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Overview

What I will talk about:
Compositionality
Modularity
Genericity
Design
Semantics

What I wont talk about:
Efficiency
Optimization
Computation Complexity

3�
�

��

�
�

÷
1 33



Background

� Goncharov, “Shades of Iteration: From Elgot to Kleene”, 2023,
WADT 2022

� Goncharov and Uustalu, “A Unifying Categorical View of
Nondeterministic Iteration and Tests”, 2024, CONCUR 2024
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Historical Overture



Regular Events

standalone/kleene-photo.jpg

start a

b

a

a
b b

(b+ a(ab˚a)b)˚(1+ aa)Kleene star e ÞÑ e˚

Kleene theorem
▶ Syntax for finite state machines
▶ Algebraic equational reasoning
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Language Interpretation

Regular expressions over Σ:

e, e1, e2 ::= (a P Σ) | 0 | 1 | e1 + e2 | e1e2 | e˚

Language interpretation:

J0K = t u Je1e2K = txy | x P Je1K, y P Je2Ku

J1K = tϵu Je1 + e2K = Je1K Y Je2K

Je˚K = tϵu Y JeK Y JeeK Y . . .

Language L Ď Σ‹ is regular iff L = JeK for some regular expression e
with JaK = a for a P Σ

� Other interpretations
▶ Yes, e.g. relational one!

� Complete reasoning system for regular expressions
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Equivalence of Expressions

Example proof "by coinduction":

(ab)˚ = 1+ a(ba)˚b

is true, because 1+ a(ba)˚b is a fixpoint of the map that defines (ab)˚

1+ a(ba)˚b = 1+ a(1+ (ba)(ba)˚)b
= 1+ a1b+ a(ba)(ba)˚b
= 1+ ab+ (ab)a(ba)˚b
= 1+ (ab)(a(ba)˚b)

This only works because x ÞÑ 1+ abx is guarded
x ÞÑ 1+ (a+ 1)x is un-guarded and has infinitely many fixpoints
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Salomaa’s Complete Axiomatization

standalone/salomaa-photo.jpg

e is guarded if
▶ e is a letter
▶ e = 0
▶ e = e1e2 with e1 or e2 guarded
▶ e = e1 + e2 with e1 and e2 guarded

Salomaa originally defined dual
empty word property (ewp):
e has epw iff it is not guarded
... and, proposed complete
axiomatization˚ w.r.t. language
model:
▶ A finite number of sound identities
▶ plus rule:

v = e+ uv u guarded
v = u˚e

˚A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
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No Finite Equational Axiomatization

standalone/redko-photo.jpg

Redko˚ noticed that

All identities (power identities)

e˚ = (ek)˚(1+ e+ . . .+ ek´1)

are sound
Any finite set of sound equations
entails only finitely many of them
Hence, no finite axiomatizability

(even on one-letter alphabet)

So,

� How to choose infinite set of non-obvious axioms of iteration?
� How would we know that this choice is correct?

˚V. N. Redko, On defining relations for the algebra of regular events, 1964
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Conway’s Monograph

standalone/conway-photo.jpg

Conway˚ came up with various insights:

Power identities do not suffice,
e.g. they do not imply

(e+ u)˚ =
(
(e+ u)(u+ (eu˚)n´2e)

)˚(
1+ (e+ u)

ÿn´2

i=0
(eu˚)i

)
Made several conjectures on
potential complete axiomatization
Observed that algebraic laws
of regular expressions transfer to
matrices of regular expressions

�ñ Bridge between algebra and automata (represented by matrices)

˚J. H. Conway, Regular Algebra and Finite Machines, 1971
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Matrices of Regular Expressions

(nˆ n)-matrices of regular expressions support same operations.
For n = 2:

“1” is I =
[
1 0
0 1

] [
a b
c d

]
+

[
a 1 b 1

c 1 d 1

]
=
[
a+ a 1 b+ b 1

c+ c 1 d+ d 1

]

“0” is O =

[
0 0
0 0

] [
a b
c d

] [
a 1 b 1

c 1 d 1

]
=
[
aa 1 + bc 1 ab 1 + bd 1

ca 1 + dc 1 cb 1 + dd 1

]

Idea for A˚: I+ A+ A2 + . . .

� Key insight: there is closed form for A˚ as matrix of regular expressions

Intuition: in
[
e11 e12
e21 e22

]
= A˚, eij represents language of 2-state

automaton where i – initial, j – final

9 33



Automata and Matrices

Automata are triples

A P t0, 1un, B P Enˆn, C P t0, 1un

E – certain class of regular expressions

Accepted language:

JAJB˚CK
Kleene theorem:
this is equivalence
between automata
and expressions
up to language
equality

start
a,b

a
b

õ[
1
0

]J [
0 a+ b
a b

]˚ [
1
0

]
õ[

1
0

]J [
((a+ b)b˚a)˚ ((a+ b)b˚a)˚

(b˚a(a+ b))˚a b˚(a(a+ b))˚

] [
1
0

]
õ

((a+ b)b˚a)˚
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Kleene Algebra

Kozen defined Kleene algebra:

1. Idempotent semiring
2. e˚u – least pre-fixpoint of u+ e(´):

u+ ee˚u = e˚u u+ ew ď w
e˚u ď w

using: x ď y iff x + y = y
3. ue˚ – least pre-fixpoint of u+ (´)e

Completeness: given Je1K = Je2K,
1. e1 ⇝ AJ

1 B˚
1 C1, e2 ⇝ AJ

2 B˚
2 C2

2. eliminate ϵ-transitions
3. determinize
4. minimize
5. show that all ensuing transitions AJB˚C = ÂJB̂˚Ĉ are provable

Corollary: Language interpretation = free Kleene algebra

standalone/kozen-photo.jpg
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Key Design Features

Not tailored to language model – complete also over relational model
Algebraic, i.e. closed under substitution, in contrast to Salomaa’s rule

w = u+ ew e guarded
w = e˚u

All fixpoints are least (pre-)fixpoints
▶ in Salomaa’s system: particular fixpoints are unique fixpoints

Induction rules
u+ ew ď w
e˚u ď w

u+ we ď w
ue˚ ď w

encompass infinitely many identities, critical for completeness
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Tests for Control

Another reading: Algebra elements = programs
▶ 0 – divergence and/or deadlock, 1 – neutral program, etc.

Kleene algebra with tests (KAT) adds control via tests:
▶ Kleene sub-algebra B
▶ B is Boolean algebra under (0, 1, ; ,+)

This enables encodings:
▶ Branching (if b thenp elseq) as b;p+ b;q
▶ Looping (while b do p) as (b;p)˚;b
▶ Hoare triples taup tbu as a;p;b = a;p

Example:

while b do p = if b thenp else (while b do p)
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Kleene Algebra Today

Regular expressions
Algebraic language of finite state machines and beyond
Relational semantics of programs
Relational reasoning and verification, e.g. via dynamic logic
Plenty of extensions:
▶ modal ñ modal Kleene algebra (Struth et al.)
▶ stateful ñ KAT + B! (Grathwohl, Kozen, Mamouras)
▶ concurrent ñ concurrent Kleene algebra (Hoare et al.)
▶ nominal ñ nominal Kleene algebra (Kozen et al.)
▶ differential equations ñ differential dynamic logic (Platzer et al.)
▶ network primitives ñ NetKAT (Foster et al.)
▶ etc., etc., etc.

decidability and completeness (most famously w.r.t. language
interpretation and relational interpretation)
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Pushing Limits



Scenario I: Exceptions

Assumming programs raise exceptions: raise ei = “raise exception ei”,

raise e1 = raise e1;o = o = raise e2;o = raise e2

So, we cannot have more than one exception
▶ ... unless we discard the law

p;0 = 0
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Scenario II: Branching Time

Processes

a a

b c

a

b c

are famously non-bisimular, failing Kleene algebra law

p; (q+ r) = p;q+ p; r
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Scenario III: Divergence

Identity

(p+ 1)˚ = p˚

is provable in Kleene algebra, because p˚ is a least fixpoint
Alternatively:

1˚ = 1
Hence deadlock = divergence

� How to undo this

17 33



What is generic core of Kleene iteration?

Core reasoning principles
Robustness under adding features (e.g. exceptions)
Generic completeness argument
Compatibility with classical program semantics

ñ Soundness of while-loop encoding

18 33
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Categorifying Iteration



From Algebras to Categories

Categories « many-sorted monoids:

1A : A Ñ A (unit)
p : A Ñ B q : B Ñ C

p;q : A Ñ C (multiplication)

▶ Objects A,B, . . . – sorts, Morphisms p : A Ñ B – programs
▶ Fact: monoid = single-object category

Kleene-Kozen categories – additionaly

0A,B : A Ñ B
p : A Ñ B q : A Ñ B

p+ q : A Ñ B
p : A Ñ A
p˚ : A Ñ A

subject to Kleene algebra laws
▶ Fact: Kleene algebra = single-object Kleene-Kozen category
▶ Example: Category of relations = relational interpretation

Tests = particular morphisms b : A Ñ A
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Coproducts and Elgot Iteration

standalone/esik-photo.jpg

Coproducts A‘ B can be thought of
as disjoint unions AZ B
Elgot iteration:

p : A Ñ B‘ A
p: : A Ñ B

▶ Intuitively: keep running p until
reached a result in B

(´): is subject to rich and elaborated
equational theory of iteration˚

⌣ Very general
⌣ Stable under adding features
⌣ Does not hinge on non-determinism
⌢ Hinges on coproducts
⌢ Quasi-equational axiomatizations little explored

˚S. Bloom, Z. Ésik, Iteration Theories, 1993
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Coproducts A‘ B can be thought of
as disjoint unions AZ B
Elgot iteration:

p : A Ñ B‘ A
p: : A Ñ B

▶ Intuitively: keep running p until
reached a result in B
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equational theory of iteration˚

⌣ Very general
⌣ Stable under adding features
⌣ Does not hinge on non-determinism
⌢ Hinges on coproducts
⌢ Quasi-equational axiomatizations little explored

There is only one theory of iteration

˚S. Bloom, Z. Ésik, Iteration Theories, 1993
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Program Features

Given Elgot iteration operator, fix carrier of exceptions E
Exception-raising morphisms A Ñ B‘ E themeselves form a category
Elgot iteration and its laws carry over
▶ This fails for Kleene-Kozen categories

Elgot iteration’s laws are thus stable under exception monad
transformer
Similarly: state, reading, writing, adjoining process algebra actions
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Uniform Conway Iteration

Bloom and Esik’s iteration = Conway identities
loooooooooomoooooooooon

finitely many

+ commutative identities
loooooooooooooomoooooooooooooon

infinitely many

Commutative identities
loooooooooooooomoooooooooooooon

hard

Ď Uniformity rule
loooooooomoooooooon

simple, standard

� Can we formulate uniform Conway iteration via familiar while-loops
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Control in Category

Call morphisms of the form d : A Ñ A‘ A decisions
▶ In particular: ff – left injection, tt – right injection

We then can express if-then-else:

d : A Ñ A‘ A p : A Ñ B q : A Ñ B
if d thenp else q : A Ñ B

▶ In particular: ~d = if d then ff else tt, (d || e) = if d then tt else e
Various expected laws are entailed, but some are not, e.g.

d || tt ‰ tt
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Uniform Conway While-Operator

Theorem˚: if the class of decisions is large enough, uniform Conway
iteration is equivalent to while-loops

Axioms:

while d do p = if d thenp; (while d do p) else 1

while (d || e) do p = (while d do p);while e do (p;while d do p)

while (d && (e || tt)) do p = while d do (if e thenp else p)

Uniformity Rule:

u; if d thenp; tt else ff = if e thenq;u; tt else v; ff
u;while d do p = (while e do q); v

where u, v come from a selected class of programs
˚S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023
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Tests and Decisions

In presence of non-determinism, decisisons d : A Ñ A‘ A
decompose:

d = b; tt+b̄; ff (b, b̄ : A Ñ A)
Test-based ‘if’ and ‘while’:

Axioms:

whilebdop = if b thenp; (whilebdop) else 1

while (b_ c)dop = (whilebdop);while cdo (p;whilebdop)

Uniformity:

u;b;p = c;q;u u; b̄ = c̄; v
u;whilebdop = (while cdoq); v

25 33



Reaxiomatizing Kleene Algebra

Alternative axiomatization: idempotent semiring, and

p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

1˚ = 1 u;p = q;u
u;p˚ = q˚;u

This is true for Kleene-Kozen categories ñ Kleene algebra
Removing 1˚ = 1 yields may-diverge Kleene algebras, (´)˚ is no
longer least fixpoint
Uniformity is postulated for all u
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Restricting Uniformity

u;p = q;u
u;p˚ = q˚;u

� Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q
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Restricting Uniformity

raise e = raise e; 1 = 1; raise e = raise e
raise e = raise e; 1˚ = 1˚; raise e

� Need not hold in may-diverge Kleene algebras
ñ Restrict to linear u:

u;0 = 0 u; (p+ q) = u;p+ u;q
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KiCT

Kleene-iteration category with tests (KiCT)
Category with coproducts and nondeterminism
Selected class of tests
Selected class of linear tame morphisms
Kleene iteration
Laws:

0;p = 0 (p+ q); r = p; r + q; r
p˚ = 1+ p;p˚ (p+ q)˚ = p˚; (q;p˚)˚

u;p˚ = q˚;u
u;p = q;u

with tame u
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Properties

KiCT + (1˚ = 1) with all morphisms tame = Kleene-Kozen with tests
and coproducts
KiCT with expressive tests = tame-uniform Conway iteration +
non-determinism
Free KiCT = non-deterministic rational trees w.r.t. may-diverge
nondeterminism
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What is generic core of Kleene iteration?
KiCT:

○ Core reasoning principles
○ Robustness under adding features
○ Generic completeness argument
○ Compatibility with classical program semantics

But what is KiCT without coproducts?
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Hypothetical Route

KiCT
without ‘

Matrix construction
/Kleene theorem KiCT Free

Model

If everything is tame (Kleene algebra), this is essentially what
happens
What if nothing is tame (Process algebra)?
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Milner’s Conundrum

Milner˚ realized that “regular
behaviours” are properly more
general than “˚-behaviours“
Simplest example

#

X = 1+ a; Y
Y = 1+ b; X

We can pass to X = 1+ a; (1+ b; X),
but not to X = (ab)˚(1+ a)
This descrepancy « failure of
matrix construction/Kleene theorem
Milner’s solution is equivalent to using coproducts in the language
He also proposed a modification of Salomaa’s system for
˚-behaviours – proven complete only recently (Grabmayer)

standalone/milner-photo.jpg

˚R. Milner, A complete inference system for a class of regular behaviours, 1984
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Conclusions

KiCTs reframe Kleene algebra principles in categorical setting and
succeed with various yardsticks
KiCTs without coproducts would be a hypothetical most basic
notions of Kleene iteration
Open Problem: Can it ever be found?
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