e2 with e1 and e2 guarded

Salomaa originally defined dual
empty word property (ewp):
e has epw iff it is not guarded
... and, proposed complete
axiomatization˚ w.r.t. language
model:
▶ A finite number of sound identities
▶ plus rule:

v = e+ uv u guarded
v = u˚e

˚A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
6 33

No Finite Equational Axiomatization

standalone/redko-photo.jpg

Redko˚ noticed that

All identities (power identities)

e˚ = (ek)˚(1+ e+ . . .+ ek´1)

are sound
Any finite set of sound equations
entails only finitely many of them
Hence, no finite axiomatizability

(even on one-letter alphabet)

So,

 How to choose infinite set of non-obvious axioms of iteration?
 How would we know that this choice is correct?

˚V. N. Redko, On defining relations for the algebra of regular events, 1964
7 33

Conway’s Monograph

standalone/conway-photo.jpg

Conway˚ came up with various insights:

Power identities do not suffice,
e.g. they do not imply

(e+ u)˚ =
(
(e+ u)(u+ (eu˚)n´2e)

)˚(
1+ (e+ u)

ÿn´2

i=0
(eu˚)i

)
Made several conjectures on
potential complete axiomatization
Observed that algebraic laws
of regular expressions transfer to
matrices of regular expressions

ñ Bridge between algebra and automata (represented by matrices)

˚J. H. Conway, Regular Algebra and Finite Machines, 1971
8 33

Matrices of Regular Expressions

(nˆ n)-matrices of regular expressions support same operations.
For n = 2:

“1” is I =
[
1 0
0 1

] [
a b
c d

]
+

[
a 1 b 1

c 1 d 1

]
=
[
a+ a 1 b+ b 1

c+ c 1 d+ d 1

]

“0” is O =

[
0 0
0 0

] [
a b
c d

] [
a 1 b 1

c 1 d 1

]
=
[
aa 1 + bc 1 ab 1 + bd 1

ca 1 + dc 1 cb 1 + dd 1

]

Idea for A˚: I+ A+ A2 + . . .

 Key insight: there is closed form for A˚ as matrix of regular expressions

Intuition: in
[
e11 e12
e21 e22

]
= A˚, eij represents language of 2-state

automaton where i – initial, j – final

9 33

Automata and Matrices

Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

Accepted language:

JAJB˚CK
Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚

10 33

Automata and Matrices

Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

Accepted language:

JAJB˚CK
Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚

10 33

Automata and Matrices

Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

Accepted language:

JAJB˚CK

Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚

10 33

Automata and Matrices

Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

Accepted language:

JAJB˚CK
Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚

10 33

Kleene Algebra

Kozen defined Kleene algebra:

1. Idempotent semiring
2. e˚u – least pre-fixpoint of u+ e(´):

u+ ee˚u = e˚u u+ ew ď w
e˚u ď w

using: x ď y iff x + y = y
3. ue˚ – least pre-fixpoint of u+ (´)e

Completeness: given Je1K = Je2K,
1. e1 ⇝ AJ

1 B˚
1 C1, e2 ⇝ AJ

2 B˚
2 C2

2. eliminate ϵ-transitions
3. determinize
4. minimize
5. show that all ensuing transitions AJB˚C = ÂJB̂˚Ĉ are provable

Corollary: Language interpretation = free Kleene algebra

standalone/kozen-photo.jpg

11 33

Key Design Features

Not tailored to language model – complete also over relational model
Algebraic, i.e. closed under substitution, in contrast to Salomaa’s rule

w = u+ ew e guarded
w = e˚u

All fixpoints are least (pre-)fixpoints
▶ in Salomaa’s system: particular fixpoints are unique fixpoints

Induction rules
u+ ew ď w
e˚u ď w

u+ we ď w
ue˚ ď w

encompass infinitely many identities, critical for completeness

12 33

Tests for Control

Another reading: Algebra elements = programs
▶ 0 – divergence and/or deadlock, 1 – neutral program, etc.

Kleene algebra with tests (KAT) adds control via tests:
▶ Kleene sub-algebra B
▶ B is Boolean algebra under (0, 1, ; ,+)

This enables encodings:
▶ Branching (if b thenp elseq) as b;p+ b;q
▶ Looping (while b do p) as (b;p)˚;b
▶ Hoare triples taup tbu as a;p;b = a;p

Example:

while b do p = if b thenp else (while b do p)

13 33

Kleene Algebra Today

Regular expressions
Algebraic language of finite state machines and beyond
Relational semantics of programs
Relational reasoning and verification, e.g. via dynamic logic
Plenty of extensions:
▶ modal ñ modal Kleene algebra (Struth et al.)
▶ stateful ñ KAT + B! (Grathwohl, Kozen, Mamouras)
▶ concurrent ñ concurrent Kleene algebra (Hoare et al.)
▶ nominal ñ nominal Kleene algebra (Kozen et al.)
▶ differential equations ñ differential dynamic logic (Platzer et al.)
▶ network primitives ñ NetKAT (Foster et al.)
▶ etc., etc., etc.

decidability and completeness (most famously w.r.t. language
interpretation and relational interpretation)

14 33

Pushing Limits

Scenario I: Exceptions

Assumming programs raise exceptions: raise ei = “raise exception ei”,

raise e1 = raise e1;o = o = raise e2;o = raise e2

So, we cannot have more than one exception
▶ ... unless we discard the law

p;0 = 0

15 33

Scenario II: Branching Time

Processes

a a

b c

a

b c

are famously non-bisimular, failing Kleene algebra law

p; (q+ r) = p;q+ p; r

16 33

Scenario III: Divergence

Identity

(p+ 1)˚ = p˚

is provable in Kleene algebra, because p˚ is a least fixpoint
Alternatively:

1˚ = 1
Hence deadlock = divergence

 How to undo this

17 33

What is generic core of Kleene iteration?

Core reasoning principles
Robustness under adding features (e.g. exceptions)
Generic completeness argument
Compatibility with classical program semantics

ñ Soundness of while-loop encoding

18 33

What is generic core of Kleene iteration?

Core reasoning principles
Robustness under adding features (e.g. exceptions)
Generic completeness argument
Compatibility with classical program semantics
ñ Soundness of while-loop encoding

18 33

Categorifying Iteration

From Algebras to Categories

Categories « many-sorted monoids:

1A : A Ñ A (unit)
p : A Ñ B q : B Ñ C

p;q : A Ñ C (multiplication)

▶ Objects A,B, . . . – sorts, Morphisms p : A Ñ B – programs
▶ Fact: monoid = single-object category

Kleene-Kozen categories – additionaly

0A,B : A Ñ B
p : A Ñ B q : A Ñ B

p+ q : A Ñ B
p : A Ñ A
p˚ : A Ñ A

subject to Kleene algebra laws
▶ Fact: Kleene algebra = single-object Kleene-Kozen category
▶ Example: Category of relations = relational interpretation

Tests = particular morphisms b : A Ñ A

19 33

Coproducts and Elgot Iteration

standalone/esik-photo.jpg

Coproducts A‘ B can be thought of
as disjoint unions AZ B
Elgot iteration:

p : A Ñ B‘ A
p: : A Ñ B

▶ Intuitively: keep running p until
reached a result in B

(´): is subject to rich and elaborated
equational theory of iteration˚

⌣ Very general
⌣ Stable under adding features
⌣ Does not hinge on non-determinism
⌢ Hinges on coproducts
⌢ Quasi-equational axiomatizations little explored

˚S. Bloom, Z. Ésik, Iteration Theories, 1993
20 33

Coproducts and Elgot Iteration

standalone/esik-photo.jpg

Coproducts A‘ B can be thought of
as disjoint unions AZ B
Elgot iteration:

p : A Ñ B‘ A
p: : A Ñ B

▶ Intuitively: keep running p until
reached a result in B

(´): is subject to rich and elaborated
equational theory of iteration˚

⌣ Very general
⌣ Stable under adding features
⌣ Does not hinge on non-determinism
⌢ Hinges on coproducts
⌢ Quasi-equational axiomatizations little explored

There is only one theory of iteration

˚S. Bloom, Z. Ésik, Iteration Theories, 1993
20 33

Program Features

Given Elgot iteration operator, fix carrier of exceptions E
Exception-raising morphisms A Ñ B‘ E themeselves form a category
Elgot iteration and its laws carry over
▶ This fails for Kleene-Kozen categories

Elgot iteration’s laws are thus stable under exception monad
transformer
Similarly: state, reading, writing, adjoining process algebra actions

21 33

Uniform Conway Iteration

Bloom and Esik’s iteration = Conway identities
loooooooooomoooooooooon

finitely many

+ commutative identities
loooooooooooooomoooooooooooooon

infinitely many

Commutative identities
loooooooooooooomoooooooooooooon

hard

Ď Uniformity rule
loooooooomoooooooon

simple, standard

 Can we formulate uniform Conway iteration via familiar while-loops

22 33

Control in Category

Call morphisms of the form d : A Ñ A‘ A decisions
▶ In particular: ff – left injection, tt – right injection

We then can express if-then-else:

d : A Ñ A‘ A p : A Ñ B q : A Ñ B
if d thenp else q : A Ñ B

▶ In particular: ~d = if d then ff else tt, (d || e) = if d then tt else e
Various expected laws are entailed, but some are not, e.g.

d || tt ‰ tt

23 33

Uniform Conway While-Operator

Theorem˚: if the class of decisions is large enough, uniform Conway
iteration is equivalent to while-loops

Axioms:

while d do p = if d thenp; (while d do p) else 1

while (d || e) do p = (while d do p);while e do (p;while d do p)

while (d && (e || tt)) do p = while d do (if e thenp else p)

Uniformity Rule:

u; if d thenp; tt else ff = if e thenq;u; tt else v; ff
u;while d do p = (while e do q); v

where u, v come from a selected class of programs
˚S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

24 33

Tests and Decisions

In presence of non-determinism, decisisons d : A Ñ A‘ A
decompose:

d = b; tt+b̄; ff (b, b̄ : A Ñ A)
Test-based ‘if’ and ‘while’:

Axioms:

whilebdop = if b thenp; (whilebdop) else 1

while (b_ c)dop = (whilebdop);while cdo (p;whilebdop)

Uniformity:

u;b;p = c;q;u u; b̄ = c̄; v
u;whilebdop = (while cdoq); v

25 33

Reaxiomatizing Kleene Algebra

Alternative axiomatization: idempotent semiring, and

p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

1˚ = 1 u;p = q;u
u;p˚ = q˚;u

This is true for Kleene-Kozen categories ñ Kleene algebra
Removing 1˚ = 1 yields may-diverge Kleene algebras, (´)˚ is no
longer least fixpoint
Uniformity is postulated for all u

26 33

Restricting Uniformity

u;p = q;u
u;p˚ = q˚;u

 Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q

27 33

Restricting Uniformity

raise e = raise e; 1 = 1; raise e = raise e
raise e = raise e; 1˚ = 1˚; raise e

 Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q

27 33

Restricting Uniformity

raise e = raise e; 1 = 1; raise e = raise e
raise e = raise e; 1˚ = 1˚; raise e

 Need not hold in may-diverge Kleene algebras

ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q

27 33

Restricting Uniformity

u;p = q;u
u;p˚ = q˚;u

 Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q

27 33

KiCT

Kleene-iteration category with tests (KiCT)
Category with coproducts and nondeterminism
Selected class of tests
Selected class of linear tame morphisms
Kleene iteration
Laws:

0;p = 0 (p+ q); r = p; r + q; r
p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

u;p˚ = q˚;u
u;p = q;u

with tame u

28 33

Properties

KiCT + (1˚ = 1) with all morphisms tame = Kleene-Kozen with tests
and coproducts
KiCT with expressive tests = tame-uniform Conway iteration +
non-determinism
Free KiCT = non-deterministic rational trees w.r.t. may-diverge
nondeterminism

29 33

What is generic core of Kleene iteration?
KiCT:

○ Core reasoning principles
○ Robustness under adding features
○ Generic completeness argument
○ Compatibility with classical program semantics

But what is KiCT without coproducts?

30 33

What is generic core of Kleene iteration?
KiCT:

○ Core reasoning principles
○ Robustness under adding features
○ Generic completeness argument
○ Compatibility with classical program semantics

But what is KiCT without coproducts?

30 33

Hypothetical Route

KiCT
without ‘

Matrix construction
/Kleene theorem KiCT Free

Model

If everything is tame (Kleene algebra), this is essentially what
happens
What if nothing is tame (Process algebra)?

31 33

Milner’s Conundrum

Milner˚ realized that “regular
behaviours” are properly more
general than “˚-behaviours“
Simplest example

#

X = 1+ a; Y
Y = 1+ b; X

We can pass to X = 1+ a; (1+ b; X),
but not to X = (ab)˚(1+ a)
This descrepancy « failure of
matrix construction/Kleene theorem
Milner’s solution is equivalent to using coproducts in the language
He also proposed a modification of Salomaa’s system for
˚-behaviours – proven complete only recently (Grabmayer)

standalone/milner-photo.jpg

˚R. Milner, A complete inference system for a class of regular behaviours, 1984
32 33

Conclusions

KiCTs reframe Kleene algebra principles in categorical setting and
succeed with various yardsticks
KiCTs without coproducts would be a hypothetical most basic
notions of Kleene iteration
Open Problem: Can it ever be found?

33 / 33

	Historical Overture
	Pushing Limits
	Categorifying Iteration

