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Abstract

The thesis is devoted to the problem of reasoning about computations with side-effects,
i.e. computations featuring memory states, non-determinism, non-termination, etc.
The notion of a side-effect is known to be well formally captured by the concept of
the computational monad. This gives rise to the ‘computations as monads’ paradigm,
which is adopted here. Several classes of computational monads, such as (strong) addi-
tive monads and (strong) Kleene monads, were introduced and studied, with a special
focus on the problem of logical tractability. The developed formal device for proving
equational properties of monad classes combines rewriting techniques with inductive
reasoning. This approach turned out to be successful and resulted in a number of de-
cidability and undecidability theorems.

iv



Contents

Abstract iv

0 Introduction 1

1 Monads for computations 5
1.1 General qualifications and conventions . . . . . . . . . . . . . . . . . . . 5
1.2 Equational many-sorted logic . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Monads and the metalanguage of effects . . . . . . . . . . . . . . . . . . . 13
1.4 Underlying theory for data . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5 Computational monads collectively . . . . . . . . . . . . . . . . . . . . . 36
1.6 Contribution and related work . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Additive monads 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Soundness, completeness and decidability . . . . . . . . . . . . . . . . . . 42
2.3 Contribution and related work . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Kleene monads 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Soundness and completeness . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Confluence of Kleene star unfolding . . . . . . . . . . . . . . . . . . . . . 81
3.4 Free strong (continuous) Kleene monads . . . . . . . . . . . . . . . . . . . 85
3.5 Undecidability and incompleteness . . . . . . . . . . . . . . . . . . . . . . 102
3.6 Contribution and related work . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Decidable fragments of MCE 107
4.1 Computational networks and the commutation lemma . . . . . . . . . . 107
4.2 Reduction to Kleene algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3 Completeness and decidability for flat programs . . . . . . . . . . . . . . 133
4.4 Weakly-iterative programs as a decidability candidate . . . . . . . . . . . 146
4.5 Completeness and decidability, the ultimate . . . . . . . . . . . . . . . . . 157
4.6 Contribution and related work . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Conclusions 169

6 Further work 171

v





Chapter 0

Introduction

From the very beginning of the history of systematic scientific study of the process of
computation, researchers were not so much concerned about the structural side of the
issue. This was partly because much of the theory was developed before any prac-
tical implementations, and researchers had not yet faced the problems related to the
use of programming in industry. The theory of computations was originally developed
as a pure mathematical discipline whose terms and methods were chosen in favour
of simplification of the theoretical treatment. Another reason why the structural side
of programming was originally ignored was because the depth of the problems about
computations were not immediately realised, e.g. if Hilbert’s program turned out to be
successful, one would not need to care so much about programming language imple-
mentations.

Since the problems concerning programming generally turned out to be very hard,
and efforts to reduce them to some simple common basis produced no positive results,
much effort was invested in broadening the notion of computation rather than narrow-
ing it. A perfect example of such broadening was Domain Theory, developed by Dana
Scott, which resulted in the Scott Thesis as a counterpart to the Turing Thesis. In con-
trast to the Turing Thesis, which states that computable functions are those and only
those which are recursive, that Scott Thesis states that computable functions are pre-
cisely those which are continuous in the sense of Domain Theory. Whereas reasoning
about programs in terms of computability theory always implies an encoding of the
programs under consideration into the language of recursive functions (or some equiv-
alent formalism), with no direct interpretation relevant for practical programming, Do-
main Theory only requires keeping track of continuity, a notion that already makes
perfect sense for program code written in conventional programming languages. More-
over, Domain Theory provides a large framework of abstract constructions reflecting
the process of program composition and usage. All this makes Domain Theory a very
flexible tool.
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Another important landmark in formalising the notion of computation was the intro-
duction of categorical semantics for programs, instead of set-theoretic semantics. Cat-
egorical semantics turned out to be exceptionally advantageous and successful. This
happened chiefly because, according to the categorical treatment of programs, the dif-
ference between the data and the function becomes explicit on a very basic level. In
addition, category theory provides on the core level a suitable idea of modularity: it
allows reusing the same abstract constructions over and over regardless of the precise
settings.

Only by using the language of category theory could the notion of computational ef-
fect be uniformly formalised, which had constantly slipped away when either the set-
theoretic or order-theoretic approach was used. This formalisation was originated by
Moggi in his seminal paper [Mog91]. Moggi matched the formal notion of the monad
from category theory with the informal notion of a side-effect from programming prac-
tice. This correspondence is of course by no means a provable fact but rather a matter
of beliefs, though commonly accepted. For this reason, the claim that ‘a computational
effect is a monad’ is sometimes referred to as Moggi’s Principle (e.g. [Fil94]).

Moggi’s original proposal was to use the notion of the computational monad to jus-
tify the denotational semantics of functional programming languages with side-effects
like ML. Sure enough, the actual usage of this notion went beyond these bounds rather
quickly. We recall several principal developments of this work. After Moggi’s seminal
work, computational monads were quickly popularised by Wadler and others [Wad92,
Wad94, Wad95] as a technique for structuring functional programs. This resulted in the
explicit introduction of monads in the pure functional programming language Haskell,
where they finally settled as one of the most important features [PJW93]. A remark-
able application of computational monads in denotational semantics was to model the
ambiguity of evaluation order rather than a specific computational effect [PM00]. In
particular, this made it possible to give a formal semantics of the C programming lan-
guage [Pap98]. The monadic view turned out to be helpful in programming language
design, e.g. it is used to simplify the type-systems for region-based languages like ML-
Kit and Cyclone [FM06, FMA06]. A separate line of research in computational mon-
ads involves monad-based program logics, which are intended to empower classical
program logics such as Hoare logic, dynamic logic, etc., with side-effecting computa-
tions [Pit91, Mog95, SM04].

This thesis is most closely concerned with the latter line of research. It turned out
that introducing a recursion operator into the settings of monad-based program logics
made the analysis of the metalogical properties of the resulting system highly non-
trivial. In particular, the questions of soundness, completeness and logical tractability
raised substantial difficulties. Therefore, it appeared reasonable to isolate a small part
of monad-based program logics, yet expressive enough to support the program struc-
ture of interest, and study it individually. Generally, the equational part is formulated
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in terms of equational logic, whereas the more advanced program logics that can in-
corporate it may feature modal operators, etc. The relationship between the equational
part of a program logic and the program logic itself is thus of the same kind as, e.g., the
relationship between Kleene algebra and propositional dynamic logic.

In order to implement the outlined approach we introduce a notion of a strong Kleene
monad as a generic monad supporting iterative execution of programs. We introduce
a more specific notion of an ω-continuous strong Kleene monad, which has an order-
theoretic implementation of the iteration operator. We also distinguish a notion of a
strong additive monad, which implements finitary nondeterminism but not iteration.
The latter notion is used as an auxiliary device for studying Kleene monads but is
nonetheless of interest in itself. The summary of main results achieved in the thesis
is as follows.

A strongly normalising rewriting system capturing the equational theory of strong
monads over cartesian categories (Theorem 1.24).

A strongly normalising rewriting system capturing the equational theory of strong
additive monads over cartesian categories (Theorem 2.17).

Non-recursive enumerability of the the equational theory of strong ω-continuous
Kleene monads (Theorem 3.42).

A completeness theorem for a fragment of an equational theory of strong contin-
uous Kleene monads (Theorem 4.49).
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Chapter 1

Monads for computations

1.1 General qualifications and conventions

The notation used in this thesis, especially in those parts of it which are concerned with
equational logic, is greatly influenced by [Cro94]. Treatment of internal languages of
various monad classes follows the lines drawn by Moggi, [Mog89b, Mog91] with the
adjustment of using Haskell’s do-notation [SM03] instead of the original let-notation.

This thesis uses the following procedure for symbols and font faces: lower-case Roman
letters stand for terms and programs; capital Roman letters stand for functors; bold
capital Roman letters stand for categories, in particular, the category of sets shall be
called Set; lower-case Greek letters stand for variable substitutions as well as for nat-
ural transformations; capital Greek letters are used for variable contexts; blackboard
bold characters (like T, R, etc.) are reserved for monads.

Unless otherwise stated, we count the naturals starting from 0. The notation t shall
denote the vector (t1, . . . , tn) where n occasionally will not be specified if it is implied
by the context or is irrelevant. Given some vector t̄ and an appropriate index i, we
denote by t̄ı̂ the vector obtained from t̄ by dropping the i-th component. We denote
by |t̄| the length of a vector t and by |S| the cardinality of a set S. Every statement
involving free variables is supposed to be universally quantified over these variables,
ranging over the values for which the statement makes sense. For example, ‘in any
monad f : � η is equal to f ’ should be read ‘in any monad f : � η is equal to f for any
morphism f : A Ñ TB where A and B are some objects of the underlying category’.

The terms ‘operator’ as well as ‘function’ will be commonly used as synonyms for ‘mor-
phism’, especially when the categorical interpretation coincides with the set-theoretic
one. Similarly, we do not make any formal distinction between ‘reduction’ and ‘rewrit-
ing’, e.g. we use the terms ‘reduction rule’ and ‘rewrite rule’ interchangeably.

5
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We will commonly omit subscripts referring to types, i.e. we write l, τ, ` instead of
lA,B, τA,B and `A,B. Similarly, we omit superscripts referring to monad names, i.e. we
write η, µ instead of ηT, µT if it does not cause ambiguity. We use ‘ .

=’ as an abbreviation
for ‘syntactically equal’ and ‘:=’ as an abbreviation for ‘equal by definition’. In partic-
ular, once we put s := t at some point, s .

= t is supposed to hold henceforth (unless s is
redefined).

There are few conventions concerning the usage of variable substitutions. A variable
substitution, or simply a substitution is a map σ from some set of variables, called the
domain of σ, to terms. We denote the result of applying a substitution σ to a term t by
tσ. If the domain of a substitution σ is finite, e.g. {v1, . . . , vn} we shall use the notation
[v1σ/v1, . . . , vnσ/vn] as an equivalent of σ. Note that for any variable x, xσ is defined,
no matter whether x comes from the domain of σ or not, but in the latter case, xσ = x.
Given two substitutions σ and ς whose domains are V and Z respectively, σς is the
substitution with the domain V Y Z, sending every x P V Y Z to (xσ)ς. This notably
contrasts with the composition of σ and ς as functions.

1.2 Equational many-sorted logic

Equational reasoning provides a uniform basis for studying various languages and log-
ics about computational effects and beyond. On the simplest level it encompasses the
case of so-called algebraic theories, i.e. theories where the only thing one can do with
functions is to compose them. The language of the many-sorted equational logic con-
sists of two ingredients: type system and signature. Let W denote a set of basic sorts.
For instance, W may contain integer sort, boolean sort, etc. Then the generic type is
defined by the BNF:

TypeW ::= W | 1 | TypeW � TypeW

A Signature Σ consists of a collection of functional symbols f , each of which is equipped
with a typing: A Ñ B where A, B P TypeW. We denote this situation by f : A Ñ B P Σ
or in most cases, simply f P Σ as the typing is usually implied. In contrast to the
single-sorted logic (i.e. when |W| = 1) the general case requires more care — the naive
approach may lead to inconsistency as it was shown in [GM81]. The standard idea
for overcoming this problem is by introducing so-called variable contexts. A variable
context Γ is a sequence of the form (x1 : A1, . . . , xn : An) where all the variables xi are
distinct, and for every i, Ai is the type of xi. We denote the result of concatenation of
two contexts Γ and ∆ as Γ, ∆. In particular, Γ, (x : A) will denote the extension of Γ with
a new variable x of type A. The latter shall also be commonly shortened to: Γ, x : A.
Finally, for every context Γ = (x1 : A1, . . . , xn : An) we refer by Γt and Γv to the type
part Ā = (A1, . . . , An) and to the variable part x̄ = (x1, . . . , xn) correspondingly.
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A context permutation σ is an operator over variable contexts that performs a shuffling
of variables, i.e. it sends a variable context (x1 : A1, . . . , xn : An) to a variable context
(xσ1 : Aσ1 , . . . , xσn : Aσn) where (σ1, . . . , σn) is a permutation of the naturals from 1 to n.
The action of a context permutation σ upon a context Γ shall be denoted in a postfix
manner, i.e. Γσ. A term in context is the construction of the form ΓB t : A, defined by
the rules in Fig. 1.1. The type A here shall be sometimes referred to as a return type of t.
We denote by TΣ the set of all well-defined terms in context over signature Σ. Given two
terms in context (ΓB s : A) and (Γ, x : AB t : B) the term in context (ΓB t[s/x] : B)
is well-defined, as expected (see Lemma 1.2). Let (x1 : A1, . . . , xn : An B t : A) be a
term in context. It is easily seen by induction over the term complexity that for every t,
Vars(t) � {x1, . . . , xn}.

Remark 1.1. In spite of the importance of variable contexts we shall commonly omit
them unless they really affect the reasoning. Also the word ‘term’ shall normally refer
to ‘term in context’ if no special claims are made.

We adopt the following notational convention about the pairing brackets. For any
n ¡ 1, let 〈t1, t2, . . . , tn〉 be the shorthand for 〈〈t1, . . . , tn�1〉, tn〉. Hence for every such n,
〈t1, . . . , tn〉 can be considered as a valid term of the type (. . . (A1 � A2)� . . .� An�1)�

An. Also, f (〈t1, . . . , tn〉) shall be shortened down to f (t1, . . . , tn). Note that such treat-
ment of functions of more than one argument makes impossible to derive the arity of
a function symbol from its type, e.g. f (a, b, c) may be a ternary function applied to a, b
and c or a binary function applied to a and 〈b, c〉. This observation shows that one
needs to be careful when dealing with arities of functional symbols. Given a term t of
type (. . . (A1 � A2)� . . .� An�1)� An the notation prn

i (t) with 1 ¤ i ¤ n will refer to t
if i = n = 1, to snd(t) if i = n ¡ 1 and to prn�1

i (fst(t)) in the remaining cases.

According to the previous discussion, every vector (t1, . . . , tn) can be recast to the term
〈t1, . . . , tn〉 and vice versa, which shall occasionally be used later on. The later presen-
tation can be understood as a kind of normal form of a vector, specifying how precisely
the brackets should be put. This convention allows us to extend the cartesian projec-
tion and pairing over vectors: fst(x1, . . . , xn) := (x1, . . . , xn�1), snd(x1, . . . , xn) := xn

and 〈(x1, . . . , xn), (y1, . . . , ym)〉 := (x1, . . . , xn, y1, . . . , ym). A similar policy applies to
the products of types. Namely, the sequence of types (A1, . . . , An) when needed shall
be implicitly converted to (. . . (A1 � A2)� . . .� An�1)� An and back. We agree that
the cartesian product type constructor binds left to right, i.e.

A1 � . . .� An = (. . . (A1 � A2)� . . .� An�1)� An.

Another notion of substitution besides the standard one introduced previously will be
necessary for the purposes of term rewriting. In order to introduce it we must first
define the notion of (reduction) context (not to be confused with variable contexts, in-
troduced above). Roughly, a reduction context is a term containing a hole, marking an
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(var)
x : A P Γ
ΓB x : A

(app)
f : A Ñ B P Σ ΓB t : A

ΓB f (t) : B
(unit)

ΓB � : 1

(pair)
ΓB t : A ΓB u : B
ΓB 〈t, u〉 : A� B

(fst)
ΓB t : A� B
ΓB fst(t) : A

(snd)
ΓB t : A� B

ΓB snd(t) : A

FIGURE 1.1: Term construction rules of the equational logic.

empty position that can be filled by some term or some other context. More formally, a
context C is a term over signature ΣY {lA,B | A, B P TypeW} such that at most one of
the symbols lA,B, called holes occur in C. Given a term context C with a hole lΓt,B and
a term (ΓB t : B) we denote by C{t} the term, obtained from C by replacing the hole in
C with t. In the same way we can place a context C into another context D. The result is
evidently again a context, and we denote it by D{C}. Note that by definition, a context
C may not contain a hole at all. If C is a context of this kind, i.e. essentially C is a term
we have C{t} .

= C for any t. In contrast to single-sorted settings (cf. e.g. [BN98]) where
one symbol for the holel suffices, in multi-sorted cases the typing information should,
strictly speaking, be maintained, but since it does not essentially affect the reasoning
we shall commonly omit the subscripts at l.

Variable contexts allow viewing terms as compound functional symbols: the context
part prescribes the order of the arguments, and the variables, occurring in the term part,
serve as placeholders for the arguments. Intuitively, one would expect that reordering
the variables in a variable context should not prevent a term from being well-formed,
nor should the extension of a variable context by a dummy variable. This is justified by
the following lemma, proved in [Cro94].

Lemma 1.2. The following term-construction rules are admissible with respect to the system
in Fig. 1.1.

ΓB t : A
ΓσB t : A

ΓB t : A
Γ, ∆B t : A

ΓB t : A Γ, x : AB s : B
ΓB s[t/x] : B

where σ is an arbitrary context permutation.

A proof system for the many-sorted equation logic EQ operates with units, called equa-
tions in context having form ΓB t = s : A, where ΓB t : A and ΓB s : A are some terms in
context. Given a set of axioms Φ, each of which is an equation in context, ΓB t = s : A
is provable iff it can be derived from Φ by the rules in Fig. 1.2 (cf. [AKKB99]). This shall
be denoted by Φ $EQ t = s, or simply $EQ p = q if Φ = /0.

The rules (refl), (sym) and (trans) are the standard rules, reflecting the properties of
the equivalence operator: reflexivity, transitivity and symmetry. The generic congru-
ence rule (cong) together with the instantiation rule (inst) completely characterise the
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(refl)
ΓB s : A P TΣ

ΓB s = s : A
(sym)

ΓB s = t : A
ΓB t = s : A

(trans)
ΓB s = t : A ΓB t = r : A

ΓB s = r : A

(cong)
f : A Ñ B P Σ ΓB s = t : A

ΓB f (s) = f (r) : B
(pair cong)

ΓB s = p : A ΓB t = q : B
ΓB 〈s, t〉 = 〈p, q〉 : A� B

(unit)
ΓB s : 1 P TΣ ΓB t : 1 P TΣ

ΓB s = t : 1
(pair)

ΓB t : A� B P TΣ

ΓB 〈fst(t), snd(t)〉 = t : A� B

(fst)
ΓB s : A P TΣ ΓB t : B P TΣ

ΓB fst〈s, t〉 = s : A
(fst cong)

ΓB s = t : A� B
ΓB fst(s) = fst(t) : A

(snd)
ΓB s : A P TΣ ΓB t : B P TΣ

ΓB snd〈s, t〉 = t : B
(snd cong)

ΓB s = t : A� B
ΓB snd(s) = snd(t) : B

(inst)
ΓB p : A P TΣ Γ, x : AB t = s : B

ΓB t[p/x] = s[p/x] : B

FIGURE 1.2: EQ: Proof calculus of the many-sorted equational logic.

equality predicate. The remaining rules are to specify the behaviour of cartesian prim-
itives.

Context manipulations now appear as admissible rules.

Theorem 1.3 (cf. e.g. [Cro94]). The derivation rules

(weak)
ΓB t = s : A

∆, ΓB t = s : A
(perm)

ΓB t = s : A
ΓσB t = s : A

are admissible with respect to EQ. Here σ is an arbitrary context permutation.

Proof. The proof of (weak) immediately follows from the observation that in every
rule of EQ the variable contexts both in the premises and in the conclusion can be
soundly extended to the left by ∆. For those rules which contain as premises state-
ments about the existence of terms in context, we call Lemma 1.2 in order to ensure
that once (ΓB p : A) is a well-formed term, then (∆, ΓB p : A) is also a well-formed
term.

The proof of (perm) is essentially similar, but observe that due to (inst) the derivation
for (ΓB t = s : A) might contain variable contexts, extending Γ to the right. We extend
σ over such term contexts by putting (Γ, ∆)σ := (Γσ, ∆). It is clear that for every rule
from Fig. 1.2, if we apply σ both to the premises and to the conclusion we again obtain
an instance of a rule from Fig. 1.2. Again, for those premises which only state whether
terms are well-formed, this is justified by Lemma 1.2.

Lemma 1.4. Given some fixed set of axioms Φ, the instantiation rule (inst) can be replaced by
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(instΦ)
ΓB ti : Ai P TΣ (x1 : A1, . . . xn : An)B t = s : A P Φ

ΓB t[t1/x1, . . . , tn/xn] = s[t1/x1, . . . , tn/xn] : A

equivalently in the following sense: if EQ Φ is the proof system, obtained from EQ by such a
replacement then Φ $EQ p = q iff $EQΦ p = q. In particular, if the set of axioms Φ is empty,
then rule (inst) can be eliminated from any proof Φ $EQ p = q.

Proof. Suppose we have a proof of $EQΦ p = q. Then it can be converted into a proof of
Φ $EQ p = q by replacing every fragment of the form

ΓB ti : Ai P TΣ (x1 : A1, . . . xn : An)B t = s : A P Φ
ΓB t[t1/x1, . . . , tn/xn] = s[t1/x1, . . . , tn/xn] : A

by the following series of (inst) as follows:

ΓB tn : An P TΣ

ΓB tn�1 : An�1 P TΣ

ΓB t1 : A1 P TΣ (x1 : A1, . . . xn : An)B t = s : A

. . .

Γ, xn : An B t[t1/x1, . . . , tn�1/xn�1] = s[t1/x1, . . . , tn�1/xn�1] : A
ΓB t[t1/x1, . . . , tn/xn] = s[t1/x1, . . . , tn/xn] : A

Let us prove the equivalence in the converse direction: provided we have a proof of
Φ $EQ p = q, we show how it can be converted into a proof of $EQΦ p = q. Essentially,
we need to show that (inst) is admissible in EQΦ. For convenience, we generalise this
rule a little, so that it captures simultaneous instantiations of many variables:

f (inst)
ΓB ri : Ai P TΣ Γ, x1 : A1 . . . , xn : An B t = s : B
ΓB t[r1/x1, . . . , rn/xn] = s[r1/x1, . . . , rn/xn] : B

We proceed by induction over the complexity of the proof of the premise Γ, x̄ : ĀB t =
s : B of (inst). As the induction base we have (Γ, x̄ : ĀB t = s : B P Φ) in which case the
rule is acceptable, since it becomes an instance of (instΦ). Let us prove the induction
step. The equation Γ, x̄ : ĀB t = s : B should match the conclusion of some other rule
of EQ. Consider only the most typical cases and drop the remaining rules, as they can
be proved analogously.

The premise is obtained by (fst). This restricts the form of t and s down to fst〈r, q〉 and r
correspondingly and we have the derivation:

ΓB ri : Ai P TΣ

Γ, x̄ : ĀB r : B P TΣ Γ, x̄ : ĀB q : C P TΣ

Γ, x̄ : ĀB fst〈r, q〉 = r : B
(fst)

ΓB fst〈r[r̄/x̄], q[r̄/x̄]〉 = r[r̄/x̄] : B (inst)
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which is equivalent to

ΓB r[r̄/x̄] : B P TΣ ΓB q[r̄/x̄] : C P TΣ

ΓB fst〈r[r̄/x̄], q[r̄/x̄]〉 = r[r̄/x̄] : B
(fst)

and thus (inst) is completely eliminated.

The premise is obtained by (trans). Let the premises of (trans) be Γ, x̄ : ĀB t = r : B and
Γ, x̄ : ĀB r = s : B, i.e. we have:

ΓB ri : Ai P TΣ

Γ, x̄ : ĀB t = r : B Γ, x̄ : ĀB r = s : B
Γ, x̄ : ĀB t = s : B

(trans)

ΓB t[r̄/x̄] = s[r̄/x̄] : B (inst)

This can be equivalently replaced by

ΓB ri : Ai P TΣ Γ, x̄ : ĀB t = r : B
ΓB t[r̄/x̄] = r[r̄/x̄] : B (inst)

ΓB ri : Ai P TΣ Γ, x̄ : ĀB r = s : B
ΓB r[r̄/x̄] = s[r̄/x̄] : B (inst)

ΓB t[r̄/x̄] = s[r̄/x̄] : B
(trans)

and the newly introduced applications of (inst) can be eliminated by induction hypoth-
esis.

The premise is obtained by (inst). Without going too much into details, observe that two
applications of (inst) in raw can always be merged down into one. Then we are done
by induction hypothesis.

The most important admissible rule of EQ is the substitution rule:

(subst)
ΓB s = t : A Γ, x : AB p = q : B

ΓB p[s/x] = q[t/x] : B

Theorem 1.5. The rule (subst) is admissible in EQ.

Proof. Let us first prove by induction over the term complexity of p that the rule

(cong’)
Γ, x : AB B P TΣ ΓB s = t : A

ΓB p[s/x] = p[t/x] : B

is admissible in EQ. In the base case either p = x, and hence (cong’) holds trivially,
or p does not contain x (if p is a constant or a variable different from x) and therefore
the conclusion of (cong’) turns into a trivial identity, provable by (refl). Suppose, p is
obtained by one of the term-construction rules. For instance, if p is obtained by (app),
there should exist f P Σ and q such that p = f (q). By induction hypothesis,

{ΓB s = t : A} $EQ ΓB q[s/x] = q[t/x] : B,
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(var)
Γ = (x1 : A1, . . . , xn : An)

[[ΓB xi : Ai]] = πn
i

(app)
f : A Ñ B P Σ [[ΓB t : A]] = h

[[ΓB f (t) : B]] = [[ f ]] � h

(unit)
[[ΓB � : 1]] =![[Γ]]

(pair)
[[ΓB t : A]] = h [[ΓB s : B]] = g
[[ΓB 〈t, s〉 : A� B]] = 〈h, g〉

(fst)
[[ΓB t : A� B]] = h

[[ΓB fst(t) : A]] = π1 � h
(snd)

[[ΓB t : A� B]] = h
[[ΓB snd(t) : A]] = π2 � h

FIGURE 1.3: Interpretation of terms of the equational logic.

from which we obtain (cong’) by (cong). The case of either of the rules (unit), (pair),
(fst) and (snd) is studied analogously.

Now observe that the substitution rule can be presented as the composition

Γ, x : AB p : B P TΣ ΓB s = t : A
ΓB p[s/x] = p[t/x] : B

(cong’)
ΓB t : A P TΣ Γ, x : AB p = q : B

ΓB p[t/x] = q[t/x] : B
(inst)

ΓB p[s/x] = q[t/x] : B
(trans)

which completes the proof of the theorem.

Suppose every sort A P W is put into correspondence with some object [[A]] of a carte-
sian category C, i.e. a category possessing finite products (hence also the terminal object
as a product of zero elements). Then we can extend the interpretation of types over all
TypeW: [[1]] := 1, [[A � B]] := [[A]] � [[B]]. Furthermore, this can be extended to term
contexts by defining: [[x1 : A1, x2 : A2, . . . , xn : An]] := [[A1]]� [[A2]]� . . .� [[An]]. Pro-
vided that every f : A Ñ B P Σ is interpreted as a morphism [[ f ]] P HomC([[A]], [[B]]),
this interpretation can be extended so as to assign to every term in context (ΓB t : A) a
morphism [[t]] P HomC([[Γ]], [[A]]) according to Fig. 1.3. Here, for every A, B, C P TypeT

W,
!A P Hom(A, 1) is the terminal morphism, π1 P Hom(A� B, A), π2 P Hom(A� B, B) are
cartesian projections, 〈 f , g〉 P Hom(A, B� C) is the cartesian pairing, defined for every
f P Hom(A, B) and g P Hom(A, C). The family of morphisms πn

i , with 1 ¤ i ¤ n is
recursively defined as follows: π1

1 := id, πn+1
n+1 := π2 and πn+1

i := πn
i � π1 (i ¤ n).

Equational many-sorted logic is the internal language of cartesian categories. This is
justified by the following theorem (cf. e.g. [Cro94]).

Theorem 1.6. Equational many-sorted logic is sound and strongly complete over cartesian
categories under the interpretation, given in Fig. 1.2.

Proof. As usual, soundness is easily verified by considering all the rules one by one and
making sure that all of them indeed hold over cartesian categories. In order to prove
strong completeness one needs first to fix a set of axioms Φ and then proceed with the
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construction of a term category CΣ,Φ validating those and only those equalities which
can be derived from Φ. The objects of CΣ,Φ are types from TypeW and morphisms
HomC(A, B) are terms in context (x : AB t : B) modulo the provable equivalence in EQ

which we denote by �. We interpret every base type A P W trivially: [[A]] := A and
every function symbol f : A Ñ B P Σ by assigning: [[ f ]] := [x : AB f (x) : B]�. It easily
follows from the definition that the semantic brackets extended over terms satisfy the
equation:

[[x1 : A1, . . . , xn : An B t : B]] = [x : (A1 � . . .� An)B t[prn
1(x)/x1, . . . , prn

n(x)/xn] : B]�.

This immediately ensures the crucial property of CΣ,Φ: any two terms (ΓB p : A) and
(ΓB q : A) have the same interpretation over it iff Φ $EQ ΓB p = q : A.

We note that the main point of the construction of CΣ,Φ is the definition of the compo-
sition operator as term substitution:

[y : BB q : C]� � [x : AB p : B]� := [x : AB q[p/y] : C]�. (1.1)

The identity morphisms idA P Hom(A, A) are defined to be [A : x B x : A]�. The
detailed verification of the axioms of the cartesian category is found in [Cro94].

1.3 Monads and the metalanguage of effects

We are now positioned to introduce the notion of the monad. This notion goes back
to the core of category theory. Its generic meaning is very abstract – basically it cap-
tures some closure and compositionality properties of a wide range of various alge-
braic constructions. It turned out that constructions of this kind arise rather commonly
in mathematics, and as a result, the concept of the monad proved to be highly appro-
priate. Our interest in the notion of the monad is of course from the perspective of
their computational interpretation. Monads whose intended meaning is to model com-
putational effects are commonly referred to as computational monads. The motivation
behind this term is of course purely methodological, justified by the fact that not all the
results about monads admit a reasonable computational interpretation. In this section
we recall the ones which do and which are relevant for further presentation.

Definition 1.7 (Monad, cf. e.g. [ML71]). A monad T over a category C is an endofunctor
T : C Ñ C augmented with two natural transformations η : I Ñ T and µ : T2 Ñ T,
called unit and multiplication, which make the following diagrams commute



Chapter 1: Monads for computations 14

T3
Tµ //

µT

��

T2

µ

��

T2
µ // T

IT
ηT // T2

µ

��

TI
Tηoo

T T T

Here I denotes the identity functor.

Definition 1.8 (Kleisli category, cf. e.g. [Man76]). A Kleisli triple T over category C is
given by the following data.

An endomap T over Ob (C).

A morphism ηA : A Ñ TA for every A P Ob (C), called unit.

Unary operation :, called Kleisli star, taking every morphism f : A Ñ TB to
f : : TA Ñ TB.

Moreover, the equations

η:A = idTA, f : � ηA = f , g: � f : = (g: � f ): (1.2)

are satisfied. We refer to the defined Kleisli triple as (T, η, :).

Definitions 1.7 and 1.8 partly share terms and notation, but this clash is resolved by the
fact of their equivalence: every monad T in the sense of Definition 1.7 gives rise to a
Kleisli triple by defining a Kleisli star according to the assignment:

f : := µ � T f . (1.3)

Conversely, given a Kleisli triple T = (T, η, :) define

T f := (η � f ):, µ := id: . (1.4)

The detailed proof of the equivalence of Definition 1.7 and 1.8 can be found in [Man76].
Definition 1.8 is rather more appealing from the computational point of view (and it
shall be given preference henceforth) because it provides better intuition, based on pro-
gramming experience. Roughly, TA denotes the type of computations with results in
A. The elements of TA can be understood as computations, i.e. programs which may
(or may not, e.g. if the computation does not terminate) be evaluated to elements of
type A. Then ηA is an injection (not necessarily in categorical sense) of a value a into
a trivial computation, i.e. the one which always evaluates to a. Finally, the Kleisli star
coherently lifts any function whose return type is computational to a function whose
argument is also of a computational type. Essentially, this means the mapping infor-
mation about every single value of A is sufficient to tell how the computations of type
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TA should be handled. This gives an idea how any two functions f : A Ñ TB and
g : B Ñ TC can be composed together. Specifically, let us put by definition

g � f := g: � f . (1.5)

This is known as Kleisli composition, and in fact, morphisms whose targets are images of
T form a category CT with Kleisli composition as the composition of morphisms and η

as the identity morphism. So the defined category CT is known as the Kleisli category of
T.

Abstract speculations about the computational view of monads are justified by the fol-
lowing standard examples of computationally relevant monads.

Example 1.1. [Mog91] Provided that the underlying category C has enough structure,
any the following is an example of a monad T = (T, η, :) over C.

1. Identity (or trivial) monad: TA = A, ηA = idA, f : = f .

2. Exception monad: TA = A + E,
ηA = inl, f : = [ f , inr] with E presenting a pool of exceptions.

3. Powerset monad: TA = PA,
ηA = λa.{a}, f : = λc.{ f (x) | x P c} where P is a covariant powerset functor.

4. State monad: TA = S Ñ (A� S), ηA = λa.λs.〈a, s〉,
f : = λc. λs.

(
λ〈x, y〉. f (x)(y)

)
with S presenting the states.

5. Interactive input: TA = µX.(A + (I Ñ X)), ηA = inl,
f : = µg. [ f , λh. λu. g(h(u))

]
with I being an object presenting the input stream.

6. Interactive output: TA = µX.(A + (O� X)), ηA = inl,
f : = µg.

[
f , λ〈u, x〉. 〈u, g(x)〉

]
with O being an object presenting the output stream.

7. Continuation monad: TA = (A Ñ R)Ñ R, ηA = λa. λr. r(a),
f : = λc.λr.c(λa. f (a)(r)), with R being the type of global outcomes.

The monads (1) – (7) are basic ones. They can be used as building blocks in order to
obtain more complex monads, modelling more advanced computational effects. Here
are several interesting ones.

8. Nondeterministic state monad: TA = S Ñ P(A� S),

9. Input-output monad: TA = µX.(A + (I Ñ O� X)),

10. Java monad [JP03]: TA = S Ñ (A� S + E� S + 1).
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Now the notion of the Kleisli category can be exemplified as follows. Let T be the
exception monad over Set with E = 1. Then the Kleisli category CT precisely captures
the category of strict partial maps relative to the underlying category whose morphisms
are total functions [Mog91]. Another well-recognised example of this sort is obtained
from the powerset monad: provided the underlying category is the category of sets
and functions, the Kleisli category is the category of sets and relations. In general,
we interpret the Kleisli category of a monad as a category of effectful programs with
respect to the underlying category whose morphisms should be considered as effectless
programs.

One of the first categorical results about monads was that any adjunction gives rise to
a monad. An important property of the Kleisli category CT is that it is related to C by
an adjunction, and conversely this adjunction gives rise to the monad that is precisely
T.

Definition 1.9 (cf. e.g. [Mog89a]). Kleisli construction takes a monad T = (T, η, :) over
some category C as input and produces its Kleisli category CT together with the ad-
junction (KT, GT, η, ε) whose components are defined as follows.

KT : C Ñ CT, the left adjoint functor sends every A P Ob (C) to A P Ob (CT) and
every f P HomC(A, B) to ηB � f P HomCT

(A, B).

GT : CT Ñ C, the right adjoint functor sends every A P Ob (CT) to TA P Ob (C)

and every f P HomCT
(A, B) = HomC(A, TB) to f : P HomC(TA, TB).

IC Ñ GTKT, the unit of the adjudication is the unit of monad T = GTKT.

ε : GTKT Ñ ICT
, the counit of the adjunction is the natural transformation εA =

idTA P HomT(TA, A).

Theorem 1.10 (cf. e.g. [BW85]). Let (KT, GT, η, ε) be the adjunction between C and CT,
provided by the Kleisli construction. Then (GTKT, η, GTεKT) is a monad, and, moreover, it
coincides with the original monad T = (T, η, µ).

Another classical construction generating monads from adjunctions is well-known among
category theorists: the Eilenberg-Moore construction (cf. e.g. [ML71]). From the computa-
tional point of view, it is far less significant than Kleisli construction since the latter has
a very sensible and clear computational interpretation: the functor KT injects effectless
functions into the realm of effectful ones.

A typical underlying category for a monad is Set. But most of the monads provided
by Example 1.1 make sense under more general settings. For example, one can define
an exception monad over any category, possessing finite co-products, or a state monad
over any cartesian closed category, etc. Nevertheless, there is a construction transform-
ing a monad over any category to a monad over a category almost as reach as Set
(Theorem 1.37).
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Definition 1.11. Let C be a cartesian category. A monad T = (T, η, µ) over C is strong
if it is equipped with a natural transformation

τA,B : A� TB Ñ T(A� B)

called (tensorial) strength making the following diagrams commute.

1� TA
τ1,A //

π2

��

T(1� A)

Tπ2

��
TA TA

(A� B)� TC
τA�B,C //

αA,B,TC

��

T((A� B)� C)

TαA,B,C
��

A� (B� TC)
idA �τB,C// A� T(B� C)

τA,B�C// T(A� (B� C))

A� B
idA�B //

idA �ηB

��

A� B

ηA�B
��

A� TB
τA,B // T(A� B)

A� T2B
τA�TB //

idA �µB

��

T(A� TB)
TτA,B // T2(A� B)

µA�B

��
A� TB

τA,B // T(A� B)

Here α refers to product associativity natural isomorphism. We shall use the notation
(T, η, µ, τ) for the strong monad T = (T, η, µ) with the strength τ and (T, η, :, τ) for
the corresponding Kleisli triple.

Remark 1.12. In case if the underlying category C is cartesian closed, the strength is
known to be equivalent to enrichment of the monad functor over C [Koc72] (C is en-
riched over itself because of cartesian closeness). In particular, this means that every
monad over Set is strong (because every endofunctor over Set is enriched over Set).

The language of commutative diagrams might become cumbersome when it comes to
really involved calculations. This is why for reasoning about strong monads it shall be
overwhelmingly simulated by its flat counterpart (i.e. by unfolding every diagram into
a series of equations between morphism chains, connected by the composition opera-
tor). A rather more advantageous language, called the metalanguage of effects, will be
introduced later. Still, many calculations call for identities of the more primitive level
(including those which are needed to prove correctness of the metalanguage of effects).
We summarise for reference some useful properties of this kind in the following lemma.

For the remainder of this thesis we agree that the composition operator � binds more
strongly than Kleisli composition �. For the sake of brevity and readability we com-
monly omit � in the evident places, such as η � π1 and τA,B � 〈id, η〉.

Lemma 1.13. In every strong monad T = (T, η, :, τ) the following identities hold:

Tπ2 � τA,B = π2, (1.6)

τA,B(id�η) = η, (1.7)

τA,C〈h, f � τA,B〈h, g〉〉 = τA,C〈π1, f 〉 � τA,B〈h, g〉, (1.8)

τA,C(id� f � g) = τA,C(id� f ) � τA,B(id�g). (1.9)
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Proof. Let us prove the identities in question one by one.

Equation (1.6). By the naturality of the strength Tπ2 � τA,B = Tπ2 � T(! � id) � τA,B is
equal to Tπ2 � τ1,B � (!� id). By the left upper diagram from the definition of strength
this is equal to π2 � (!� id) i.e. to π2.

Equation (1.7) is precisely the string form of the left bottom diagram from the definition
of strength.

Equation (1.8). First let us prove the partial case: f := η and C := A� B. The identity
in question thus simplifies down to:

τA,C〈h, τA,B〈h, g〉〉 = τA,C〈π1, η〉 � τA,B〈h, g〉. (1.10)

Observe that the right top diagram from the definition of the strength amounts to the
identity:

τA,C〈π1π1, τA,B〈π2π1, π2〉〉 = T(π1π1, 〈π2π1, π2〉) � τA�A,B.

By composing both sides of it with 〈〈h, h〉, g〉 on the right we obtain:

τA,C〈h,τA,B〈h, g〉〉

= T〈π1π1, 〈π2π1, π2〉〉 � τA�A,B〈〈h, h〉, g〉

= T〈π1π1, 〈π2π1, π2〉〉 � τA�A,B(〈id, T id〉� id) � 〈h, g〉

= T〈π1π1, 〈π2π1, π2〉〉 � T(〈id, id〉� id) � τA,B〈h, g〉 [by nat. of τ]

= T〈π1, id〉 � τA,B〈h, g〉

= µ � Tη � T〈π1, id〉 � τA,B〈h, g〉 [by Def. 1.7]

= µ � TτA,C � T(id�η) � T〈π1, id〉 � τA,B〈h, g〉 [by 1.7]

= µ � TτA,C � T〈π1, η〉 � τA,B〈h, g〉

= τA,C〈π1, η〉 � τA,B〈h, g〉 [by 1.3, 1.5]

which proves (1.10). Now the general case is proved as follows:

τA,C〈h, f � τA,B〈h, g〉〉

= τA,C(id�µ) � 〈h, T f � τA,B〈h, g〉〉 [by 1.5]

= µ � TτA,C � τA,TC(id�T f ) � 〈h, τA,B〈h, g〉〉 [by Def. 1.11]

= µ � TτA,C � T(id� f ) � τA,A�B〈h, τA,B〈h, g〉〉 [by nat. of τ]

= µ � TτA,C � T(id� f ) � (τA,A�B〈π1, η〉 � τA,B〈h, g〉) [by 1.10]

= µ � TτA,C � T(id� f ) �

(τA,A�B(id�η) � 〈π1, id〉 � τA,B〈h, g〉)

= µ � TτA,C � T(id� f ) � (η � 〈π1, id〉 � τA,B〈h, g〉) [by 1.7]

= µ � TτA,C � T(id� f ) � µ � Tη � T〈π1, id〉 � τA,B〈h, g〉 [by 1.5, 1.3]

= µ � TτA,C � T(id� f ) � T〈π1, id〉 � τA,B〈h, g〉 [by Def. 1.7]



Chapter 1: Monads for computations 19

= µ � TτA,C � T〈π1, f 〉 � τA,B〈h, g〉

= τA,C〈π1, f 〉 � τA,B〈h, g〉. [by 1.5, 1.3]

Equation (1.9). By (1.5) and (1.3): τA,C(id� f � g) = τA,C � (id�µ) � (id�T f ) � (id�g).
By the right bottom diagram from the definition of strength this is equal to µ � TτA,C �

τA,TC � (id�T f ) � (id�g). By naturality of strength, the latter is equal to µ � TτA,C �

T(id� f ) �τA,B(id�g) = µ �T(τA,C(id� f ))�τA,B(id�g) and we are done by (1.5), (1.3).

In terms of effectful programming, the existence of strength opens an opportunity to
interleave effectful computations with trivial computations (the ones doing nothing,
but pushing forward the arguments), or in other words to capture programming with
more than one variable. In fact, the language of strong monads, which we further
call the metalanguage of effects (ME), is the simplest language of effectful computation.
It provides a uniform basis for all the other more advanced languages. ME extends
multisorted logic, defined in Section 1.2 by introducing a unary type constructor T, e.g.
by extending the type system to

TypeT
W ::= W | 1 | TypeT

W � TypeT
W | T(TypeT

W)

and completing the language by two new ingredients: return and binding as follows.

ΓB t : A
ΓB ret t : TA

ΓB p : TA Γ, x : AB q : TB
ΓB do x Ð p; q : TB

The semantics of the type constructor T is provided by the definition [[TA]] = T[[A]].
The semantics of terms is extended by two more rules:

[[ΓB t : A]] = g
[[ΓB ret t : TA]] = η[[A]] � g

[[ΓB p : TA]] = g [[Γ, x : AB q : TB]] = h
[[ΓB do x Ð p; q : TB]] = h � τ[[Γ]],[[A]] � 〈id[[Γ]], g〉

If (ΓB t : A) is a well-defined term, we denote by Vars(t) the set of free variables oc-
curring in t. Like in the case of equational logic, it is easy to see that Vars(t) � Vars(Γv).
Based on this observation one can easily show that given two appropriate terms p, q
and a variable x such that p[q/x] is well-defined in sense of equational logic, no free
variable occurrence in q becomes bound in p[q/x]. As a result, the correct notion of
substitution for the terms of ME is the same as for the terms of equational logic: when
calculating p[q/x] we do not need to bother about renaming bound variables, we only
need to literally replace all the occurrences of x in p by q. The underlying reason for this
is because reasoning with term contexts effectively rules out unwanted instances. The
reverse of the coin here is that once we strictly adhere to the term-construction rules
we cannot create some certainly meaningful terms, e.g. (do x Ð f (x); g(x)). Still, we
will occasionally use terms like this if they can be reduced to some well-defined ones
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(unit1) do x Ð p; ret x = p (unit2) do x Ð ret p; q = q[p/x]

(assoc) do x Ð (do y Ð p; q); r = do y Ð p; x Ð q; r (y R FV(r))

FIGURE 1.4: Monad laws.

by renaming bound variables by α-conversion. E.g. the latter example corresponds to
a well-defined term (do y Ð f (x); g(y)). The choice of variable y here is irrelevant
(Lemma 1.14).

We shall commonly write (do x Ð p; y Ð q; r) instead of (do x Ð p; (do y Ð q; r)).
Also we use the notation (do x̄ Ð p̄; q) as a shortening of (do x1 Ð p1; . . . ; xn Ð pn; q)
and refer to the fragments x̄ Ð p̄ as program sequences. If a variable x does not appear
in a term q then we often shorten (do x Ð p; q) down to (do p; q). Given a program p
whose return types is T(A1 � . . .� An) we use (do z̄ Ð p; q) as a shortening for

do z Ð p; q[prn
1(z)/z1, . . . , prn

n(z)/zn].

where z is an appropriate fresh variable whose choice is going to be irrelevant, as fur-
ther justified by Lemma 1.14. Programs not containing the return operator we call
ret-free.

The proof calculus ME, corresponding to the metalanguage of effects, extends EQ by
three monad laws presented in Fig. 1.4 and the evident congruence rules (cong bind)
and (cong ret). The rules (unit1), (unit2) and (assoc) are called first unit law, second unit
law and associativity law, respectively. Terms of the metalanguage of effects as well as of
the further extensions of it will also be referred to as programs. We call a type A P TypeT

W

T-free if the type constructor T does not occur in A. We call it computational if it has form
TB for some B P TypeT

W.

Lemma 1.14. Given appropriately typed programs p, q and variables x, y such that x R Vars(q):

$ME do x Ð p; q = do y Ð p; q[y/x],

i.e. α-conversion is derivable in ME.

Proof. The proof is given by the calculation:

do x Ð p; q

= do x Ð (do y Ð p; ret y); q [by (unit1)]

= do y Ð p; x Ð ret y; q [by (assoc)]

= do y Ð p; q[y/x] [by (unit2)]
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In spite of the fact that α-conversion is admissible, most of our further results are easier
to formulate modulo α-conversion. Therefore we will use α-conversion as the default
equivalence relation over programs. In case we need to state syntactic equivalence of
two programs, we use the equivalence relation .

= introduced earlier.

Lemma 1.15 (Rewriting rationale). Let p, q be two programs with the same return type and
let Φ be a set of program equations. Then Φ $ME p = q iff there is a sequence of programs
w1, . . . , wn such that p .

= w1, q .
= wn and for every i   n, wi and wi+1 are presentable in the

forms wi
.
= C{uσ}, wi+1

.
= C{rσ} for some context C, a variable substitution σ and programs

u, r such that either (u = r) P Φ or (r = u) P Φ or $ME r = u.

Proof. First of all, we extend the result achieved in Lemma 1.4 to the case of ME, i.e.
we prove that Φ $ME p = q is equivalent to $MEΦ p = q where by MEΦ we denote
the calculus, obtained from ME by replacing the rule (inst) by the rule (instΦ). If $MEΦ

p = q then the proof of Φ $ME p = q is the same as in Lemma 1.4. The converse
implication amounts to proving the admissibility of (inst) (see the proof of Lemma 1.4)
in MEΦ. This can be shown by induction over the complexity of the proof of the premise
of (inst). By virtue of the proof of Lemma 1.4 it suffices to verify the following cases.

The premise is obtained by (cong ret). We have thus the following derivation in MEΦ:

ΓB ri : Ai P TΣ

Γ, x̄ : ĀB s = t : D
Γ, x̄ : ĀB ret s = ret t : TD

(cong ret)

ΓB ret s[r̄/x̄] = ret t[r̄/x̄] : TD (inst)

which is equivalent to

ΓB ri : Ai P TΣ Γ, x̄ : ĀB s = t : D
ΓB s[r̄/x̄] = t[r̄/x̄] : D

ΓB ret s = ret t : TD
(cong ret)

(inst)

and thus we can get rid of the application of (inst) by induction hypothesis.

The premise is obtained by (cong bind). We have the following derivation:

ΓB ri : Ai P TΣ

Γ, x̄ : ĀB s1 = s2 : TA Γ, x̄ : Ā, x : AB t2 = t2 : TD
Γ, x̄ : ĀB do x Ð s1; t1 = do x Ð s2; t2 : TD

(bind ret)

ΓB (do x Ð s1; t1)[r̄/x̄] = (do x Ð s2; t2)[r̄/x̄] : TD (inst)

whose premises are provable in MEΦ. By induction hypothesis and the following
derivations

ΓB ri : Ai P TΣ Γ, x̄ : ĀB s1 = s2 : TA
ΓB s1[r̄/x̄] = s2[r̄/x̄] : TA (inst)

ΓB ri : Ai P TΣ Γ, x̄ : Ā, x : AB t2 = t2 : TD
Γ, x : AB t2[r̄/x̄] = t2[r̄/x̄] : TD (inst)
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both (Γ B s1[r̄/x̄] = s2[r̄/x̄] : TA) and (Γ, x : A B t2[r̄/x̄] = t2[r̄/x̄] : TD) must be
provable in MEΦ. Hence (ΓB do x Ð s1[r̄/x̄]; t1[r̄/x̄] = do x Ð s2[r̄/x̄]; t2[r̄/x̄] : TD)

is also provable in MEΦ as justified by the derivation:

ΓB s1[r̄/x̄] = s2[r̄/x̄] : TA Γ, x : AB t2[r̄/x̄] = t2[r̄/x̄] : TD
ΓB do x Ð s1[r̄/x̄]; t1[r̄/x̄] = do x Ð s2[r̄/x̄]; t2[r̄/x̄] : TD

(bind ret)

We are done since (do x Ð sk; tk)[r̄/x̄] .
= (do x Ð sk[r̄/x̄]; tk[r̄/x̄]) for k = 1, 2.

Let us now continue the main proof. Suppose Φ $ME p = q. As we have seen, this
implies $MEΦ p = q. We prove the existence of the wi by induction over the complexity
of the latter proof. The induction invariant holds trivially for all the axioms of ME with
C := l and σ := [ ]. All the congruence rules, including (cong ret) and (cong bind)
easily follow by induction hypothesis: to obtain the goal from the induction hypothesis
we only need to redefine the context C. The rules (sym) and (trans) follow trivially.
Finally, consider the rule (instΦ). Suppose, (x̄ : Ā B t = s : A) P Φ and for every
i, (ΓB ti : Ai) P TΣ. By (instΦ) we conclude the equation (ΓB tσ = sσ : A) under
σ := [t1/x1, . . . , tn/xn] and the evident assignments for the wi.

Now let us assume that the wi exist and show that Φ $ME p = q. By transitivity it
suffices to consider the restricted case: w1

.
= p, w2

.
= q. By assumption, there exists a

context C, a substitution σ and programs u, r such that w1
.
= C{uσ}, w2

.
= C{rσ} and

either $ME u = r or (u = r) P Φ or (r = u) P Φ. In all these cases Φ $ME u = r from
which we conclude Φ $ME p = q by (inst) and the congruence rules corresponding to
the operators from which C is built.

The following theorem essentially states that the metalanguage of effects is an internal
language of strong monads.

Theorem 1.16 (Soundness and completeness [Mog91]). The metalanguage of effects is
sound and complete over strong monads.

Proof. Soundness. By virtue of Theorem 1.6 we only need to verify the monad laws and
the new congruence rules. For instance, for (unit2) one has

[[ΓBdo x Ð ret p; q : TB]]

= [[Γ, x : AB q : TB]] � τ[[Γ]],[[A]] � 〈id[[Γ]], [[ΓB ret p : TA]]〉 [by def. of [[ ]]]

= [[Γ, x : AB q : TB]] � τ[[Γ]],[[A]] � 〈id[[Γ]], η[[A]] � [[ΓB p : A]]〉 [by def. of [[ ]]]

= [[Γ, x : AB q : TB]] � η[[Γ]]�[[A]] � 〈id[[Γ]], [[ΓB p : A]]〉 [by 1.7]

= [[Γ, x : AB q : TB]] � 〈id[[Γ]], [[ΓB p : A]]〉 [by 1.2 and 1.5]

= [[Γ, x : AB q : TB]] � [[ΓB 〈Γv, p〉 : Γt � A]] [by def. of [[ ]]]

= [[ΓB q[p/x] : TB]] [by 1.1]
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Verification of the other two laws and the congruence rules is analogous.

Completeness. By completing the term category construction of Theorem 1.6: instead
of terms of equational logic modulo provable equivalence in EQ we take the terms of
ME modulo the provable equivalence in ME. The result is the monad structure TΣ,Φ,
over CΣ,Φ, defined as follows. For every object A, the action of the functorial part T of
TΣ,Φ upon the objects of CΣ,Φ is by syntactic juxtaposition: TA. Monad operators are
provided by the assignments:

ηA := [x : AB ret x : TA]�,

[x : AB p : TB]:� := [t : TAB do x Ð t; p : TB]�,

τA,B := [t : (A� TB)B do x Ð snd(t); ret〈fst(t), x〉 : T(A� B)]�.

Verification of the monad identities runs routinely as expected.

The metalanguage of effects can be used as a convenient abstraction for effectful im-
perative programs written in conventional programming languages. Consequently, the
calculus ME can be used for proving (equational) properties of such programs.

Example 1.2. A simple illustration of the metalanguage of effects at work is an en-
coding of program swap switching around values of two variables of an imperative
programming language. Let the variables be called a and b. Standardly, swap is im-
plemented with help of an auxiliary variable, say c. The program then would look as
follows.

c:=a; a:=b; b:=c

Variables a, b and c are object variables, in contrast to the metavariables which are the
variables of ME. For the sake of simplicity we assume that there are no other object
variables, nor memory cells to save anything but the values of a, b and c.

Then the program can be presented by the following term.

do x Ð geta; putc(x);

y Ð getb; puta(y);

z Ð getc; putb(z)

where gett : TA and putt : A Ñ T1 with t P {a, b, c} implement random access to the
memory with the obvious intuitive meaning. However an axiomatisation of them in the
presence of generic effects is not immediate. In particular, if we really want to capture
typical real-life program behaviour we should agree that both put and get might not
terminate. For example, the equality

do x Ð geta; puta(x) = ret �
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might not hold, because there is no evidence that a is initialised at the moment we try
to read it, which means that the left-hand side of the latter equality presents a non-
terminating program, whereas the right-hand side (a void program, doing nothing) is
supposed to always terminate. Furthermore, the equation

do x Ð geta; puta(x); geta = geta

might also not hold under some sensible interpretations, e.g. in case if ‘put’ and ‘get’ are
object methods of some object-oriented language like Java. It is quite a typical situation
that its object fields are allowed to be read but not updated. If that is the case, then
the left-hand side would throw an exception but the right-hand side would not, and
therefore the equality in question would fail.

This simple analysis clarifies the role of the underlying axiomatisation — the point of
the latter is to capture relevant abstract properties of the computational model in order
to use them for reasoning about effectful programs. We illustrate in detail how this kind
of reasoning is performed in ME. To that end we settle upon the following set of axioms.

(put gett) do putt(x); gett = do putt(x); ret x

(put putst) do puts(x); putt(y) = do putt(y); puts(x)

(put putt) do putt(x); putt(y) = putt(y)

where s and t range over {a, b, c} and s � t. This axiomatisation is rather general. In
particular, it is compatible with both the identities considered above. A simple, sensible
model of this axiomatisation is the partial state monad: TA = S Ñ (A� S) + 1 over
Set with S = (V + 1){a,b,c} where V is a set of values (for instance, integers) and the
‘get’, ‘put’ operators are defined by the equations:

gett := λ f . case f (t) of inl(x)Ñ inl〈x, f 〉; inr(x)Ñ inr(�),

putt(x) := λ f . inl〈 f {t ÞÑ x}, �〉

where f {t ÞÑ x} is the function, sending s to f (s), for s � t and t to x. Sure enough, this
interpretation is not unique, but it provides a good intuition about what goes on.

Now suppose we would like to prove that swap being called twice in a row brings the
memory to the original state. Adapted to our settings, this can be expressed as follows:

do puta(x); putb(y); swap; swap = do puta(x); putb(y); putc(y). (1.11)

Note that, strictly speaking, the memory state after the double swap is not precisely the
same as before, because the auxiliary variable c gets initialised if it was not initialised
before, and also gets updated by the value of b. This is exactly captured by (1.11). In
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order to prove (1.11) the equation

do puta(x); putb(y); swap = do puta(y); putb(x); putc(x) (1.12)

as a lemma. It would imply (1.11) as follows.

do puta(x); putb(y); swap; swap

= do puta(y); putb(x); putc(x); swap [by 1.12]

= do puta(y); putc(x); putb(x); swap [by (put putbc)]

= do putc(x); puta(y); putb(x); swap [by (put putac)]

= do putc(x); puta(x); putb(y); putc(y) [by 1.12]

= do puta(x); putc(x); putb(y); putc(y) [by (put putca)]

= do puta(x); putb(y); putc(x); putc(y) [by (put putcb)]

= do puta(x); putb(y); putc(y) [by (put putc)]

The proof of (1.12) is as follows:

do puta(x); putb(y); swap

= do puta(x); putb(y); x Ð geta; putc(x);

y Ð getb; puta(y); z Ð getc; putb(z) [by def. of swap]

= do putb(y); puta(x); x Ð geta; putc(x);

y Ð getb; puta(y); z Ð getc; putb(z) [by (put putab)]

= do putb(y); puta(x); x Ð ret x; putc(x);

y Ð getb; puta(y); z Ð getc; putb(z) [by (put geta)]

= do putb(y); puta(x); putc(x); y Ð getb;

puta(y); z Ð getc; putb(z) [by (unit2)]

= do puta(x); putb(y); putc(x); y Ð getb;

puta(y); z Ð getc; putb(z) [by (put putba)]

= do puta(x); putc(x); putb(y); y Ð getb;

puta(y); z Ð getc; putb(z) [by (put putbc)]

= do puta(x); putc(x); putb(y); y Ð ret y;

puta(y); z Ð getc; putb(z) [by (put getb)]

= do puta(x); putc(x); putb(y); puta(y);

z Ð getc; putb(z) [by (unit2)]

= do putc(x); puta(x); putb(y); puta(y);

z Ð getc; putb(z) [by (put putac)]

= do putc(x); putb(y); puta(x); puta(y);
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z Ð getc; putb(z) [by (put putab)]

= do putc(x); putb(y); puta(y); z Ð getc; putb(z) [by (put puta)]

= do putb(y); putc(y); puta(y); z Ð getc; putb(z) [by (put putcb)]

= do putb(y); puta(y); putc(x); z Ð getc; putb(z) [by (put putca)]

= do putb(y); puta(y); putc(x); z Ð ret x; putb(z) [by (put getc)]

= do putb(y); puta(y); putc(x); putb(x) [by (unit2)]

= do puta(y); putb(y); putc(x); putb(x) [by (put putba)]

= do puta(y); putb(y); putb(x); putc(x) [by (put putcb)]

= do puta(y); putb(y); putb(x); putc(x) [by (put putb)]

= do puta(y); putb(x); putc(x) [by (put putb)]

Terms of the metalanguage of effects can be normalised analogously to the terms of
simple-typed λ-calculus with injective pairing and terminal objects [Cd96]. We adopt
the following definition.

Definition 1.17 (Generalised unit types). Let U be the smallest set, containing the unit
type and closed under products. We call the elements of U generalised unit types. The
canonical element eE of a generalised unit type E is � if E = 1 and 〈eE1 , eE2〉 if E =

E1 � E2. For every program t let nf�(t) be the program, obtained from t by replacing
every subterm s with return type E P U by eE. A program t is �-normal if t = nf�(t).

Alternatively, one can consider nf�(t) as the normal form of t under the reduction rule:

�-rule: (p : E) � eE (p � eE)

Now we are ready to present rewrite rules which, together with the �-rule, make up a
complete rewriting system, capturing all the provable identities of ME. It is useful to
adhere to the standard partition into β-like rules and η-like rules.

β-rules:

fst〈p, q〉 � p snd〈p, q〉 � q

do x Ð ret p; q � q[p/x]

do x Ð (do y Ð p; q); r � do y Ð p; x Ð q; r (y R FV(r))

η-rules:

〈fst(p), eE〉 � p 〈eE, snd(p)〉 � p

do x Ð p; ret eE � p do x Ð p; ret x � p

〈fst(p), snd(p)〉 � p
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The term contexts here were dropped as usual and can be easily read from the terms,
except possibly the two topmost η-rules. Their uncut versions look as follows.

ΓB 〈fst(p), eE〉 : A� E � ΓB p : A� E

ΓB 〈eE, snd(p)〉 : E� A � ΓB p : E� A

A few comments are in order about how precisely term rewriting is implemented. In
contrast to the first-order case we do not need to instantiate the rules by applying vari-
able substitutions because the letters p, q, r, occurring in them are already supposed to
run over all terms. Template variables of this kind will occasionally be referred to as
metavariables. Therefore, by definition, t rewrites to s by a rule p� q if t .

= C{p} and
s .
= C{q} for some reduction context C containing the hole. We refer to p as redex and

to q as contractum.

The terms ‘β-reduction’, ‘β-normalisation’, ‘β-normal form’, etc., shall obviously refer
to rewriting under β-rules, and the same convention applies to η-, �- , etc. We denote the
β-reduction relation by�β and the η-reduction relation by�η . It is straightforward
to see that βη-reductions always transform �-normal programs to �-normal ones.

βη-rewriting turns out to be confluent and strongly normalising. Before proving this
formally let us summarise a few facts from the theory of abstract reduction systems.

Definition 1.18 (Commutation, quasi-commutation [BD86]). Let �a and �b be two
reduction relations and let�ab :=�aY�b. Then

�b is said to commute over�a if s�a .�b t implies s�b .�a t,

�b is said to quasi-commute over�a if s�a .�b t implies s�b .��
ab t.

Lemma 1.19. [BD86] Let�a and�b be two reduction relations, and let�b quasi-commute
over�a. Then�ab is strongly normalising iff both�a and�b are.

We summarise elementary properties of quasi-commuting relations in the following
lemma.

Lemma 1.20. Let�a,�b and�c be three reduction relations, and let�ab :=�aY�b.

1. Every reduction relation quasi-commutes over itself.

2. If�c quasi-commutes over both�a and�b then it quasi-commutes over�ab.

3. If�b quasi-commutes over�a then it quasi-commutes over��
a .

Corollary 1.21. Given two reduction relations�a and�b, if�b quasi-commutes over�a

then�b commutes over��
ab where�ab :=�aY�b.
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Lemma 1.22. Let�a and�b be two reduction relations such that�b is strongly normalising
and quasi-commutes over�a. Then�+

b commutes over��
a .

Proof. It is proven in [Str06] that under the assumptions made,�b semi-commutes over
�a, i.e. for every s, t, s��

a .�b t implies s�+
b .��

a t.

Suppose we have a reduction chain s��
a t1�b . . .�b tn with n ¡ 0. In order to prove

the claim we need to show that s�+
b .��

a t. Let us show it by induction over n. Then
in the case of n = 1 we are done by semi-commutativity. Suppose n ¡ 1. Then by
induction hypothesis s�+

b .��
a tn�1�b tn. By the semi-commutation property there

exists a reduction of the form s�+
b .�+

b .��
a tn and thus the proof is completed.

Observe that βη-rules do not spoil �-normality. This justifies the statement of the fol-
lowing lemma.

Lemma 1.23. The system of βη-reductions is confluent and strongly normalising over �-nor-
mal programs.

Proof. Strong normalisation. Strong normalisation of�β was proven in [BBdP98]. The
relation �η is obviously strongly normalising, because it reduces the term size. In
order to prove strong normalisation of the combined relation let us prove that as long
as �-normal programs are concerned, �β quasi-commutes over�η . By Lemma 1.19
this will imply strong normalisation of�βη . For instance, let us prove the case when
the first reduction step s�η r is made by the first unit law and the second one r�β t
by the second unit law respectively. Let s .

= C{do x Ð p; ret x} and r .
= C{p}. In order

to define the reduction r�β .��
βη t we need to range over the following three cases:

1. The redex is a subterm of p. Then t .
= C{u} where p�β u and the reduction in

question is s .
= C{do x Ð p; ret x}�β C{do x Ð u; ret x}�η C{u}.

2. The redex is a (proper) superterm of p. Therefore either C .
= K{do y Ð ret M; u}

or C .
= K{do y Ð ret u; M} or p .

= ret q and C .
= K{do y Ð l; u}. In the first

subcase the reduction in question is:

s .
= K{do y Ð ret M{do x Ð p; ret x}; u}

�β K{u[M{do x Ð p; ret x}/y]}

�η K{u[M{p}/y]}.

In the second subcase we have:

s .
= K{do y Ð ret u; M{do x Ð p; ret x}}

�β K{M{do x Ð p; ret x}[u/y]}
.
= K{M[u/y]{do x Ð p[u/y]; ret x}}
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�η K{M[u/y]{p[u/y]}}
.
= K{M{p}[u/y]}.

Finally, in the third subcase we have

s .
= K{do y Ð (do x Ð p; ret x); u}
.
= K{do y Ð (do x Ð ret q; ret x); u}

�β K{do x Ð ret q; y Ð ret x; u}

�β K{do y Ð ret q; u}

�β K{u[q/y]}.

3. The redex is parallel with p. This case is trivial because the reductions are com-
pletely independent and therefore can be harmlessly rearranged.

The remaining rule combinations can be proven in similar fashion, except for the re-
markable example of the following kind, calling for �-normality:

do x Ð (do y Ð (do z Ð p; ret eE); q); r

�η do x Ð (do y Ð p; q); r

�β do y Ð p; x Ð q; r

In order to obtain the alternative reduction in question we reduce the original term to
(do x Ð (do z Ð p; y Ð ret eE; q); r) by�β. Since y is of type E, q can not depend
on y because of �-normality of q. Hence, by applying the second unit law, we obtain
(do x Ð (do z Ð p; q); r) which, in turn, can be evidently reduced to the target.

Confluence. The argument standardly appeals to Newman’s Lemma (cf. e.g. [Klo92]).
According to it, one only needs to prove local confluence, i.e. that for any s and t, the span
s� .� t is joinable; in other words, there is r such that s�� r �� t. In the first-order
case it is usually done by considering all possible critical pairs. An analogous approach
works for the higher-order rewriting [MN98] but it can not be easily adapted to the
situation at hand mainly because ME does not support explicit function abstraction.
Therefore we need to stick to the general definition of local confluence and analyse all
the possible C2

9 = 72 rule combinations.

Observe that if the redexes of the reductions of the span .� t � . occur parallel to
each other, i.e. neither of the redexes is a subterm of the other one, the outcomes are
trivially joinable. Otherwise, there must exist two contexts C and K and a term t such
that t .

= C{K{s}} and s, K{s} are the redexes. It obviously suffices to prove that s and
K{s} are joinable. As an example, consider the combination of the second unit law and
the associativity law. Let s .

= (do x Ð ret p; q) be the first redex, contracted to q[p/x].
If the associativity rule applies in such a way that one of the metavariables matches
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a superterm of s then the solution is obvious. A more interesting situation arises if
one of the metavariables matches some proper subterm of s. This is only possible if
K .
= (do y Ð l; r), in which case:

K{s} .
= do y Ð (do x Ð ret p; q); r �β do x Ð ret p; y Ð q; r.

The latter term of this sequence is apparently joinable with (do y Ð q[p/x]; r). The
remaining rule combinations can be handled in the same manner.

Now we can prove that the �-rule can be joined with the βη-rules without spoiling the
properties proved in Lemma 1.23.

Theorem 1.24. The βη�-reduction is confluent and strongly normalising.

Proof. Strong normalisation. By contradiction. Suppose there is an infinite chain:

t1�βη� t2�βη� . . . (1.13)

It is easily verified that

t�βη� s implies nf�(t)��
βη nf�(s). (1.14)

Hence, by (1.13), there is an infinite reduction sequence of �-normal programs:

nf�(t1)�
�
βη nf�(t2)��

βη . . .

This immediately leads to the contradiction with Lemma 1.23 unless the latter sequence
possesses only a finite number of transitions by�βη , i.e. from some position onwards,
nf�(ti+1) = nf�(ti). Careful examination of the βη-rules proves that nf�(ti+1) = nf�(ti)

only if ti� ti+1 by a size-decreasing rule. Hence, (1.13) cannot be infinite, contradiction.

Confluence. The proof of confluence established in Lemma 1.23 fully applies here. The
only case not covered there is the span of the form t βη�� u�� s. According to (1.14),
nf�(u)��

βη nf�(t). Hence t and s can be joined:

t��
� nf�(t)

�
βη� nf�(u) = nf�(s) �� s.

The proof of the theorem is thus completed.

Theorem 1.24 points out an evident algorithm for deciding equality of ME programs.

Corollary 1.25. Equality of ME programs is effectively decidable: two programs are provably
equal iff their βη�-normal forms coincide (up to α-equivalence).
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The established decidability result about unconditional program equality contrasts with
the problem of program equality modulo a set of equational axioms.

Theorem 1.26. There exists a finite set of program identities Φ such that the conditional word
problem with respect to Φ is undecidable.

Proof. Already the word problem in EQ is undecidable because it possesses encoding
of the word problem for semigroups which is undecidable as exemplified by the unde-
cidability of the word problem for finitely presented semigroups [Mat67].

1.4 Underlying theory for data

The negative result of Theorem 1.26 can be interpreted in terms of the usual program-
ming practice as follows. Signature symbols occurring in p, q can have arguments of
non-T-free types. If one is allowed to use any identities whatsoever as the premises Φ, a
straightforward idea is to interpret these symbols as new control operators by putting a
suitable axiomatisation into Φ. It is pretty clear that in general the possibility of adding
such user-defined control operators substantially increases expressivity, and thus the
negative result of Theorem 1.26 is no wonder. Using this view of the problem, we may
try to circumvent the undecidability issue by totally prohibiting user-defined control
operators. The most immediate way to do so is by a simple syntactic restriction.

Definition 1.27 (Plain signatures). We call a signature Σ plain if for any f : A Ñ B P Σ
the type A is T-free.

Definition 1.28 (Atomic programs). We call a program p atomic if it contains only sig-
nature symbols, variables and cartesian primitives. An atomic program is cartesian if
it does not contain signature symbols (hence built entirely of cartesian primitives). We
denote by AΣ the set of all atomic programs over signature Σ.

Remark 1.29. βη�-normal programs over plain signatures have a particularly simple
form. Every such program is either a cartesian pair of two βη�-normal programs or has
the form

(
do x̄ Ð ā; a

)
with ai, a being βη�-normal atomic, or has the form

(
do x̄ Ð

ā; ret p
)

with the ai being βη�-normal atomic and p being βη�-normal.

Lemma 1.30. Let the underlying signature Σ be plain and let t be a program.

1. If f (t) is βη�-normal and f P Σ then t is atomic.

2. If h(t) is βη�-normal and h P {fst, snd} then t is atomic.

3. If the return type of t is T-free and t is βη�-normal then t is atomic.
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Proof. First, observe that (3) implies (1) because by assumption Σ is plain, and thus f (t)
types only if the return type of t is T-free. Let us establish (2) and (3) simultaneously
by induction over the term complexity of t. Let us consider the possible cases.

If t is either a variable or � then we are done trivially.

If t .
= fst(s) or t .

= snd(s) with some s then by induction, s is atomic. Therefore t
is also atomic.

Let t .
= 〈s, r〉 with some s, r. We only need to prove (3) because by βη�-normality

the present clause is not applicable to (2). Suppose the return type of t is T-free.
The return types of s and r are simpler than the return type of t. Therefore they
are also T-free, and thus we are done by induction hypothesis.

If t .
= f (s) with some s and f P Σ then the return type of s is T-free (because Σ is

plain). Therefore we are done by induction hypothesis.

As we can see, the notion of plain signature indeed allows effective separation of the
layer of control operators from the layer of signature symbols. Remark 1.29 essentially
points out that w.l.o.g. the control operators are floating on top, strictly over the con-
structions involving the signature symbols. It is natural to interpret this bottom layer
as the layer of data. We justify this in the following definition.

Definition 1.31 (Data theory). An (equational) data theory is a set of equations of the form
a = b where a P AΣ, b P AΣ and all the variables in Vars(a), Vars(b) are of T-free type.

Example 1.3 (Internal truth values). Suppose, there is a basic sort Ω PW and operations
J,K : 1 Ñ Ω,^,_,ñ: Ω�Ω Ñ Ω. An equational theory of Heyting algebras is given
by the axioms:

a^ b = b^ a (a^ b)^ c = a^ (b^ c) a^ a = a a^ (a_ b) = a

a_ b = b_ a (a_ b)_ c = a_ (b_ c) a_ a = a a_ (a^ b) = a

a^ (a ñ b) = a^ b b^ (a ñ b) = b a ñ (b^ c) = (a ñ b)^ (a ñ c)

a ñ a = J K_ a = a J^ a = a

By adding the excluded middle law

(p ñ K)_ p = J

one obtains an equational theory of Boolean algebras.

Example 1.4 (Internal equality). Let Ω PW be an internal truth value type and suppose,
in addition, that for every T-free type A there is a binary symbol eqA : A� A Ñ Ω in
the signature. Then for every A the axioms:

eqA(a, a) = J, (eqA(a, b)ñ eqA(a, b)) = J,
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(eqA(a, b)^ eqA(b, c)ñ eqA(a, c)) = J

define an internal equality operator eqA. Normally, one is interested in equality rela-
tions that respect the cartesian structure and are congruences, i.e.

(eqC(a, b)ñ eqD( f (a), f (b))) = J, eq�(c, d) = J,

(eqA�B(〈a1, b1〉, 〈a2, b2〉) ðñ eqA�B(a1, a2)^ eqA�B(b1, b2)) = J

for every T-free A, B, C, D, every appropriately typed a, b, a1, a2, b1, b2, c, d and f P Σ.

Let us denote by Π the set of variable substitutions [t̄/x̄] such that every ti is of the
form h1(. . . (hn(v)) . . .) where for every k, hk P {fst, snd}, v is a variable of non-T-free
type and n ¡ 0. Given a data theory E, we define a relation �E over programs by the
equivalence: for every p, q, p �E q iff there exists a context C, a substitution σ P Π and
two atomic programs a, b such that all the variables from Vars(p)YVars(q) are T-free,
p .
= C{aσ}, q .

= C{bσ} and E $EQ a = b. By definition, �E is reflexive and symmetric.
Let us denote by ��E the transitive closure of �E which is hence an equivalence. For
every natural n we denote by �n

E the n-th power of �E with respect to binary relation
composition. By definition, for every p, q, p ��E q iff p �n

E q for some n. Given two
contexts C and D, C �E D, C �n

E D and C ��E D encode correspondingly: @v. C{v} �E

D{v}, @v. C{v} �n
E D{v} and @v. C{v} ��E D{v}.

Lemma 1.32. Suppose we are given a data theory E over a plain signature Σ, programs p, q, r, u
over Σ and a variable x such that p ��E q, r ��E u and the expressions p[u/x], q[r/x] are well-
defined. Then there exist s and t such that p[u/x]��

βη� s, q[r/x]��
βη� t and s ��E t.

Proof. We prove the claim by induction over the complexity of A, the type of x. Let us
consider the possible cases.

Let A be T-free. Let us first consider the simpler case: p �E q, i.e. for some atomic
a, b, a context C and a substitution σ P Π, p .

= C{aσ}, q .
= C{bσ} and E $EQ a = b.

By definition, the types of all variables which occur in the codomain of σ are nec-
essarily non-T-free, whereas A is T-free. Therefore, p[u/x] .

= C[u/x]{(a[u/x])σ},
q[r/x] .

= C[r/x]{(b[r/x])σ}. Observe that both a[u/x], b[r/x] are atomic and
E $EQ a[u/x] = b[r/x]. Therefore, by definition, p[u/x] ��E q[r/x]. The general
case, i.e. if p �n

E q with n � 1 now follows easily by induction over n.

Let A = A1 � A2 and A is non-T-free. Let x1, x2 be two fresh variables of types
A1 and A2 correspondingly. Let p1 be the program obtained from p by replacing
every subterm fst(x) by x1, every subterm snd(x) by x2 and let q1 be the program
obtained from q in the same way. Then evidently:

p[u/x] .
= p1[u/x][fst(u)/x1][snd(u)/x2],
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q[r/x] .
= q1[r/x][fst(r)/x1][snd(r)/x2].

Let us show that p1[u/x] ��E q1[r/x]. First consider the case: p �E q, i.e. for some
C, σ P Π and appropriate atomic a, b, p .

= C{aσ}, q .
= C{bσ} and E $EQ a = b.

Observe that since x is of non-T-free type, neither a nor b can contain it. Let C1 be
the context, obtained from C in the same way as p1 was obtained from p, and let
ς be the substitution obtained from σ by applying the analogous transformation
to the programs in the codomain. Then p1 .

= C1{aς}, q1 .
= C1{bς} and therefore

p1[u/x] .
= C1[u/x]{aς}, q1[r/x] .

= C1[r/x]{bς}. Observe that ς is not necessarily
an element of Π, because it may map some variables to variables. It is straight-
forward though to decompose it to ς1ς2 where ς1 maps variables to variables and
ς2 P Π. Then evidently: p1[u/x] .

= C1[u/x]{(aς1)ς2}, q1[r/x] .
= C1[r/x]{(bς1)ς2}

and E $EQ aς1 = bς1, i.e. p1[u/x] � q1[r/x]. In general, if p ��E q i.e. if p �n
E q with

some n then p1[u/x] �� q1[r/x] follows by induction over n.

Since the return type of x1 is simpler than the return type of x, according to
induction hypothesis, there exist s1 and t1 such that p1[u/x][fst(u)/x1]��

βη� s1,
q1[r/x][fst(r)/x1]��

βη� t1 and s1 ��E t1. By the same reason, there exist t2 and s2

such that s1[snd(u)/x2]��
βη� s, t1[snd(u)/x2]��

βη� t and s ��E t. Since

p[u/x] .
= p1[u/x][fst(u)/x1][snd(u)/x2] ��

βη� s1[snd(u)/x2] ��
βη� s,

q[r/x] .
= q1[r/x][fst(r)/x1][snd(r)/x2] ��

βη� t1[snd(u)/x2] ��
βη� t,

the programs s and t are those which make the claim true.

Let A = TB for some B. Once again, we consider first the simpler case: p �E q.
Let C, σ, a, b be the corresponding data from the definition of �E, in particular:
p .
= C{aσ}, q .

= C{bσ} and E $EQ a = b. Since x is of non-T-free type it cannot
occur in a, b. For typing reasons x also cannot occur in any program from the
codomain of σ. Therefore, p[u/x] .

= C[u/x]{aσ}, q[r/x] .
= C[r/x]{bσ} and thus,

evidently, p[u/x] ��E q[r/x]. The general case, i.e. p �n
E q for some n follows by

induction over n.

We have now covered all the possible options. The claim is thus proved.

Lemma 1.33. Let Σ be a plain signature and let E be a data theory over it. Then for all programs
p and q over Σ, E $ME p = q iff nfβη�(p) ��E nfβη�(q).

Proof. First observe that the implication: nfβη�(p) ��E nfβη�(q) ùñ E $ME p = q imme-
diately follows from the two evident facts: (i) the equivalence relation ��E is stronger
than provable equality in ME modulo the set of axioms E, and (ii) nfβη� transforms
programs equivalently under ME.
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In order to prove the remaining implication let us assume that E $ME p = q. By
Lemma 1.15 there exists a sequence of programs w1, . . . , wn such that w1

.
= p, wn

.
= q

and for every i   n either wi��
βη� wi+1 or wi+1��

βη� wi or for some context C, a vari-
able substitution σ and a pair of terms u, r, wi

.
= C{uσ}, wi+1

.
= C{rσ} and (u = r) P Ẽ

where by Ẽ we denote the symmetric closure of E. Let us show that in the latter case we
always can ensure that wi �

�
E wi+1. Let σ1 be the substitution, obtained by restricting σ

to Vars(u)YVars(r) and further βη�-normalisation of the programs in the codomain.
Since E is a data theory, all the variables from Vars(u)YVars(r) are T-free and thus, by
Lemma 1.30 all the programs in the codomain of σ1 are atomic. Observe that a non-T-
free variable v can occur in uσ1 or rσ1 only in subterms of the form h1(. . . (hn(v)) . . .)
whose return type is T-free where every hk is from {fst, snd}. Let a and b be the atomic
programs, obtained from uσ1, rσ1 by replacing every such subterm by a fresh variable
and let ς P Π be such that uσ1

.
= aς, rσ1

.
= bς. Let w1

i := C{aς}, w1
i+1 := C{bς}.

Evidently, wi��
βη� w1

i, wi+1��
βη� w1

i+1 and thus we are done by replacing the section
(wi, wi+1) of the sequence w1, . . . , wn with (wi, w1

i, w1
i+1, wi+1). We have thus proved

that E $ME p = q amounts to: p (�E Y�βη�Y βη��)� q. In other words, there exists n
such that

w1 := p ñ w2 ñ . . . ñ wn := q (1.15)

where ñ P {�E,�βη�, βη��}. Let us show by induction over n that the equivalence
nfβη�(p) ��E nfβη�(q) follows from the following statement:

for every s, t such that s ��E t, nfβη�(s) ��E nfβη�(t). (�)

If n = 0 then p = q and we are trivially done. Suppose n ¡ 0. Then p ñ . . . ñ wn�1 ñ q
and by induction hypothesis, nfβη�(p) ��E nfβη�(wn�1). Let us proceed by case distinc-
tion. If wn�1 �E q then by (�), nfβη�(wn) ��E nfβη�(q) and thus nfβη�(p) ��E nfβη�(q). If
wn�1�βη� q or wn�1 βη�� q then nfβη�(wn) ��E nfβη�(q) and again nfβη�(p) ��E nfβη�(q).
We will be done once we prove (�).

Let us show how to ensure βη�-normality of s and t in (�). Let e.g. s be not βη�-nor-
mal. Depending on the βη�-redex we define s1 and t1 such that s�+

βη� s1, t��
βη� t1 and

s1 ��E t1. Instead of considering all the possible redexes one by one, we focus only on
the representative ones.

Let s .
= C{do x Ð (do y Ð u; r); w} where C is some context and y R Vars(w).

The assumption s ��E t means in particular that t can be obtained from s by re-
placing atomic programs with atomic programs. Therefore, t must be of the form
C1{do x Ð (do y Ð u1; r1); w1} where u1 ��E u, r1 ��E r, w1 ��E w and C1 ��E C. Let
us put s1 := C{do y Ð u; x Ð r; w}, t1 := C1{do y Ð u1; x Ð r1; w1}. It is clear
that s1 and t1 are indeed as announced.
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Let s .
= C{fst〈u, r〉}. If any of the u, r is not atomic then the routine is the same

as in the previous case. Suppose both u and r are atomic. If C does not con-
tain l then the problem becomes trivial. Let C contain l and let C = K{M} be
the decomposition of C defined as follows: M is the maximal context contain-
ing l and such that M{u} is atomic. Since by assumption, s ��E t, t must be
of the form M1{w} where w ��E K{fst〈u, r〉} and M ��E M1. As a consequence:
M{K{fst〈u, r〉}} ��E M1{w} and thus we are done by putting s1 := C{u}, t1 := t.

Let s .
= C{do x Ð ret u; r}. By the same arguments as before t must be of

the form C1{do x Ð ret u1; r1} where u ��E u1, r ��E r1 and C ��E C1. Then
s�βη� C{r[u/x]}, s��

βη� C1{r1[u1/x]}. By Lemma 1.32 there exist s1 and t1 such
that C{r[u/x]}��

βη� s1 and C1{r1[u1/x]}��
βη� t1 and s1 ��E t1, and thus we are

done.

We have thus shown how to βη�-reduce s from (�) unless it is already βη�-normal so
that the equivalence s ��E t is maintained. By repeating the routine sufficiently many
times we can ensure βη�-normality of s. In the same way we can ensure βη�-normality
of t. Eventually we obtain the equivalence nfβη�(s) ��E nfβη�(t) which proves (�). There-
fore we are done with the proof of the lemma.

Now we can prove the main theorem of this section.

Theorem 1.34. Let Σ be a plain signature and let E be a data theory over it. If the conditional
word problem for E is decidable, so is the problem of deciding equality of ME programs modulo E.

Proof. Let e.g. p and q be two programs over Σ of the same return type. By Lemma 1.33
E $ME p = q is decidable iff the equivalence nfβη�(p) ��E nfβη�(q) is decidable. By
Remark 1.29 the latter equivalence holds iff nfβη�(p) and nfβη�(q) have the same form
on the level of control operator and the atomic subterms of nfβη�(p) can be related with
the atomic subprograms of nfβη�(q) by ��E in a certain order. Therefore the problem in
question is decidable if we can decide any equivalence a ��E b where both a and b are
atomic. It is easy to see by definition that if a, b are atomic then a ��E b iff E $EQ a = b.
The latter problem is decidable by assumption, and thus we are done.

1.5 Computational monads collectively

In many cases it suffices to fix a particular monad and not to involve any other monads
in the reasoning. Moreover, it might be reasonable to completely withdraw from any
explicit use of the monad operations and thus switch from the metalanguage of effects
to e.g. computational λ-calculus [Mog91]. At the other extreme one may consider every
(small) monad as an object of some appropriate category in order to study abstractly
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various relations between monads, in particular their compositional properties [HPP03,
HLPP07, LG02]. Although the problem of monad composition is not touched upon in
this thesis (but remains nonetheless of high importance), some general facts about the
collective treatment of monads are worth mentioning.

One of the basic concepts serving the goals of monad composition is the notion of a
monad transformer (implicitly) introduced in [Mog89a] and coined in [LHJ95]. A monad
transformer is simply a law putting any (strong) monad into correspondence with some
other (strong) monad over the same category.

Example 1.5. [Mog89a] Let T = (T, ηT, :) be a monad over a category C. Let us
denote by P = (P, ηP, ;, τP) a monad over C obtained from T by applying one of the
following monad transformers.

1. Exception monad transformer: PA = T(A + E), ηP
A = ηT

A+E � inl,
f ; =

[
f , ηT

B+E � inr
]: for any f P HomCP(A, B).

2. State monad transformer: PA = S Ñ T(A� S), ηP
A = λa. λs. ηT

A�S〈a, s〉,
f ; = λc. λs.

(
λ〈x, y〉. f (x)(y)

):
(c(s)) for any f P HomCP(A, B).

3. Continuation monad transformer: PA = (A Ñ TR)Ñ TR, ηP
A = λa. λc. c(a),

f ; = λc. λr. c
(
λa. f (a)(r)

)
for any f P HomCP(A, B).

4. Output monad transformer: PA = µX. T(A + O� X), ηP
A = ηT

A+O�PA � inl,
f ; = µg.

[
f , λ〈u, x〉. ηT

O�PB inr〈u, g(x)〉
]: for any f P HomCP(A, B).

5. Input monad transformer: PA = µX. T(A + (I Ñ X)), ηP
A = ηT

A+(IÑPA) � inl,

f ; = µg.
[

f , λh. λu. ηT
IÑPB inr(g(h(u)))

]: for any f P HomCP(A, B).

Note that there is no obvious definition of a powerset monad transformer.

Monad transformers are not generally required to exhibit good categorical behavior,
like being endofunctors, but sure enough usually they do. Some natural conditions
that can be imposed on monad transformers can be found in [Mog89a], but in fact none
of them can be harmlessly made part of the definition because any such condition can
be falsified by some relevant monad example.

More specific than the notion of a monad transformer is the notion of monad mor-
phism. We fix the category Mnd whose objects are monads over small categories
and morphism are functors between the underlying categories coherently preserving
monad structure in the following manner.

Definition 1.35. Given two monads T = (T, ηR, µR) and S = (S, ηS, µS) a monad mor-
phism T Ñ S consists of a functor F : C Ñ D between the underlying categories and a
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natural transformation α : FT Ñ SF making the diagrams

FT

α

��

F

Fη 77nnnnnnnnn

ηF ''PPPPPPPPP

SF

SFT
Sα // SSF

µF

��

FTT

αT 88qqqqq

Fµ &&MMMMMM

FT
α // SF

commute. We call a monad morphism (F, α) a monad embedding if F is faithful and αA

is monic for every A.

Such a treatment of the category of monads is less general than the more abstract one
of [Str72] presenting a monad as 2-categorical concept. The definition of monad mor-
phism above is the same as in [Mog89a] and contrasts with the central definition of
monad morphism from [Str72], where the morphisms from Definition 1.35 are called
opmorphisms. Our choice of the definition of a monad morphism is justified by the fol-
lowing theorem, the first part of which is due to Moggi [Mog89a].

Theorem 1.36. There is a one-to-one correspondence between monad morphisms (F, α) with
(T, ηT, µT) over C as the source and (S, ηS, µS) over D as the target and pairs of functors
(F : C Ñ D, G : CT Ñ DT) such that the following diagram commutes.

C
F //

KT

��

D

KS

��

CT
G // DS

where KT and KS are left adjoints by Kleisli construction. Moreover, under this correspondence
monad embeddings are mapped to pairs of faithful functors.

Proof. Let (F, α) be a monad morphism. We define the functor G : CT Ñ DT by
putting GA := FA for every A P Ob (CT) = Ob (C) and G f := αB � F f for every
f P HomCT

(A, B) = HomC(A, TB). Since both KT and KS are identical on objects the
functor equality stated by the diagram in question trivially holds on objects. On the
other hand, for every f P HomC(A, B), (GKT) f = αB � F(ηB � f ) = αB � F(ηB) � F f =

ηFB � F f which proves the diagram for the case of morphisms.

Now suppose we are given a pair of functors (F : C Ñ D, G : CT Ñ DT), making
the diagram commute. Note that this implies in particular that GA = FA for every A P
Ob (C) = Ob (CT). Show how to construct a monad morphism (F, α). The missing part
is the natural transformation α : FT Ñ SF. For every A P Ob (C) define αA := G(idTA).
It is straightforward to verify that (F, α) makes a monad morphism.
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Finally, observe that every monad embedding (F, α) gives rise to a pair of faithful
functors. Functor F is faithful by definition. Show that G is also faithful. Let f , g P
HomCT

(A, B) = HomC(A, TB). Then G f = Gg by definition means αB � F f = αB � Fg.
Since αB is a monic, this is equivalent to F f = Fg, i.e. to f = g because F is faithful, and
thus we are done.

Theorem 1.36 assures that the chosen definition of a monad morphism is indeed the
right one for our purposes because it gives rise to a functor between the corresponding
Kleisli categories in contrast to the the dual notion from [Str72] which gives rise to a
functor between the corresponding categories of Eilenberg-Moore algebras [PW02].

According to Moggi’s program of using monads for denotational semantics a program-
ming language with (unary) type constructors and polymorphic operators should be
viewed as a free monad FreeMnd. Models of this programming language are sup-
posed to be 2-functors from FreeMnd to Cat. It turns out that there is one-to-one
correspondence between such models and monads in Cat. Moreover, this correspon-
dence can be extended to a correspondence between model transformations (which are
lax natural transformations) and monad morphisms. Following these lines further, it is
natural to consider monad embeddings as transformations of language interpretations
from models supporting less structure to ones supporting more. A perfect example of
such an embedding is also given by Moggi. Namely, he has discovered (in accordance
with earlier general observations by Lambek and Scott [LS86]) that any monad in Mnd
can be embedded into a monad over the topos of presheaves. Moreover, if the source
monad was strong, the target monad turns out to be strong as well. Essentially, this
means the notion of the monad is relatively independent of the underlying category; in
particular, one can always assume w.l.o.g. a rather rich categorical structure (including
coproducts, exponentials, power objects, etc.) to be present.

Theorem 1.37. [Mog89b] Let C be a small category, let Ĉ = SetCop
be the corresponding

topos of presheaves and let Y be the Yoneda embedding of C into Ĉ. Then for every monad
T = (T, η, µ) there exists a monad T̂ = (T̂, η̂, µ̂) over Ĉ such that the following diagram
commutes

C
T //

Y
��

C

Y
��

Ĉ
T̂ // Ĉ

i.e. (Y, id) is a monad embedding of T into T̂, and for all A P C the following equations hold

η̂YA = Y(ηA), µ̂YA = Y(µA).
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Moreover, if T is strong then there exists a natural transformation t̂, turning T into a strong
monad, and for any A, B P C satisfying the equation

τ̂YA,YB = Y(τA,B)

As was remarked by Moggi, the result of such a lifting is not always what one expects,
e.g. the expression defining the functorial part of the monad is not in general main-
tained. For example, the monad of partial computations given by TX = X + 1 gives
rise to a monad with the same functorial part over the topos of presheaves but the state
monad does not.

1.6 Contribution and related work

The content of the preceding section is of a preliminary nature. Its main goal was to
introduce the language and the methods of dealing with computational monads. Many
constructions presented here will be used as prototypes for more advanced cases in the
following sections where we operate with further extensions of ME.

We have made precise the usage of rewriting technique for the metalanguage of ef-
fects, which justifies neatly the previous attempts [GSM06, MSG10]. The main technical
achievement here is a proof of a strong normalisability theorem for a novel rewriting
system completely capturing the identities of strong monads. This resulted in decid-
ability of the equational theory of strong monads. The strong normalisation proof com-
bines the ideas of [BBdP98] and [Cd96]. The related works featuring similar results
include the following. The results of Benton, Bierman at al. [BBdP98] imply strong
normalisation of a reduction system capturing only β-reductions of ME. Lindley and
Stark [LS05] have shown strong normalisation of the metalanguage of effects but did
not cover the unit type. An alternative canonical reduction system capturing the laws
of strong monads but not the unit type is found in the dissertation of Gehrke [GTA95].

The restriction imposed on the operations of a plain signature is somewhat similar to
the algebraicity requirement specific for the treatment of computational effects based
on Lawvere theories (e.g. [PP02]). In both cases the role of the restriction is to rule out
the possibility of introducing user-defined control operators, but the difference is in
deciding what ‘user-defined’ means. In our settings, user-defined operators are those
that possess counterparts in the underlying signature, whereas in terms of Lawvere
theories, user-defined operators are those that are not induced by the monad functor.
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Additive monads

2.1 Introduction

Nondeterminism is a special kind of side-effect that is clearly of major importance.
There are several reasons why nondeterminism deserves individual consideration. First
of all, it can be combined with other side-effects abstractly, without appealing to con-
crete implementation: p + q is just for any p and q, no matter what p and q do and what
side-effects they have. (Unfortunately, this simple intuition contrasts with the fact that
there is no evident machinery to impart nondeterminism to a given monad, such as
a powerset monad transformer.) Second, nondeterminism, powered by nontermina-
tion, provides an expressive framework for encoding control structures both for non-
deterministic and for deterministic computations, in particular via the Fischer-Ladner
encoding of the if and while operators of imperative programming [FL79].

To be sure, the notion of nondeterminism is much too subtle to be ultimately captured
by any concrete formalisation. Even when restricted to algebraic settings one may ar-
gue different variations of the set of equations specifying nondeterminism. It is there-
fore not surprising that there are different examples of monads implementing the idea
of nondeterminism. E.g. a list monad can be considered as a monad with nondetermin-
ism. In this case, the nondeterministic choice is not commutative, which still might be
perfectly sensible (cf. e.g. [Hin00, KSFS05]).

The notion of nondeterminism used in this chapter (and the following ones) is rather
strong – it is basically obtained by equationally axiomatising a powerset monad. The
motivation behind this is as follows: first, this model of nondeterminism is better suited
for theoretical concerns. It is abstract in the sense that it does not allow any cheating,
e.g. one cannot grab the first program of a sum and execute it first, etc. Second, this
notion is close to the notion accepted in the process algebra and hence might be useful
for modelling side-effectful parallel processes. Third, it allows adequate encoding of
the the if and while control primitives.

41
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2.2 Soundness, completeness and decidability

The requirement for a monad to support nondeterminism amounts to some intuitively
predictable conditions, imposed on its Kleisli category.

Definition 2.1 (Additive monad). An additive monad is a monad T, whose Kleisli cate-
gory CT is enriched over join semilattices1.

The presented definition comprises a great deal of information that is not immediately
apparent. We unravel it as follows. By definition of the enriched category, every hom-
set in CT must be equipped with the operations of join semilattices, that is, for every
A, B P Ob (CT) there is bottom �A,B P HomCT

(A, B) and join `A,B : HomCT
(A, B) �

HomCT
(A, B) Ñ HomCT

(A, B) such that HomCT
(A, B) makes a join-semilattice under

them. Moreover, Kleisli composition � : HomCT
(B, C)�HomCT

(A, B) Ñ HomCT
(A, C)

must be bilinear with respect to ` and respect � on both sides, which results in the
identities:

� � g = �, ( f1 ` f2) � g = f1 � g` f2 � g,

f �� = �, f � (g1 ` g2) = f � g1 ` f � g2.

As usual, here and throughout we omit the indices at ` and �. Also, we agree that �
binds stronger than `.

Unfortunately, the naive attempt to define a strong additive monad as a strong monad
that happens to be additive is not satisfactory, because, in general, strength does not
respect the hom-set structure. The correct definition is as follows.

Definition 2.2 (Strong additive monad). A strong additive monad is an additive monad
that is strong and whose tensorial strength τ satisfies two extra conditions:

τA,B〈idA,�〉 = �, (2.1)

τA,B〈idA, f ` g〉 = τA,B〈idA, f 〉` τA,B〈idA, g〉 (2.2)

for any morphisms f , g P HomCT(A, B).

Remark 2.3. In the case of strong additive monads, the operations ` and � give rise
to natural transformations vA : TA � TA Ñ TA and δA : C1A Ñ TA where C1 is a
constant functor, mapping everything to the terminal object 1. Indeed, let us define
vA := π1 ` π2 and δA := � where πi (i = 1, 2) are left and right cartesian projections
from TA � TA to TA. Let f P HomC(A, B). Then the naturality of v and δ can be

1We assume that a join semilattice is always bounded, i.e. it comes equipped with the bottom element.
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expressed by the commutativity diagrams:

TA� TA
vA //

T f�T f

��

TA

T f

��
TB� TB

vB // TB

C1A = 1
δA //

!

��

TA

T f

��
C1B = 1

δB // TB

The proof of the left diagram is as follows:

T f �vA = T f � (π1 ` π2) = µ � T(η � f ) � (π1 ` π2)

= (η � f ) � (π1 ` π2) = (η � f ) � π1 ` (η � f ) � π2

= T f � π1 ` T f � π2 = vB � (T f � T f ).

Analogously, the calculation: T f � δA = T f �� � ! = (η � f ) �� � ! = � � ! = δB � ! proves
the commutativity of the second diagram.

It is useful to have equivalents of the conditions (2.1), (2.2) in terms of Kleisli categories.
Let us define a family of operators ∆A,B : HomCT

(A, B)Ñ HomCT
(A, A� B) by putting

∆A,B( f ) := τA,B〈id, f 〉 for every f P HomCT
(A, B) = HomC(A, TB). Observe that, con-

versely, we can extract strength from ∆ due to the equation

τA,B = T(fst� id)(∆A�TB,B(snd)) (2.3)

easily provable by Lemma 1.13.

Lemma 2.4. A strong monad is strongly additive iff it is additive and all the ∆A,B are homo-
morphisms of bounded join-semilattices, i.e. ∆(�) = � and ∆( f ` g) = ∆( f )` ∆(g) for all
appropriate f , g.

Proof. By definition, ∆(�) = τ〈id,�〉, therefore (2.1) is equivalent to ∆(�) = �. On
the other hand, for any appropriate f , g, ∆( f ` g) = τ〈id, f ` g〉, ∆( f ) = τ〈id, f 〉,
∆(g) = τ〈id, g〉 and thus (2.2) is equivalent to ∆( f ` g) = ∆( f )` ∆(g).

Prominent examples of strong additive monads include the powerset monad P and its
variants possessing specific cardinality restrictions: the finitary powerset monad P f in,
the countable powerset monad Pω, etc. Other examples of additive monads can be
obtained by adding other computational effects. Standardly, one can try to use monad
transformers to generate new additive monads from existing ones, and indeed many
monad transformers turn out to preserve additivity.

Theorem 2.5. Let T = (T, η, :, τ) be a strong additive monad over a cartesian category C.
We denote bottom and join of HomCT

(A, B) by �T
A,B and `T

A,B. Then a monad R obtained by
applying any of the following monad transformers to T is strongly additive with respect to to
the join semilattice operators �R

A,B and `R
A,B defined hereby.



Chapter 2: Additive monads 44

1. State monad transformer RA = S Ñ T(A� S) with �R
A,B := λs.�T

A,B and
f `R

A,B g := λa.
(

f (a)`T
S,B�S g(a)

)
for every f , g P HomCR(A, B).

2. Continuation monad transformer RA = (A Ñ TK)Ñ TK with �R
A,B := λc.�T

A,K and
f `R

A,B g := λc. f (c)`T
A,K g(c) for every f , g P HomCR(A, B).

Proof. It is well known that both monad transformers send strong monads to strong
monads (cf. e.g. [Mog89a]). We are left to verify strong additivity.

1. Observe that for every A, B P Ob (C), HomCR
(A, B) = HomC(A, S Ñ T(B� S)) �

HomC(A � S, T(B � S)) = HomCT
(A � S, B � S) which means that the functor

J from CR to CT sending every object A P Ob (CR) to (A � S) P Ob (CT) and
every morphism f P HomCR

(A, B) to (λ〈a, s〉. f (a)(s)) P HomCT
(A� S, B� S) is

a full and faithful embedding. Therefore, the category CR is also enriched over
join semilattices, i.e. R is an additive monad with respect to the join semilattice
structure induced by this embedding. It is easy to see that this structure is the
same as we have explicitly defined.

For every A, B P CR we define ∆R
A,B by putting ∆R

A,B( f ) := J�1(∆T
S�A,S�B(J( f ))),

for all f P HomCR
(A, B). By (2.3) for every A, B we can define τR

A,B. It is easy to
see that τR is indeed strength, making R a strong additive monad.

2. Analogous to the previous case.

Remark 2.6. If we instantiate O in the output monad transformer by 1 or, equivalently,
if we instantiate I in the input monad transformer by 1 we obtain the same result:
RA = µX.T(A+X), called a resumption monad transformer (cf. e.g. [CM93]). This monad
transformer is of independent interest mainly because it can be used for modelling
concurrent processes. In particular, one can recursively define a parallel composition
of two programs p, q : RA as the least solution of the system of equations:

p ‖ q = p T q + q T p,

p T q = do x Ð p; ret(p ‖ q).

Here + is an operation symbol whose intended interpretation is `. Using the fact that
RA makes an additive monad, as proved in Theorem 2.5, one can establish a great
deal of analogues of process algebra laws, such as (p + q) T r = (p T r) + (q T r), etc.
A remarkable example of an identity that cannot be proved for monad R is the right
distributivity law:

do x Ð p; (q + r) = do x Ð p; q + do x Ð p; r.

This completely agrees with the process algebra parallels, but since this law is part
of strong additive monad axiomatisation (Fig 2.1), we conclude that the resumption
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monad transformer does not preserve additivity. Hence both input and output monad
transformers also do not.

A remarkable example of a monad transformer not preserving additivity is that the
exception monad transformer P( + E) is not an additive monad — the only violated
law is (dist+1 ), e.g. if a program r throws an exception then (do x Ð r;∅) = r �
∅. An intuitive reason why some monad transformers do not preserve additivity is
because additive monads provide a control mechanism consisting of nondeterminism
and nontermination, and if the monad transformer also provides some sort of control
they often get into conflict.

The internal language of strong additive monads extends the metalanguage of effects
defined in Chapter 1 by the operations choice and deadlock:

ΓB∅ : TA
ΓB p : TA ΓB q : TA

ΓB p + q : TA

whose semantics is provided by the assignments:

[[ΓB∅ : TA]] := �[[Γ]],[[A]],

[[ΓB p + q : TA]] := [[ΓB p : TA]]`[[Γ]],[[A]] [[ΓB q : TA]].

Essentially, we deal with the same language as in Chapter 1: ∅ and + can be consid-
ered as families of distinguished signature symbols from Σ indexed by the argument
types (omitted at writing). The calculus of additive monads ME+ is obtained from ME

by adding the axioms given in Fig 2.1 and the evident congruence rules (cong nil)
and (cong plus). The laws (assoc+), (comm+) and (idmp+) will be referred to as ACI-
laws. Let� be the least congruence encompassing them. Programs, related by�will be
occasionally called ACI-equal. The choice operator immediately gives rise to the partial
order ¤, defined by the equivalence p ¤ q ðñ p + q = q.

We call a program deterministic if it contains neither ∅ nor +. In the sequel we will
occasionally use the notation ∑iPI pi where I is a finite set, e.g. I = {i1, . . . , in} as a
shortening for (pi1 + . . . + pin) if n ¡ 0 and ∅ if n = 0. We write ∑i pi instead of ∑iPI pi

if I is irrelevant or implied by the context. Note that ∑i pi is defined up to associativity.

Theorem 2.7 (Soundness and completeness). The calculus ME+ is sound and strongly com-
plete over strong additive monads.

Proof. Soundness. It suffices to prove soundness of the newly introduced rules. The
claim is straightforward for (nil+), (comm+), (idmp+) and (assoc+). Let us show the
remainder.
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(nil+) p +∅ = p (comm+) p + q = q + p
(idmp+) p + p = p (assoc+) p + (q + r) = (p + q) + r
(dist∅1 ) do x Ð ∅; r = ∅ (dist∅2 ) do x Ð r;∅ = ∅

(dist+1 ) do x Ð (p + q); r = do x Ð p; r + do x Ð q; r
(dist+2 ) do x Ð r; (p + q) = do x Ð r; p + do x Ð r; q

FIGURE 2.1: Axioms of additive monads

Axiom (dist∅1 ):

[[ΓB do x Ð ∅; r : TB]]

= [[Γ, x : AB r : TB]] � τ[[Γ]],[[A]] � 〈id, [[ΓB∅ : TA]]〉 [by def. of [[ ]]]

= [[Γ, x : AB r : TB]] �� = � = [[ΓB∅ : TB]]. [by 2.1, def. of [[ ]],�]

Axiom (dist∅2 ):

[[ΓB do x Ð r;∅ : TB]]

= [[Γ, x : AB∅ : TB]] � τ[[Γ]],[[A]] � [[ΓB r : TA]] [by def. of [[ ]]]

= � � τ[[Γ]],[[A]] � [[ΓB r : TA]] = � = [[ΓB∅ : TB]]. [by def. of [[ ]],�]

Axiom (dist+1 ):

[[ΓB do x Ð (p + q); r : TB]]

= [[Γ, x : AB r : TB]] � τ[[Γ]],[[A]] �

〈id, [[ΓB p : TA]]` [[ΓB q : TA]]〉
[by def. of [[ ]]]

= [[Γ, x : AB r : TB]] � (τ[[Γ]],[[A]] � 〈id, [[ΓB p : TA]]〉 `

τ[[Γ]],[[A]] � 〈id, [[ΓB q : TA]]〉)
[by 2.2]

= [[Γ, x : AB r : TB]] � τ[[Γ]],[[A]] � 〈id, [[ΓB p : TA]]〉 `

[[Γ, x : AB r : TB]] � τ[[Γ]],[[A]] � 〈id, [[ΓB q : TA]]〉
[by def. of `]

= [[ΓB do x Ð p; r : TB]]` [[ΓB do x Ð q; r : TB]] [by def. of [[ ]]]

= [[ΓB do x Ð p; r + do x Ð q; r : TB]]. [by def. of [[ ]]]

Axiom (dist+2 ):

[[ΓB do x Ð r; (p + q) : TB]]

= ([[Γ, x : AB p : TB]]` [[Γ, x : AB p : TB]]) �

τ[[Γ]],[[A]] � [[ΓB r : TA]]
[by def. of [[ ]]]
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= [[Γ, x : AB p : TB]] � τ[[Γ]],[[A]] � [[ΓB r : TA]] `

[[Γ, x : AB p : TB]] � τ[[Γ]],[[A]] � [[ΓB r : TA]]
[by def. of `]

= [[ΓB do x Ð r; p : TB]]` [[ΓB do x Ð r; q : TB]] [by def. of [[ ]]]

= [[ΓB do x Ð r; p + do x Ð r; q : TB]]. [by def. of [[ ]]]

Completeness. We extend the syntactic construction from Theorem 1.16 where we have
build a strong monad TΣ,Φ. A strong additive monad PΣ,Φ is obtained by strengthening
the underlying equivalence relation � up to provable equivalence in ME+. We define

�A,B := [x : AB∅ : TB]�,

[x : AB p : TB]� `A,B [x : AB p : TB]� := [x : AB p + q : TB]�.

By virtue of the proof of Theorem 1.16 we only need to show that so defined strong
monad PΣ,Φ is indeed a strong additive monad.

It is easy to see that ` and � satisfy all the axioms of join semilattices – basically, all of
them appear explicitly in the calculus. E.g., commutativity follows from (comm+): [x :
AB p : TB]� ` [x : AB q : TB]� = [x : AB p + q : TB]� = [x : AB q + p : TB]� = [x :
AB q : TB]�` [x : AB p : TB]�. Similarly, using the axioms (dist+2 ), (dist+1 ), (dist∅1 ), (dist∅2 ),
one can prove distributivity of binding over finite joins.

Finally, the proof of (2.1) and (2.2) run as follows:

τA,B〈idA,�〉

= [(x : A, p : B)B do y Ð ∅; ret〈x, y〉]� = [∅]� = �, [by (dist∅1 )]

τA,B〈idA, [x : AB p : TB]� ` [x : AB q : TB]�〉

= [(x : A, p : B)B do y Ð (p + q); ret〈x, y〉]�
= [(x : A, p : B)B do y Ð p; ret〈x, y〉]� `

[(x : A, p : B)B do y Ð q; ret〈x, y〉]� [by (dist+1 )]

= τA,B〈idA, [x : AB p : TB]�〉` τA,B〈idA, [x : AB q : TB]�〉.

The proof of the theorem is thus completed.

Theorem 2.7 justifies the use of the computational metalanguage for strong additive
monads. From now onwards we can use it safely for all kinds of arguments instead of
the language of morphisms and commutative diagrams. Our next milestone is proving
that the theory of strong additive monads is decidable. To that end, we complete the
reduction system in page 26 by the following rules:
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σ-rules:

p +∅ � p

∅+ p � p

do x Ð p;∅ � ∅

do x Ð ∅; p � ∅

do x Ð (p + q); r � do x Ð p; r + do x Ð q; r

do x Ð p; (q + r) � do x Ð p; q + do x Ð p; r

We refer to the top two lines of this system as σ0-rules and to the two bottom lines by
σ1-rules. Hence,�σ = (�σ0 Y�σ1).

Lemma 2.8. The combined reduction relation �βησ is strongly normalising with respect to
�-normal programs iff the combined reduction relation�βσ1 is too.

Proof. In perfect analogy with the proof of Lemma 1.23 one can easily ensure that�βσ1

quasi-commutes over�ησ0 . As the relation�ησ0 is size-decreasing, and hence termi-
nating, by Lemma 1.19 this implies the claim.

The relation�βσ1 and thus (by Lemma 2.8)�βησ indeed turn out to be strongly nor-
malising with respect to �-normal programs. A strict proof of this fact calls for some
background knowledge concerning multisets. First, we adopt the following notation.
Let us denote by Ha1, . . . , anI the multiset, consisting of elements a1, . . . , an (analogous
to {a1, . . . , an} in the case of sets). In particular, H I shall denote the empty multiset. As
in the case of sets, the comprehension construction H f (x1, . . . , xn) | x1 P a1, . . . , xn P anI
forms a new multiset out of the multisets a1, . . . , an by replacement, with xi, ranging
over elements of ai in respect of multiplicity. For example, Hdo x; y | x P Ha, aI, y P
Ha, bII shall denote H(do a; a), (do a; b), (do a; a), (do a; b)I. No other special notation
for multisets shall be used. Instead, the usual operators over sets shall be overridden,
e.g. sY t, with s and t being multisets, shall denote the multiset union, i.e. the union
respecting multiplicity.

Given a strict poset (A,¡), one can derive a strict partial order ¡m over multisets with
elements in A as the closure under multiset union and transitivity of the clauses

HaI ¡m Hb1, . . . , bnI if a ¡ bi for all i.

A core result from this ordering is the following lemma, originally proved in [DM79].

Lemma 2.9. If the partial order ¡ is well-founded then so is ¡m.

Let us introduce a recursive operation m taking single programs to finite multisets of
(+-free) programs by the equation m(p + q) = m(p)Ym(q) and distributing over the
remaining term constructors, e.g. m(do x Ð p; q) = Hdo x Ð s; t | s P m(p), t P m(q)I.
Essentially, m being applied to a program lets all the term constructors distribute over
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choice (even though this is semantically unsound) and then converts the obtained
grand choice into a multiset. Operator m extends to contexts in the obvious man-
ner, resulting in a multiset of contexts. Given any context C, we denote by m0(C)
the part of m(C) consisting of the contexts not containing the hole, i.e. essentially of
programs and by m1(C) the remaining contexts with precisely one hole. By definition,
m(C) = m0(C)Ym1(C).

Lemma 2.10. For any program t and any context C:

m(C{t}) = HD{s} | D P m1(C), s P m(t)IYm0(C).

Unfortunately, the naive guess that m(C{t}) = HD{s} | D P m(C), s P m(t)I in not
generally correct. Specifically, it can be falsified by the example: C := l+ r, t := p + q.
Indeed, we have:

m(C{t}) = m((p + q) + r) = Hp, q, rI � Hp, q, r, rI = HD{s} | D P Hl, rI, s P Hp, qII.

Proof. Induction over the term complexity of C. The claim is trivial if C .
= l or if C

does not contain l. Otherwise we proceed by case analysis.

Let the topmost constructor of C be not choice and let C .
= M{K}, where K is the

maximal context distinct from C. Equivalently, K is the maximal proper subterm
of C containing l, and hence it is uniquely defined. Then by definition:

m(C{t}) = m(M{K{t}})

= HD{s} | D P m1(M), s P m(K{t})I

= HD{E{s}} | D P m1(M), E P m1(K), s P m(t)I Y

HD{s} | D P m1(M), s P m0(K)I [by ind.]

= HD{s} | D P m1(M{K}), s P m(t)IYm0(M{K})

= HD{s} | D P m1(C), s P m(p)IY m0(C).

Let C = K + r. Then

m(C{t}) = m(K{t})Y m(r)

= HD{s} | D P m1(K), s P m(p)IY m0(K)Y m(r) [by ind.]

= HD{s} | D P m1(K + r), s P m(p)IY m0(K + r)

= HD{s} | D P m1(C), s P m(p)IY m0(C).

Let C = r + K. It follows by symmetry from the previous case.

Let us denote by |t|x the number of occurrences of the variable x in term t.
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Definition 2.11 (Linear and simple programs). A program t is linear in x if for any
r P m(t), |r|x ¤ 1 and simple if for every subterm of it of the form (do x Ð p; q), q is
linear in x.

For example, (do x Ð p; (x + x)) is a simple program, but (do x Ð p; x; x) is not.

Lemma 2.12. Let p and q be two simple programs and let q be linear in some variable x. Then
the program q[p/x], if well-defined, is also simple.

Proof. Suppose, p, q are simple and q is linear in x. W.l.o.g. x does not occur in p. If q
does not depend on x then we are trivially done. Otherwise we proceed by induction
over n, the number of free occurrences of x in q. Let C be the context, obtained from q
by replacing the last occurrence of x by l. Then, of course, q[p/x] .

= C{p}[p/x]. Since
C{p} contains at most n� 1 free occurrences of x, we will be done by induction hypoth-
esis once we prove that C{p} is simple and linear in x. Observe that by Lemma 2.10:

m(C{p}) = HD{w} | D P m1(C), w P m(p)IYm0(C).

Since x R Vars(p), for any t P m(C{p}), |t|x ¤ max{maxDPm1(C) |D|x, maxDPm0(C) |D|x} =

maxDPm(C) |D|x ¤ maxsPm(q) |s|x ¤ 1 and thus C{p} is linear in x. We are left to prove
the simplicity of C{p}.

Let (do z Ð u; r) be a subterm of C{p} and show that r is linear in z. Note that if
(do z Ð u; r) is a proper subterm of p then we are done by assuming the simplicity
of p. Otherwise C has one of the forms K{do z Ð M; r} or K{do z Ð u; M}. In the
former case, r is linear in z by the definition of C. In the latter case, observe that p
may not depend on z because C{p}[p/x] .

= K{do z Ð u; M{p}}[p/x] � q[p/x]. Since
q .
= C{x} = K{do z Ð u; M{x}} is simple, M{x} is linear in z. By Lemma 2.10:

m(M{p}) = HD{w} | D P m1(M), w P m(p)IYm0(M),

m(M{x}) = HD{w} | D P m1(M), w P m(x)IYm0(M)

from which it is clear by definition that the linearity of M{x} in z and the fact that
z R Vars(p) imply the linearity of r .

= M{p} in z. Therefore r is linear in z.

Lemma 2.13. Let s�βσ1 t for some programs s and t. Then if s is simple, t is also simple. If s
is moreover linear in some variable z, then so is t.

Proof. First we prove the lemma if s� t is a rule instance. As usual, the most involved
is the case of the second unit law (do x Ð ret p; q)� q[p/x]. Let us consider it in detail
and drop the remaining rules, whose verification runs analogically.

Suppose (do x Ð ret p; q) is simple; in particular, q is linear in x. Then by Lemma 2.12
q[p/x] is also simple. Now suppose that (do x Ð ret p; q) is moreover linear in some
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variable z. In particular, p and q cannot both contain z, because otherwise there would
exist u P m(p) and r P m(q) such that |u|z ¥ 1, |r|z ¥ 1 and thus for (do x Ð ret u; r) P
m(do x Ð ret p; q) we would have |do x Ð ret p; q|z ¥ 2, contradicting linearity in z.
As a result, every r P m(q[p/x]) = m(C{p}) = HD{u} | D P m1(C), u P m(p)IY m0(C)
contains not more than one occurrence of z, i.e. by definition, q[p/x] is linear in z.

Finally, let us consider the general case, i.e. for some context C and a βσ1-rule p� q,
s .
= C{p} and t .

= C{q}. Suppose s is simple and linear in some variable z. We prove
that t is also simple and linear in z by induction over the complexity of C. The base
case C .

= l is the one we have proved above. If C does not contain l then t .
= s and

hence t is simple and linear in z. Let us proceed with the induction step under the
assumption that C does contain l. Let C .

= M{K} be a decomposition of C where K
is chosen to be the maximal proper subterm of C containing l. By induction, K{q} is
simple and linear in z. Note that C can be obtained from K by applying precisely one
term-formation rule. It is clear that all these rules, except the rule for binding, preserve
simplicity and linearity in z, i.e. we will be done once we prove the following two cases.

M .
= (do y Ð l; r) with some program r. By assumption, s .

= (do y Ð K{p}; r)
is simple and linear in z. Therefore, both K{p} and r are simple, linear in z, and
moreover r is linear in y. By induction hypothesis, K{q} is simple and linear in z.
Therefore, by definition, t .

= (do y Ð K{q}; r) is simple. Note that z cannot
occur both in K{p} and in r — the opposite would contradict the linearity of s in
z. Since the set of free variables cannot grow at rewriting, z cannot occur both in
K{q} and in r. Together with the other facts, this results in the linearity of t in z.

M .
= (do y Ð u;l) with some program u. By assumption s .

= (do y Ð u; K{p})
is simple and linear in z. Therefore, both K{p} and r are simple, linear in z, and
moreover K{p} is linear in y. By induction hypothesis, K{q} is simple and linear
both in z and in y. By definition, t .

= (do y Ð u; K{q}) is simple. By the same
argument as in the previous clause, only one of the u, K{q} may contain z, and
therefore t is linear in z.

If one only assumes that s is simple without requiring linearity, then the simplicity of t
can be shown by introducing a false variable z.

Lemma 2.14. The reduction relation�βσ1 is strongly normalising with respect to simple pro-
grams.

Proof. Both relations �β and �σ1 taken individually are strongly normalising. The
proof of this fact for the first relation is certified by Theorem 1.24. We prove the strong
normalisation property of the second one by picking out an appropriate polynomial
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interpretation (cf. e.g. [BN98]). Let us put into correspondence with every monad op-
erator a polynomial of the corresponding arity over positive naturals as follows.

P(∅) := 1, P(+) := X1 + X2, P(do x Ð ; ) := X2
1 � X

2
2 .

This extends in a standard way to all terms built from deadlock, choice, binding and
variables (P can be defined over variables arbitrarily). In order to prove that the rela-
tion�σ1 is terminating, it suffices to make sure that for every σ1-rule the polynomial
interpretation of the left-hand side is strictly greater than the polynomial interpretation
of the right-hand side. E.g. we have:

P(do x Ð p; (q + r)) = P(p)2 � P(q + r)2 = P(p)2 � (P(q) + P(r))2

¡ P(p)2 � P(q)2 + P(p)2 � P(r)2 = P(do x Ð p; q + do x Ð p; r).

The other rule then follows by symmetry.

Let us prove the strong normalisation of the combined relation�βσ1 by contradiction:
suppose for some simple program t1 there exists an infinite reduction chain

t1� t2� . . . (2.4)

Observe that, by Lemma 2.13, the simplicity of t implies the simplicity of all the ti. Let
¡ be the multiset extension of the strict well-founded partial order�β (Theorem 1.24).
By Lemma 2.9 ¡ also must be well-founded. We would like to show that for every i,
m(ti) © m(ti+1), in particular, the inequality becomes strict for the case of β-reduction.

For every i if ti�σ1 ti+1 then m(ti) = m(ti+1). Indeed, suppose ti
.
= C{p}, ti+1

.
= C{q}

and p� q is an instance of a σ1-rule. It directly follows from the definition of m that
m(p) = m(q). By Lemma 2.10:

m(ti) = m(C{p})

= HD{s}|D P m1(C), s P m(p)IYm0{C}

= HD{s}|D P m(C), s P m(q)IYm0(C)

= m(C{q}) = m(ti+1).

On the other hand, if ti�β ti+1 then m(ti) ¡ m(ti+1). The proof of this fact is more
involved. First, consider the case when ti�β ti+1 is an instance of some β-rule p� q.
For most of the β-rules the inequality m(p) ¡ m(q) is immediately seen. The only
interesting case is, as usual, the second unit law: p .

= (do x Ð ret u; r), q .
= r[u/x]. By

definition, we have: m(do x Ð ret u; r) = Hdo x Ð ret t; s | t P m(u), s P m(r)I which is
strictly greater than Hs[t/x] | t P m(u), s P m(r)I. We are left to prove that

Hs[t/x] | t P m(u), s P m(r)I © m(r[u/x]). (2.5)
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Let us proceed by induction over the term complexity of r. If r .
= x or r does not depend

on x, the proof is trivial. We have two principal cases to verify.

r does not have the choice operator on top. Let r .
= M{w} where w is the maximal

proper subterm of r containing x, and M is an appropriate context. Note that
m(M) = m1(M) (hence m0(M) = H I) and M[u/x] .

= M. Also, observe that r is
obtained from w by applying precisely one term-formation rule, and this rule is
not choice introduction. We have by Lemma 2.10:

m(r[u/x]) = m(M[u/x]{w[u/x]})

= HD{t} | D P m(M), t P m(w[u/x])I

¨ HD{s[t/x]} | D P m(M), t P m(u), s P m(w)I

= H(D{s})[t/x] | t P m(u), D P m(M), s P m(w)I

= Hs[t/x] | t P m(u), s P m(M{w})I

and thus the proof of (2.5) is completed.

r .
= r1 + r2 with some programs r1, r2. Then the proof of (2.5) runs by Lemma 2.10:

m(r[u/x]) = m(r1[u/x] + r2[u/x])

= m(r1[u/x])Ym(r2[u/x])

¨ Hs[t/x] | t P m(u), s P m(r1)IY Hs[t/x] | t P m(u), s P m(r2)I

= Hs[t/x] | t P m(u), s P m(r1)Ym(r2)I

= Hs[t/x] | t P m(u), s P m(r1 + r2)I.

More generally, let ti
.
= C{p}, ti+1

.
= C{q} where p� q is a β-rule instance. Then by

Lemma 2.10: m(ti) = m(C{p}) = HD{s} | D P m1(C), s P m(p)IY m0(C) which is
strictly greater than HD{r} | D P m1(C), r P m(q)IYm0(C) = m(C{q}) because, as we
have proved above, m(p) ¡ m(q).

At this point we have constructed an infinite chain of finite multisets of programs m(t1),
m(t2), . . . such that for very i either m(ti) ¡ m(ti+1) or m(ti) = m(ti+1). If the number
of pairs (ti, ti+1) falling into the former class is infinite we establish a contradiction
with the property of ¡ of being well-founded. Otherwise, starting from some position
of (2.4) onwards, we constantly have m(ti) = m(ti+1). Therefore, some tail of (2.4) must
entirely consist of σ1-reductions, which contradicts the strong normalisation of �σ1 .

Lemma 2.15. If p[x/y]�βσ1 q for some programs p and q, then there exists a program r such
that p�βσ1 r and r[x/y] = q.
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Proof. Let e.g. p[x/y] .
= C{s}, q .

= C{t} where s� t is a βσ1-rule instance. It can
easily be seen by induction over the term complexity of C that p is of the form K{w}
where C .

= K[x/y], s .
= w[x/y]. Observe that all the βσ1-rules are left-linear in the sense

of rewriting theory, i.e. the left-hand side of any βσ1-rule does not contain duplicate
metavariables. As a result, w[x/y]� t must be a specification of some more general
βσ1-rule instance w� u for which u[x/y] .

= t. Therefore q .
= C{t} .

= K[x/y]{u[x/y]} .
=

K{u}[x/y]. The proof is now completed by putting r := K{u}.

Lemma 2.16. The reduction relation�βησ is confluent and strongly normalising with respect
to �-normal programs.

Proof. We agree that all the programs mentioned in the proof are supposed to be �-nor-
mal, without saying this explicitly. Let us denote by t↓x

x̄ the term that is obtained from
t by replacing the i-th occurrence of x (if any) by xi.

Strong normalisation. By Lemma 2.8 it suffices to prove the strong normalisation of
�βσ1 . To that end, we show that every infinite chain of βσ1-reductions gives rise to an
infinite chain of βσ1-reductions, entirely consisting of simple programs. Therefore the
strong normalisability result in question will follow by contradiction with Lemma 2.14.
In order to implement the outlined idea let us introduce an auxiliary reduction relation
�s (carrying out no apparent monad-based interpretation) by the following rules:

(do x Ð p; y Ð p; q) � (do x Ð p; q[x/y]) (x R FV(p))

(do x Ð p; y Ð q; r) � (do y Ð q; x Ð p; r) (x R FV(q), y R FV(p))

(t + s) � t

(t + s) � s

and a recursive operator ς over programs defined for binding by the assignment:

ς(do x Ð p; q) := do x1 Ð ς(p); . . . ; xn Ð ς(p); ς(q)↓x
x̄

where n := max{1, |q|x}, all the xi are fresh and by letting ς distribute over the other
operations, e.g. ς(p + q) := ς(p) + ς(q). It is easy to see by definition that for any t, ς(t)
is a simple program and ς(t)��

s t (in fact, the first s-rule suffices).

We will be done once we prove that�βσ1 quasi-commutes over�s (see Definition 1.18).
Indeed, suppose we are given an infinite sequence of βσ1-reductions starting from some
program t and establish contradiction. Let us complete the chain at hand by attaching
the sequence of s-reductions ς(t)��

s t on the front. In particular, we obtain thus an
infinite reduction:

ς(t)��
βσ1s t�βσ1 .�βσ1 . . .
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By Corollary 1.21 we can rearrange the transitions of this chain so as to obtain an arbi-
trary long prefix of βσ1 transitions in front. Since the starting term ς(t) is simple, all the
following terms reachable by βσ1 are also simple. Contradiction with Lemma 2.14.

Proving the the quasi-commutation property is predictably laborious and falls into
(4 + 2) � 4 = 24 cases of rule combinations. Let us vary over s-reductions.

1. Suppose we have rewritten w := C{do x Ð t; y Ð t; s} to C{do x Ð t; s[x/y]}
by the first s-rule and then rewritten the result by�βσ1 once. For the obtained
two-step reduction, we need to find an equivalent with the profile .�βσ1 .��

βσ1s .

If the βσ1-redex is parallel to the s-contractum, then the reduction in question is
trivial. Suppose the βσ1-redex is a proper subterm of the s-contractum. Then the
βσ1-redex is either a subterm of t or a subterm of s[x/y]. In the former case the
reduction in question is straightforward; in the latter case it is easily found by
Lemma 2.15. Finally, suppose that the βσ1-redex is a superterm of the s-contrac-
tum. In this case we have a bunch of special cases for different mutual arrange-
ments of the s-contractum and the βσ1-redex depending on the βσ1-rule applied.
We consider only the least straightforward cases of βσ1-rules: the second unit law
and the associativity law. There are three principal opportunities for rewriting by
the second unit law. We consider them one by one.

Let C .
= K{do z Ð ret M; p} and the βσ1-reduction has from:

K
{

do z Ð ret M{do x Ð t; s[x/y]}; p
}
�K

{
p[M{do x Ð t; s[x/y]}/z]

}
.

Then the reduction in question is as follows:

w .
= K

{
do z Ð ret M{do x Ð t; y Ð t; s}; p

}
�β K

{
p
[
M{do x Ð t; y Ð t; s}/z

]}
��

s K
{

p
[
M{do x Ð t; s[x/y]}/z

]}
.

Let C .
= K{do z Ð ret p; M} and the βσ1-reduction has from:

K
{

do z Ð ret p; M{do x Ð t; s[x/y]}
}
�K

{
M{do x Ð t; s[x/y]}[p/z]

}
.

Then the reduction in question is as follows:

w .
= K

{
do z Ð ret p; M{do x Ð t; y Ð t; s}

}
�β K

{
M{do x Ð t; y Ð t; s}[p/z]

}
.
= K

{
M[p/z]

{
do x Ð t[p/z]; y Ð t[p/z]; s[p/z]

}}
�s K

{
M[p/z]

{
do x Ð t[p/z]; s[p/z][x/y]

}}
.
= K

{
M
{

do x Ð t; s[x/y]
}
[p/z]

}
.
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Let t be of the form ret p and the βσ1-reduction is:

C{do x Ð ret p; s[x/y]}�C{s[x/y][p/x]}.

Then the following reduction:

w .
= C{do x Ð ret p; y Ð ret p; s}

�β C{do x Ð ret p; s[p/y]}

�β C{s[p/y][p/x]}

resolves the problem, since evidently C{s[p/y][p/x]} .
= C{s[x/y][p/x]}.

Concerning the associativity law, if the s-contractum is covered by a term matched
against some metavariable from the left-hand side of the associativity law, then
the reduction in question is straightforward. Consider the remaining options.

Let C .
= K{do z Ð l; r} and the βσ1-reduction is:

C{do z Ð (do x Ð t; s[x/y]); r}�C{do x Ð t; z Ð s[x/y]; r}.

Then the reduction in question is as follows:

w .
= K{do z Ð (do x Ð t; y Ð t; s); r}

�β K{do x Ð t; z Ð (do y Ð t; s); r}

�β K{do x Ð t; y Ð t; z Ð s; r}

�β K{do x Ð t; (do z Ð s; r)[x/y]}
.
= K{do x Ð t; z Ð s; r[x/y]}

Let t .
= (do z Ð p; q) and the βσ1-reduction has the form:

C
{

do x Ð (do z Ð p; q); s[x/y]
}
�C

{
do z Ð p; x Ð q; s[x/y]

}
and we are done by the reduction sequence:

w .
= C{do x Ð (do z Ð p; q); y Ð (do z Ð p; q); s}

�β C{do x Ð (do z Ð p; q); z Ð p; y Ð q; s}

�s C{do z Ð p; x Ð (do z Ð p; q); y Ð q; s}

�β C{do z Ð p; v Ð p; x Ð q[v/z]; y Ð q; s}

�s C{do z Ð p; x Ð q; y Ð q; s}

�s C{do z Ð p; y Ð q; s[x/y]}.

Here v is a fresh variable of the same type as z.
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2. Suppose we have rewritten w := C{do x Ð t; y Ð s; r} to C{do y Ð s; x Ð t; r}
by the second s-rule. We stick to the case of further βσ1-rewriting by the second
unit law and omit verification of the remaining βσ1-rules. The preliminary anal-
ysis from the previous clause perfectly applies here. If the βσ1-redex is a proper
subterm of the s-contractum, the only nontrivial case is as follows: t .

= ret p and
the βσ1-reduction is:

C{do y Ð s; x Ð ret p; r}�C{do y Ð s; r[p/x]}

Then the source two-step reduction can be collapsed to:

C{do x Ð ret p; y Ð s; r}�β C{do y Ð s; r[p/x]}

and we are done. Let us consider the remaining case, i.e. the one when the βσ1-re-
dex is a superterm of the s-contractum. It falls into the following subcases.

Let C .
= K{do z Ð ret M; p} and the βσ1-reduction is

K
{

do z Ð ret M{do y Ð s; x Ð t; r}; p
}
�K

{
p[M{do y Ð s; x Ð t; r}/z]

}
.

Then the reduction in question is as follows:

w .
= K

{
do z Ð ret M{do x Ð t; y Ð s; r}; p

}
�β K

{
p[M{do x Ð t; y Ð s; r}/z]

}
�s K

{
p[M{do y Ð s; x Ð t; r}/z]

}
.

Let C .
= K{do z Ð ret p; M} and the βσ1-reduction is

K
{

do z Ð ret p; M{do y Ð s; x Ð t; r}
}
�K

{
M{do y Ð s; x Ð t; r}[p/z]

}
.

Then the reduction in question is as follows:

w .
= K

{
do z Ð ret p; M{do x Ð t; y Ð s; r}

}
�β K

{
M{do x Ð t; y Ð s; r}[p/z]

}
.
= K

{
M[p/z]{do x Ð t[p/z]; y Ð s[p/z]; r[p/z]}

}
�s K

{
M[p/z]{do y Ð s[p/z]; x Ð t[p/z]; r[p/z]}

}
.
= K

{
M{do y Ð s; x Ð t; r}[p/z]

}
.

are the reductions in question.

Let s be of the form ret p with some p, and the βσ1-reduction is

C{do y Ð ret p; x Ð t; r}�C{do x Ð t; r[p/y]}
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Then the source two-step reduction can be collapsed to:

C{do x Ð t; y Ð ret p; r}�β C{do x Ð t; r[p/y]}

and we are done.

3. Suppose we have rewritten w := C{t + s} to C{t}. If the redex of the following
one-step βσ1-reduction is a subterm of t then the reduction in question is straight-
forward. Consider the remaining case: the βσ1-redex is a proper superterm of t.
Suppose e.g. the βσ1-reduction is by the second unit law. We proceed by case
analysis.

Let C .
= K{do x Ð ret M; p} and the βσ1-reduction is:

K
{

do x Ð ret M{t}; p
}
�K

{
p[M{t}/x]

}
and we are done by the reduction:

w .
= K

{
do x Ð ret M{t + s}; p

}
�β K

{
p[M{t + s}/x]

}
��

s K
{

p[M{t}/x]
}

.

Let C .
= K{do x Ð ret p; M} and the βσ1-reduction is:

K
{

do x Ð ret p; M{t}
}
�K

{
M{t}[p/x]

}
.

Then we are done by the reduction

w .
= K

{
do x Ð ret p; M{t + s}

}
�β K

{
M{t + s}[p/x]

} .
= K

{
M[p/x]{t[p/x] + s[p/x]}

}
�s K

{
M[p/x]{t[p/x]}

} .
= K

{
M{t}[p/x]

}
.

Let C .
= K

{
do x Ð l; p

}
, t .

= ret r with some r, and the βσ1-reduction is:

K
{

do x Ð {ret r}; p
}
�K

{
p[r/x]

}
.

Then we are done by the reduction:

w .
= K

{
do x Ð (ret r + s); p

}
�σ1 K

{
do x Ð ret r; p + do x Ð s; p

}
�s K

{
do x Ð ret r; p

}
�β K

{
p[r/x]

}
.

The other βσ1-reductions are handled analogously.
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4. Finally the case when C{t + s} rewrites to C{s} under the fourth s-rule follows
by symmetry from the previous clause.

Confluence. By the strong normalisation property we have just established and New-
man’s Lemma (cf. e.g. [Klo92]) it suffices to prove local confluence. As βη-reduction is
locally confluent by Lemma 1.23 it is only necessary to consider the spans of the form:

. βη� .�σ . and . σ� .�σ .

The precise analysis is routine and runs in the same way as in Lemma 1.23.

Theorem 2.17. The reduction relation�βησ� is confluent and strongly normalising.

Proof. The proof is the same as the proof of Theorem 1.24 with all the ‘βη’ replaced by
the ‘βησ’ and with the call of Lemma 1.23 replaced by the call of Lemma 2.16.

In the sequel we use the shortening m := βησ�. The result of normalisation of term t
under m shall be preferably denoted by nf(t) (rather than the default nfm(t)). Unless
said otherwise, we will use in the sequel terms ‘normal’, ‘normalise’, etc. as equivalents
of the terms ‘m-normal’, ‘m-normalise’, etc.

Recall that � denotes equivalence modulo the ACI-laws.

Theorem 2.18 (Church-Rosser modulo ACI). For any p and q,$ME+ p = q iff nf(p) � nf(q).

Proof. Obviously nf(p) � nf(q) implies$ME+ p = q. Let us assume that$ME+ p = q and
show the equivalence nf(p) � nf(q). Let us denote by � the symmetric congruent clo-
sure of the ACI-laws and observe that by Lemma 1.15, p (� Y�mY m�)� q, i.e. there
exists n such that

w1 := p ñ w2 ñ . . . ñ wn := q

whereñ P {�,�m, m�}. Let us show by induction over n that the claim follows from
the following statement:

for every s, t such that s � t, nf(s) � nf(t). (�)

If n = 0 then p .
= q and we are trivially done. Let n ¡ 0 then p ñ . . . ñ wn�1 ñ q. By

induction hypothesis, nf(p) � nf(wn�1). Let us proceed by case distinction. If wn�1 � q
then by (�), nf(wn) � nf(q) and thus nf(p) � nf(q). If wn1�m q or wn1 m� q then
nf(wn) � nf(q) and again nf(p) � nf(q). We will be done once we prove (�).

If s and t are related either by associativity or by commutativity, (�) follows from the
more general properties of �m called Church-Rosser modulo associativity and Church-
Rosser modulo commutativity which in turn by [JM84] follow from local commutation of
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�m over associativity and commutativity correspondingly. E.g. in case of associativity
in order to ensure local commutation, we need to show that whenever t is obtained
from s by a one-time application of the associativity law and for some r, s�m r then
there exist u such that t�+

m u and r, u are equal up to associativity. The latter can be
easily verified by routine analysis of the m-rules one by one.

Unfortunately,�m fails to locally commute over idempotence which can be exempli-
fied as follows:

(
fst〈a, b〉+ a

)
m�

(
fst〈a, b〉+ fst〈a, b〉

)
� fst〈a, b〉 but fst〈a, b〉 can not

be m-reduced to whatsoever equivalent to
(
fst〈a, b〉+ a

)
by idempotence. We thus take

another approach. Specifically, we introduce a reduction relation�i generated by the
rule u + u� u. It is easy to see that �m quasi-commutes (see Definition 1.18) over
�i. By Lemma 1.19 the combined relation �mi := �mY�i is strongly normalis-
ing. By immediate case analysis one can easily establish local confluence of�mi. By
Newman’s Lemma (cf. e.g. [Klo92]), we conclude that �mi is confluent. In order to
prove (�), suppose e.g. that s i-reduces to t in one step. Then by confluence, there ex-
ists r such that nf(s)��

mi r and nf(t)��
mi r. Since by Lemma 1.22,��

m commutes over
��

i , w.l.o.g. nf(s)��
m .��

i r and nf(t)��
m .��

i r. Note that neither nf(s) nor nf(t) can
be rewritten under�m because both of them are already normal. Therefore, we have:
nf(s)��

i r �
i� nf(t). In particular, nf(s) � nf(t). The proof is thus completed.

Corollary 2.19 (Decidability of ME+). Program equality in ME+ is decidable.

Remark 2.20. As we have noted in the introduction, our axiomatisation of nondeter-
minism is rather strong. One can easily obtain weaker axiomatisation by dropping
some axioms. E.g. by dropping the ACI-laws one can obtain an axiomatisation of a list
monad. If one only drops the idempotence law, one obtains an axiomatisation that is
sound for multiset monads, etc. In a similar way, one can drop some controvertible re-
duction rules, such as the left distributivity of binding over choice (though this would
be inappropriate for process algebra), preservation of ∅ on the right by binding or per-
haps the entire equation about ∅ altogether. The strong normalisation result we have
obtained would imply strong normalisation in all these cases, and the corresponding
decidability theorem would be provable using the same argument, without any essen-
tial modifications.

Given a data theory E over a plain signature, we denote by�E the smallest congruence,
encompassing the equations from E as well as all the instances of ACI-laws.

Theorem 2.21 (Church-Rosser modulo �E). Let Σ be a plain signature and let E be a data
theory over it. Then for every programs p and q over Σ, E $ME+ p = q iff nf(p) �E nf(q).

Proof. Evidently, nf(p) �E nf(q) implies E $ME+ p = q. Let us assume E $ME+ p = q
and prove that nf(p) �E nf(q). Let � be the abbreviation for (� Y �E). By defini-
tion, �E is precisely the transitive closure of �. Observe that by Lemma 1.15, p (�
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Y�mY m�)� q, i.e. there exists n such that

w1 := p ñ w2 ñ . . . ñ wn := q

where ñ P {�,�m, m�}. In the same way as in Theorem 2.18, we can reduce the
problem to the following:

for every s, t such that s � t, nf(s) �E nf(t). (�)

If s, t in (�) are related by one of the ACI-laws, we are done by Theorem 2.18. As-
sume that for some s, t, the equivalence s � t in (�) refers to s �E t. Observe that by
Lemma 1.33, ��E is preserved by nfβη�. It is straightforward to see that ��E is also pre-
served by nfσ. Therefore ��E is preserved by nfm and thus nf(s) ��E nf(t). In particular,
nf(s) �E nf(t) which completes the proof of (�).

Corollary 2.22. Given a data theory E over some plain signature, program equality in ME+

modulo E is decidable, provided the conditional word problem in E is decidable.

2.3 Contribution and related work

In the present chapter we have introduced an extension of the metalanguage of effects
for nondeterminism together with an associated equational calculus ME+. We have jus-
tified the notion of a strong additive monad and proved a soundness and completeness
theorem. Our notion of an additive monad is rather strong. Essentially, it can be viewed
as a further development of the Hasekell’s MonadPlus type class (cf .e.g. [KSFS05]). An
alternative notion of an additive monad is being promoted by Bart Jacobs et al. Start-
ing from the observation that the functorial part of a powerset monad possesses the
isomorphisms:

P(X + Y) � P(X)�P(Y), P(0) � 1

one can introduce the analogous laws for any monad and interpret them as the require-
ment for being additive. When taking this approach, Kleisli hom-sets become naturally
enriched very similarly, as required in Definition 2.1. It is remarkable, though, that in
this case choice generally fails to be idempotent. Apart from that, Definition 2.1 turns
out to be provable as a theorem [CJ10], which shows in particular that in a certain re-
spect our definition of an additive monad is more general. It should also be noted that
the definition from [CJ10] involves more categorical structure, e.g. it implies the exis-
tence of coproducts. In the view of Theorem 1.37, this does not seem to present an
essential difference though.
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The most important technical result we have achieved is the strong normalisation the-
orem (Theorem 2.17). The closest similar result now seems to be strong normalisation
of nondeterministic λ-calculus established by de Groote [Gro94]. De Groote’s proof is
tied to logical derivability in a Gentzen-type system via the Curry-Howard correspon-
dence, and it more or less resembles the classical reducibility argument for the simply
typed λ-calculus (cf. e.g. [GTL89]). In spite of the similarity between our reduction
system and the reduction system from [Gro94], we did not find any reasonable way to
adapt the existing technique and thus developed a completely different proof based on
entirely syntactical considerations inspired by the abstract reduction system theory.

As a consequence of the strong normalisability theorem, we obtained a decidability re-
sult (Corollary 2.19) for the the calculus of strong additive monads ME+. The latter did
not immediately follow from the strong normalisability theorem because the rewriting
system did not capture associativity, commutativity and idempotence of nondetermin-
istic choice. In order to to prove decidability we made use of the standard theorems
about rewriting modulo a set of equations [JM84] which still did not suffice for the par-
ticularly troublesome case of the idempotence law. The latter was therefore handled
separately.



Chapter 3

Kleene monads

3.1 Introduction

The metalanguage of effects and its nondeterministic extension from the previous chap-
ter make a suitable background for studying effectful programs. They are powerful
enough to reason about finite programs, but they cannot be used for modelling real-
world programming languages due to the lack of support of iterative computations.
The most straightforward way to introduce a generic recursion principle is by claim-
ing the existence of certain fixed-point operators over hom-sets Hom(A, TB) and then
requiring that certain laws be satisfied, e.g. as it is done in [SP00]. Following this line
one can introduce rather rich system of various ‘syntactic’ notions of recursion and re-
lations between then. On the other hand, there can be a large gap between any such
notion of recursion and the real intuition about recursion. The latter can be reason-
ably formalised by assuming a complete order-enriched structure on Hom(A, TB) and
by imposing some sort of continuity condition over the operators over Hom(TA, TA).
Completeness of a syntactic notion of recursion with respect to an order-enriched in-
terpretation is a property that generally fails, and if it does hold, it usually turns out
to be difficult to prove. Still, we believe that even a restricted version of such a com-
pleteness theorem is a good argument to make the chosen notion of recursion an ap-
propriate one. And, of course, such a completeness result would immediately produce
at least a semi-deciding algorithm for proving program equivalence, which is a fact
of crucial importance when it comes to practical implementations. In view of recent
works [SP00, HK02b], one could expect such a completeness result in the case under
discussion. The principle possibility of such a completeness theorem goes back to the
works on iteration theories [BE93].

We take thus the following approach. We introduce the notion of a strong Kleene
monad as an extension of the notion of a strong additive monad by a Kleene star op-
erator. We introduce a class of strong continuous Kleene monads to be those strong

63
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Kleene monads which match the order-enriched intuition. Studying the correspon-
dence between the class of all strong Kleene monads and the class of strong continuous
Kleene monads is the primary focus for the remainder of this thesis.

3.2 Soundness and completeness

By definition, every Kleisli hom-set HomCT(A, B) of an additive monad T can be con-
sidered as a poset (HomCT(A, B),¤). The following definition is heavily inspired by
Kleene algebra axioms from [Koz94].

Definition 3.1 (Kleene monad). An additive monad T is a Kleene monad if the maps

f ÞÑ p` f � r and f ÞÑ p` r � f

both have least fixed points with respect to (Hom(X, TA),¤) (recall that � binds more
strongly than `), and one of the two equivalent conditions holds:

µ f . (p` f � r) � q = p � µ f . (q` r � f ) (3.1)

or

µ f . (p � q` f � r) = p � µ f . (q` f � r), (3.2)

µ f . (p � q` r � f ) = µ f . (p` r � f ) � q. (3.3)

A Kleene monad T is strong if it is a strong additive monad and the strength is contin-
uous in the following sense:

µ f .
(
τA,B(id�p)` τA,B(id�q) � f

)
= τA,B

(
id�µ f . (p` q � f )

)
where p, q P HomCT(A, B) and C is the underlying cartesian category of T.

Let us show that indeed (3.1) is equivalent to the conjunction of (3.2) and (3.3). As-
sume (3.1). Then µ f .(p � q` f � r) = p � q � µ f . (η ` r � f ) = p � µ f . (q` f � r), hence
(3.1) ùñ (3.2). By a symmetrical argument, also (3.1) ùñ (3.3).

Now assume (3.2) and (3.3). Let us first prove (3.1) with p = q = η. Since

η ` r � µ f . (η ` f � r)

= η ` r` r � µ f . (η ` f � r) � r [as fix-pt.]

= η ` (η ` r � µ f . (η ` f � r)) � r, [by def. of `]

η ` r � µ f . (η ` f � r) is a fixed point of the map f ÞÑ η ` f � r. Hence

η ` r � µ f . (η ` f � r) ¥ µ f . (η ` f � r).
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On the other hand, µ f . (η ` f � r) � r = r ` µ f . (η ` f � r) � r � r, which means that
µ f . (η` f � r) � r is a fixed point of f ÞÑ r` f � r. Hence µ f . (η` f � r) � r ¥ µ f . (r` f � r).
Add η to both sides and obtain

µ f . (η ` f � r) ¥ η ` r � µ f . (η ` f � r). (3.4)

From (3.2) and (3.4), we have µ f .(η ` f � r) = η ` r � µ f . (η ` f � r), which means that
µ f . (η` f � r) is a fixed point of f ÞÑ η` r � f , hence µ f .(η` f � r) ¥ µ f . (η` r � f ). By
the symmetrical argument µ f . (η ` r � f ) ¥ µ f .(η ` f � r). We have thus established

µ f . (η ` f � r) = µ f . (η ` r � f ). (3.5)

This implies the general case of (3.1) as follows:

µ f . (p ` f � r) � q

= µ f . (p � η ` f � r) � q [by 1.2, 1.5]

= p � µ f . (η ` f � r) � q [by 3.2]

= p � µ f . (η ` r � f ) � q [by 3.5]

= p � µ f . (η � q` r � f ) [by 3.3]

= p � µ f . (q` r � f ) [by 1.2, 1.5].

This completes the proof of the equivalence (3.1) ðñ (3.2)^ (3.3).

The continuity axiom for strength can be weakened a little.

Lemma 3.2. A strong additive Kleene monad T is a strong Kleene monad iff the inequation

µ f . (τA,B(id�p)` τA,B(id�q) � f ) ¥ τA,B(id�µ f . (p` q � f ))

holds for every p, q P HomCT(A, B) and C is the underlying cartesian category of T.

Proof. By definition, we need to show that the opposite inequality holds over all strong
additive Kleene monads. We will be done once we prove that τA,B(id�µ f . (p` q � f ))
is a fixed point of the map f ÞÑ τA,B(id�p)` τA,B(id�q) � f . Indeed, we have:

τA,B( id�µ f . (p` q � f ))

= τA,B(id�(p` q � µ f . (p` q � f ))) [as fix-pt.]

= τA,B(id�p)` τA,B(id�q � µ f . (p` q � f ))) [by 2.2]

= τA,B(id�p)` τA,B(id�q) � τA,B(id�µ f . (p` q � f )) [by 1.9]

and thus the proof is complete.
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Equation (3.1) is a minimal requirement for the Kleene star operator to be defined cor-
rectly. But typically, one deals with Kleene monads satisfying the somewhat more re-
strictive (but natural) condition of ω-continuity.

Definition 3.3 (ω-continuous Kleene monad). A (strong) Kleene monad is ω-continuous
if for every p, q and r, µ f . (p` f � r) � q (= p � µ f . (q` r � f )) is the least upper bound
of the family of morphisms having form p � r � . . . � r � q. In particular, if p = η then
µ f . (q` r � f ) is the supremum of {r � . . . � r � q} and if q = η then µ f . (p` f � r) is the
supremum of {p � r � . . . � r}.

Note that we do not introduce any additional axioms for strength continuity specific
for ω-continuity. Since we are not going to introduce any further notion of continuity,
the prefix ‘ω-’ shall be commonly omitted in the sequel.

All Kleene monads appearing naturally are continuous. Like in the case of additive
monads, the functorial parts of Kleene monads typically involve powerset. In partic-
ular, the powerset monad P and the countable powerset monad Pω can easily be seen
as strong continuous Kleene monads, unlike the finite powerset monad P f in, which is
a strong additive monad but not a Kleene monad.

One can view the powerset functor P as λX. 2X, which suggests the following gener-
alisation: by replacing 2 with Q where Q is a quantale object, i.e. an object carrying
the structure of a complete lattice with non-commutative multiplication [Ros90], from
which we obtain a quantale monad (cf. e.g [Jac10]). Every quantale monad is indeed a
strong continuous Kleene monad. Sensible instantiations of Q besides Q := 2 include
Q := 3 = 1 + 1 + 1, viewed as a domain of a three-valued logic and Q := [0, 1], i.e. the
real-valued interval with the standard complete lattice structure and the quantale mul-
tiplication put by definition equal to join. Quantales are commonly considered as stan-
dard models of Kleene algebras. The relation between Kleene algebras and quantales is
thus somewhat similar to the relation between continuous Kleene monads and Kleene
monads, but notably λX. QX does not make a Kleene monad if Q is only required to be
a Kleene algebra, and actually in this case λX. QX even fails to be a monad.

We would like to outline the class of strong (continuous) Kleene monads by proving an
analogue of Theorem 2.5. In order to simplify the calculations we introduce one more
class of monads with good modularity properties and still of interest in itself.

Definition 3.4 (Completely additive monads). A completely additive monad is a monad
whose Kleisli category is enriched over complete lattices. A strong completely additive
monad is a completely additive monad that is strong and such that for all objects A, B of
the underlying category ∆A,B is continuous, i.e. for every appropriate set of morphisms
S, ∆A,B(sup S) = sup{∆A,B( f ) | f P S}.

Note that by definition, every (strong) completely additive monad is (strong) additive.
Moreover, given an additive monad, in order to establish completeness it suffices to
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ensure that the partial order of every Kleisli hom-set is complete. Indeed, by definition,
every Kleisli hom-set of an additive monad possesses the structure of a bounded join-
semilattice. Hence if the underlying partial order is complete, then the lub of any set S
can be defined as the lub of the directed set of all finite joins of elements from S, and
thus every Kleisli hom-set becomes a complete join-semilattice, i.e. a complete lattice.

Lemma 3.5. Every (strong) completely additive monad is a (strong) continuous Kleene monad.

Proof. Let T be a completely additive monad over a category C. Then Kleisli compo-
sition must be continuous in both arguments. Since ` is obviously continuous, then
both the mappings f ÞÑ p` f � r and f ÞÑ q` r � f must be continuous as compositions
of continuous functions. By Kleene’s fixed-point theorem, both of them must possess
least fixed points. Moreover, µ f . (p ` f � r) must be the supremum of the set {p, p �
r, p � r � r, . . .} and µ f . (q` r � f ) must be the supremum of the set {q, r � q, r � r � q, . . .}.
The equation (3.1) now follows by the continuity of Kleisli composition. By definition,
T is a continuous Kleene monad.

Suppose T is moreover a strong additive monad, and prove that T is a strong continu-
ous Kleene monad. We are left to prove strength continuity. Let A, B P Ob (C) and let
p, q P HomCT

(A, B). Then

µ f . (τA,B( id�p)` τA,B(id�q) � f )

= sup{τA,B(id�p), τA,B(id�q) � τA,B(id�p), . . .} [by def.]

= sup{τA,B(id�p), τA,B(id�q � p), . . .} [by 1.9]

= sup{∆A,B(p), ∆A,B(q � p), . . .} [by 2.3]

= ∆A,B(sup{p, q � p, . . .}) [by cont.]

= τA,B(id� sup{p, q � p, . . .}) [by 2.3]

= τA,B(id�µ f . (p` q � f )). [by def.]

Therefore T is a strong continuous Kleene monad, and we are done.

It can easily be seen that given a quantale object Q, λX. QX is a strong completely
additive monad. Using it as a basis, we can generate further strong completely additive
monads (and hence, by Lemma 3.5, strong continuous Kleene monads) by the following

Theorem 3.6. Given a strong completely additive monad T, the strong additive monads ob-
tained from it by applying state, input, output and continuation monad transformers are also
strong completely additive.

Proof. The argument is the same as the one used in the proof of Theorem 2.5. It is
clear that the constructions provided in that theorem are robust enough to bear gen-
eralisation from finite joins and monotone functions to whatever joins and continuous
functions.
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Although the conditions of Definition 3.1 look rather mild, they conceal many proper-
ties that may not be evident at first sight. It is more convenient to formulate them in
the internal language of Kleene monads, which will be introduced later. But some of
these properties are necessary in order to establish the correctness of this language.

Lemma 3.7. Provided b � a = a � c for some appropriate morphisms a, b and c,

µ f . (a` b � f ) = µ f . (a` f � c)

Proof. The proof is by establishing mutual inequality. For one thing we have:

a ` µ f . (a` b � f ) � c

= a` µ f . (a � c` b � f ) [by 3.3]

= a` µ f . (b � a` b � f ) [by assum.]

= a` µ f . (η ` b � f ) � b � a [by 3.3]

= (η ` µ f . (η ` b � f ) � b) � a [by distr.]

= (η ` µ f . (η ` f � b) � b) � a [by 3.1]

= µ f . (η ` f � b) � a [as fix-pt.]

= µ f . (a` b � f ). [by 3.3]

Therefore, the morphism µ f . (a` b � f ) must be a fixed point of f ÞÑ a` f � c, hence
µ f . (a` b � f ) ¥ µ f . (a` f � c). By symmetry, µ f . (a` b � f ) ¤ µ f . (a` f � c) and thus
we are done.

Lemma 3.8. Let T be a strong Kleene monad over a cartesian category C. Then, given two
Kleisli morphisms a, b P HomCT(A, B), the fixed point

t := µ f . (τA,B〈π1, a〉` τA,B〈π1, b〉 � f )

satisfies the identity: t = τA,B〈π1, Tπ2 � t〉.

Proof. Let s := µ f .
(
τA,A�B(id�τA,B〈π1, a〉)` τA,A�B(id�τA,B〈π1, b〉) � f

)
. By continu-

ity of the strength:
s = τA,A�B(id�t). (3.6)

In order to prove the identity of t in question, it suffices to prove the following auxiliary
identity of s:

η〈π1π2, π2〉 � s = s � η〈π1π2, π2〉. (3.7)

Indeed, (3.7) implies the goal as follows:

η〈π1π2, π2〉 � s = s � η〈π1π2, π2〉
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ðñ η〈π1π2, π2〉 � τA,A�B(id�t)

= τA,A�B(id�t) � η〈π1π2, π2〉

= τA,A�B(id�t) � 〈π1π2, π2〉

[by 3.6, 1.5, 1.2]

ðñ η〈π1π2, π2〉 � τA,A�B(id�t)

= τA,A�B(π1π2, t � π2)

ùñ η〈π1π2, π2〉 � τA,A�B(id�t) � η〈π1, id〉

= τA,A�B(π1π2, t � π2) � η〈π1, id〉

ðñ η〈π1π2, π2〉 � τA,A�B(id�t) � 〈π1, id〉

= τA,A�B(π1π2, t � π2) � 〈π1, id〉
[by 1.5, 1.2]

ðñ η〈π1π2, π2〉 � τA,A�B(π1 � t) = τA,A�B(π1, t)

ùñ η(id�π2) � η〈π1π2, π2〉 � τA,A�B(π1 � t)

= η(id�π2) � τA,A�B〈π1, t〉

ðñ η(id�π2) � 〈π1π2, π2〉 � τA,A�B(π1 � t)

= T(id�π2) � τA,A�B〈π1, t〉
[by 1.5, 1.2, 1.3]

ðñ η〈π1π2, π2π2〉 � τA,A�B(π1 � t)

= τA,B〈π1, Tπ2 � t〉
[by nat. of τ]

ðñ T〈π1π2, π2π2〉 � τA,A�B(π1 � t)

= τA,B〈π1, Tπ2 � t〉
[by 1.5, 1.3]

ðñ Tπ2 � τA,A�B(π1 � t) = τA,B〈π1, Tπ2 � t〉

ðñ t = τA,B(π1, Tπ2 � t) [by 1.2]

We are left to prove (3.7). First, observe the following commutation property, which is
an elementary consequence of (1.2), (1.3) and (1.5).

η〈π1π2, π2〉 � τA,A�B(id�τA,B〈π1, c〉)

= τA,A�B(id�τA,B〈π1, c〉) � η〈π1π2, π2〉, (3.8)

where c P {a, b}. Therefore we have:

η〈π1π2,π2〉 � s

= η〈π1π2, π2〉 � µ f . (τA,A�B(id�τA,B〈π1, a〉) `

τA,A�B(id�τA,B〈π1, b〉) � f ) [by def. of s]

= µ f . (η〈π1π2, π2〉` f � τA,A�B(id�τA,B〈π1, b〉)) �

τA,A�B(id�τA,B〈π1, a〉) [by 3.1]

= µ f . (η〈π1π2, π2〉` τA,A�B(id�τA,B〈π1, b〉) � f ) � [by 3.8,

τA,A�B(id�τA,B〈π1, a〉) Lemma 3.7]
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= µ f . (η〈π1π2, π2〉 � τA,A�B(id�τA,B〈π1, a〉) `

τA,A�B(id�τA,B〈π1, b〉) � f ) [by 3.3]

= µ f . (τA,A�B(id�τA,B〈π1, a〉) � η〈π1π2, π2〉 `

τA,A�B(id�τA,B〈π1, b〉) � f ) [by 3.8]

= µ f . (τA,A�B(id�τA,B〈π1, a〉) `

τA,A�B(id�τA,B〈π1, b〉) � f ) � η〈π1π2, π2〉 [by 3.3]

= s � η〈π1π2, π2〉 [by def. of s]

and thus the whole claim is proved.

Corollary 3.9. Given two morphisms a, b P HomCT(A, B), the fixed point

t := µ f . (τA,B〈id, a〉` τA,B〈π1, b〉 � f )

satisfies the identity: t = τA,B〈id, Tπ2 � t〉.

Proof. Note that

t � π1 = µ f . (τA,B〈id, a〉` τA,B〈π1, b〉 � f ) � η � π1 [by 1.2, 1.5]

= µ f . (τA,B〈id, a〉 � η � π1 ` τA,B〈π1, b〉 � f ) [by 3.3]

= µ f . (τA,B〈id, a〉 � π1 ` τA,B〈π1, b〉 � f ) [by 1.2, 1.5]

= µ f . (τA,B〈π1, a � π1〉` τA,B〈π1, b〉 � f )

Therefore, Lemma 3.8 under the assignments a := a � π1 and b := b results in

t � π1 = τA,B〈π1, Tπ2 � t � π1〉 = τA,B〈id, Tπ2 � t〉 � π1,

which implies the identity in question.

The relation between the continuity axiom for strength and the identity of Lemma 3.8
can be illustrated by the following diagrams.
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A

id
��

�GF
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id

B
a

��
A

id
��

� B

b
��

A
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��
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��

A
...

� B
...

A � B

A

id
��

�

��?
??

??
??GF

@A

id

B
a

��
A

id
��

�

��?
??

??
??

B
b

��
A

id
��

�

��?
??

??
??

B
b

��
A
...

� B
...

A � B

The left diagram schematically depicts the following fact: if a program variable is nei-
ther read nor updated in a loop it remains the same as it was initially. This is precisely
the intended meaning of strength continuity. The right diagram shows moreover that
the value of the variable also remains unchanged if it is read but still never updated.
Roughly speaking, Lemma 3.8 states that the left diagram implies the right one. There is
a notable similarity between these diagrams and the diagrams from [EL00] illustrating
one of the axioms for recursive binding. The exact correspondence between our ax-
ioms and the axioms for recursive binding from [EL00] is nevertheless far from being
lucid, in particular because the latter concept is formulated in terms of partial func-
tions, whereas Kleene monads do not provide facilities to reason about the partiality of
primitive morphisms.

The calculations performed in the few recent proofs were written in a low-level lan-
guage, simulating the calculus of commutative diagrams. Fortunately, the reasoning
about Kleene monads can be considerably facilitated by using an extension of the met-
alanguage of effects by the following Kleene star term constructor.

ΓB p : TA Γ, x : AB q : TA
ΓB init x Ð p in q� : TA

Intuitively the (init x Ð p in q�) construct denotes a nondeterministically chosen num-
ber of iterated executions of q, initialised by x Ð p, with the result x of the computation
fed through the loop. The metalanguage of effects, extended by the Kleene star, shall
be called the metalanguage of control and effects (MCE).

For an arbitrary natural n we shall also use the notation (init x Ð p in qn) referring to p
if n = 0 and to

(
init x Ð (do x Ð p; q) in qn�1) if n ¡ 0. Also, we adopt for the Kleene

star the same convention as for binding, e.g. given a program p whose return type is
T(A1 � . . .� An) we use the notation (init z̄ Ð p in q�) as a shortening for

init z Ð p in q[prn
1(z)/z1, . . . , prn

n(z)/zn]
�.
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where z is an appropriate fresh variable. Programs not containing a Kleene star will be
referred to as non-iterative. Another convenient shortening is (init x̄ Ð p in q� res ȳ Ñ r)
for (do ȳ Ð (init x̄ Ð p in q�); r). Similarly, (init x̄ Ð p in qn res ȳ Ñ r) will refer to
(do ȳ Ð (init x̄ Ð p in qn); r).

The formal interpretation of a Kleene star is given as follows:

[[ΓB init x Ð p in q� : TA]] := Tπ2 � µ f .
(
τ[[Γ]],[[A]]〈id, h〉` τ[[Γ]],[[A]]〈π1, g〉 � f

)
,

where h := [[Γ B p : TA]] and g := [[Γ, x : A B q : TA]]. This definition is not the
most intuitive one, but it is taken as the basis because the fixed point involved exists
by definition. We will see right away that an equivalent definition can be given but it
requires an additional argument ensuring the existence of a fixed point involved.

Lemma 3.10. In any strong Kleene monad T, for any Kleisli morphisms h P HomCT(C, D)

and g P HomCT(C�D, D), the endomap

f ÞÑ τC,D〈id, h` g � f 〉 (3.9)

over f P HomCT(C, C � D) possesses the least fixed point. Moreover, if C = [[Γ]], D = [[A]]

and h = [[Γ B p : TA]], g = [[Γ, x : A B q : TA]] with arbitrary well-defined expressions
in brackets, the interpretation of (Γ B init x Ð p in q� : TA) can be equivalently given by
the expression

Tπ2 � µ f . (τC,D〈id, h` g � f 〉)

Proof. Since the least fixed point, if it exists, is unique, we will be done once we show
that the fixed point

µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f ) (3.10)

is the least fixed point of (3.9). This proof consists of two parts: (i) the morphism (3.10)
is invariant under (3.9) and (ii) every r, invariant under (3.9), is greater than (3.10).

Prove (i). Let us refer to the fixed point (3.10) as s. Then

s = τC,D〈id, h〉` τC,D〈π1, g〉 � s

= τC,D〈id, h〉` τC,D〈π1, g〉 � τC,D〈id, Tπ2 � s〉 [by Cor. 3.9]

= τC,D〈id, h〉` τC,D〈id, g � τC,D〈id, Tπ2 � s〉〉 [by 1.8]

= τC,D〈id, h〉` τC,D〈id, g � s〉 [by Cor. 3.9]

and thus s is indeed invariant under (3.9).

Prove (ii). Suppose r = τC,D〈id, h` g � r〉. By (2.2) r = τC,D〈id, h〉` τC,D〈id, g � r〉. Then

tC,C�D〈id, r〉
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= τC,C�D〈id, τC,D〈id, h〉` τC,D〈id, g � r〉〉

= τC,C�D〈id, τC,D〈id, h〉〉` τC,C�D〈id, τC,D〈id, g � r〉〉 [by 2.2]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈id, τC,D〈id, g � Tπ2 � τC,C�D〈id, r〉〉〉 [by 1.6]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈id, τC,D〈id, g: � (ηπ2)
: � τC,C�D〈id, r〉〉〉 [by 1.5, 1.3]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈id, τC,D〈id, (g � π2)
: � τC,C�D〈id, r〉〉〉 [by 1.2]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈id, τC,D〈id, (g � π2) � τC,C�D〈id, r〉〉〉 [by 1.5]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈id, τC,D(id�g) � τC,C�D〈id, r〉〉 [by 1.8]

= τC,C�D〈id, τC,D〈id, h〉〉`

τC,C�D〈π1, τC,D(id�g)〉 � τC,C�D〈id, r〉 [by 1.8]

which means that τC,C�D〈id, r〉 is a fixed point of the map

f ÞÑ τC,C�D〈id, τC,D〈id, h〉〉` τC,C�D〈π1, τC,D(id�g)〉 � f .

Therefore by strength continuity and (3.3):

τC,C�D〈id, r〉

¥ µ f . (τC,C�D〈id, τC,D〈id, h〉〉` τC,C�D〈π1, τC,D(id�g)〉 � f )

= µ f . (τC,C�D〈π1, η〉 � τC,D〈id, h〉` τC,C�D〈π1, τC,D(id�g)〉 � f )

= µ f . (τC,C�D〈π1, η〉` τC,C�D〈π1, τC,D(id�g)〉 � f ) � τC,D〈id, h〉.

The identity τC,C�D〈π1, τC,D(id�g)〉 � τC,C�D〈π1, η〉 = τC,C�D〈π1, η〉 � τC,D〈π1, g〉, ele-
mentary following from (1.8), allows us to continue the calculation by calling Lemma 3.7
with a := τC,C�D〈π1, η〉, b := τC,D〈π1, g〉 and c := τC,C�D〈π1, τC,D(id�g)〉 as follows

µ f . (τC,C�D〈π1, η〉` τC,C�D〈π1, τC,D(id�g)〉 � f ) � τC,D〈id, h〉

= µ f . (τC,C�D〈π1, η〉` f � τC,D〈π1, g〉) � τC,D〈id, h〉

= τC,C�D〈π1, η〉 � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f )

In summary, we have proved

τC,C�D〈id, r〉 ¥ τC,C�D〈π1, η〉 � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f )

The proof can be completed by composing both sides of the latter inequality with Tπ2

on the left and further simplification of the result by (1.6).



Chapter 3: Kleene monads 74

(unf1) init x Ð p in q� = p + init x Ð p in q� res x Ñ q

(unf2) init x Ð p in q� = p + init x Ð (do x Ð p; q; ) in q�

(init) init x Ð (do y Ð p; q) in r� = do y Ð p; (init x Ð q in r�)

(ind1)
do x Ð p; q ¤ p

init x Ð p in q� ¤ p
(ind2)

do x Ð q[y/x]; r ¤ r[y/x]
init x Ð p in q� res x Ñ r ¤ do x Ð p; r

Here r in (init) and (ind2) satisfies the condition: y R Vars(r).

FIGURE 3.1: Axioms and rules for Kleene monads

The calculus of Kleene monads ME� extends the calculus of additive monads ME+

(Fig. 2.1) by the additional axioms and rules presented in Fig. 3.1 together with the
evident congruence rule (cong star). As usual, we leave the variable contexts implicit.
The symbol ¤ appearing in (ind1) and (ind2) is merely an abbreviation: for every p, q,
p ¤ q is supposed to be read as p + q = q.

Remark 3.11. The rule (ind2) looks the most complicated, particularly because of the
substitution operator involved. The reason for it is purely technical: we need it in
order to match the variable contexts of both sides. In more detail, observe that the
term-formation rules do not allow for constructing terms like (do x Ð q; r) with q,
depending on x. Therefore to balance the variable contexts, the x variable (possibly)
occurring in r on the right-hand side of (ind2) must be shadowed. The condition y R
Vars(r) ensures that the described situation is indeed avoided.

Theorem 3.12 (Soundness and completeness). The calculus ME� is sound and strong com-
plete over strong Kleene monads.

Proof. In the scope of this proof, let C := [[Γ]], D := [[A]] and E := [[B]].

Soundness. In the view of Theorem 2.7 it suffices to prove only the soundness of the
three new axioms and the two new rules presented in Fig. 3.1. We check them one by
one.

Axiom (unf1). By definition, [[ΓB init x Ð p in q� : TA]] = Tπ2 � t where t is the fixed
point µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f ), h := [[ΓB p : TA]] and g := [[Γ, x : AB q : TA]].
Then, by definition of the least fixed point and by (1.6):

Tπ2 � t = Tπ2 � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � t)

= h` g � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f )

By Corollary 3.9, the latter is equivalent to h ` g � τC,D〈id, Tπ2 � t〉 which is precisely
the interpretation of p + do x Ð (init x Ð p in q�); q.
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Axiom (unf2). Let [[ΓB init x Ð p in q� : TA]] be as in the previous clause. We transform
Tπ2 � t as follows:

Tπ2 � t = Tπ2 � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f )

= Tπ2 � (µ f . (η ` τC,D〈π1, g〉 � f ) � τC,D〈id, h〉) [by 3.3]

= Tπ2 � (µ f . (η ` f � τC,D〈π1, g〉) � τC,D〈id, h〉) [by 3.1]

= Tπ2 � (η � τC,D〈id, h〉` µ f . (η ` f � τC,D〈π1, g〉) �

τC,D〈π1, g〉 � τC,D〈id, h〉) [as fix-pt.]

= Tπ2 � (τC,D〈id, h〉` µ f . (η ` f � τC,D〈π1, g〉) �

τC,D〈π1, g〉 � τC,D〈id, h〉) [by 1.2, 1.3]

= h` Tπ2 � µ f . (τC,D〈π1, g〉 � τC,D〈id, h〉` τC,D〈π1, g〉 � f ) [by 3.3, 1.6]

= h` Tπ2 � µ f . (τC,D〈id, g � τC,D〈id, h〉〉` τC,D〈π1, g〉 � f ) [by 1.8]

The latter term in this calculation is exactly [[ΓB p + init x Ð (do x Ð p; q) in q� : TA]].

Axiom (init). Let h := [[Γ B p : TA]] and g := [[Γ, y : A B q : TB]] but note that the
metavariable r on the left and on the right of (init) corresponds to two different terms in
context: the left r corresponds to (Γ, x : BB r : TB), whereas the right one corresponds
to (Γ, y : A, x : B B r : TB). Let e := [[Γ, x : B B r : TB]]. Then due to the side
condition y R Vars(x), [[Γ, y : A, x : BB r : TB]] = e(π1 � id).

Let us show the following commutation property:

η(π1 � id) � τC�D,E〈π1, e(π1 � id)〉 = τC,E〈π1, e〉 � η(π1 � id). (3.11)

By (1.5), (1.4) the left-hand side of (3.11) is equal to T(π1 � id) � τC�D,E〈π1, e(π1 � id)〉
from which we obtain by naturality of strength τC,E〈π1π1, e(π1 � id)〉. On the other
hand, by (1.7), the right-hand side of (3.11) is equal to τC,E〈π1, e〉 � τC,E〈π1, η〉, which
by (1.8) is again equal to τC,E〈π1π1, e(π1� id)〉. Now the proof of (init) runs as follows:

[[do y Ð p; (init x Ð q in r�)]]

= Tπ2 � µ f . (τC�D,E〈id, h〉 `

τC�D,E〈π1, e(π1 � id)〉 � f ) � τC,D〈id, g〉 [by def. of [[ ]]]

= ηπ2 � η(π1 � id) � µ f . (τC�D,E〈id, h〉 `

τC�D,E〈π1, e(π1 � id)〉 � f ) � τC,D〈id, g〉 [by 1.5, 1.2]

= ηπ2 � µ f . (η(π1 � id)` f � τC�D,E〈π1, e(π1 � id)〉) �

τC�D,E〈id, h〉 � τC,D〈id, g〉 [by 3.1]

= ηπ2 � µ f . (η(π1 � id)` τC,E〈π1, e〉 � f ) � [by 3.11,

τC�D,E〈id, h〉 � τC,D〈id, g〉 Lemma 3.7]

= ηπ2 � µ f . (η(π1 � id) � τC�D,E〈id, h〉 � τC,D〈id, g〉 `
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τC,E〈π1, e〉 � f ) [by 3.3]

= ηπ2 � µ f . (T(π1 � id) � τC�D,E〈id, h〉 � τC,D〈id, g〉 `

τC,E〈π1, e〉 � f ) [by 1.5, 1.4]

= ηπ2 � µ f . (τC,E〈π1, h〉 � τC,D〈id, g〉` τC,E〈π1, e〉 � f ) [by nat. of τ]

= Tπ2 � µ f . (τC,E〈id, h � τC,D〈id, g〉〉` τC,E〈π1, e〉 � f ) [by 1.8]

= [[init x Ð (do y Ð p; q) in r�]] [by def. of [[ ]]]

Rule (ind1). Suppose that the premise is valid. We have thus g � τC,D〈id, h〉 ¤ h where
h = [[ΓB p : TA]] and g = [[Γ, x : AB q : TA]]. By definition of the ordering ¤, this boils
down to the identity h = h` g � τC,D〈id, h〉. Therefore

τC,D〈id, h〉 = τC,D〈id, h` g � τC,D〈id, h〉〉

= τC,D〈id, h〉` τC,D〈id, g � τC,D〈id, h〉〉 [by 2.2]

= τC,D〈id, h〉` τC,D〈π1, g〉 � τC,D〈id, h〉 [by 1.8]

which means that τC,D〈id, h〉 is a fixed point of f ÞÑ τC,D〈id, h〉` τC,D〈π1, g〉 � f . Hence
τC,D〈id, h〉 ¥ µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f ). We obtain the claim by applying Tπ2 to
the both sides of this inequality.

Rule (ind2). Let g := [[Γ, x : AB q : TA]], h := [[ΓB p : TA]] and e := [[Γ, x : AB r : TB]].
Since r does not depend on y, [[Γ, y : A, x : AB r : TB]] = e(π1 � id) = e � η(π1 � id).
Then the premise results in the inequality e � η(π1 � id) � τC�D,D〈id, g〉 ¤ e. We con-
clude that e must be a fixed point of f ÞÑ e` f � η(π1 � id) � τC�D,D〈id, g〉 and hence
e ¥ µ f . (e` f � η(π1 � id) � τC�D,D〈id, g〉). Therefore we have:

e � τC,D〈id, h〉

¥ µ f . (e` f � η(π1 � id) � τC�D,D〈id, g〉) � τC,D〈id, h〉

= µ f . (e` f � T(π1 � id) � τC�D,D〈id, g〉) � τC,D〈id, h〉 [by 1.5, 1.4]

= µ f . (e` f � τC,D〈π1, g〉) � τC,D〈id, h〉 [by nat. of τ]

= e � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f ) [by 3.1]

= e � τC,D〈id, Tπ2 � µ f . (τC,D〈id, h〉` τC,D〈π1, g〉 � f )〉 [by Cor. 3.9]

It can easily be seen that the established inequality is precisely the interpretation of the
conclusion of (ind2), and thus we are done.

Completeness. We modify the monad construction from Theorem 2.7, specifically, we
redefine � to be the provable equivalence in ME� under the set of axioms Φ. Let us
define the two necessary fixed points by the assignments:

µ f . (g` h � f ) := [x : AB init y Ð p in q� : TB]�,

µ f . (e` f � h) := [x : BB do z Ð (init y Ð ret x in q�); r : TC]�.
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where g := [x : AB p : TB]�, h := [y : BB q : TB]� and e := [z : BB r : TC]�. Let us
prove that these are indeed least fixed points. Consider the first one. We have:

µ f . (g ` h � f )

= [x : AB init y Ð p in q� : TB]�

= [x : AB p + do y Ð (init y Ð p in q�); q : TB]� [by (unf1)]

= [A : xB p : TB]� ` [t : TBB do y Ð t; q : TB]��

[A : xB init y Ð p in q� : TB]� [by def. of `, �]

= [A : xB p : TB]� ` [y : BB q : TB]:��

[A : xB init y Ð p in q� : TB]� [by def. of :]

= g` h � µ f . (g` h � f ) [by 1.5]

Therefore µ f . (g` h � f ) is a fixed point of the map f ÞÑ g` h � f . In order to prove that
µ f . (g` h � f ) is the least one, assume that some [x : AB s : TB]� is another fixed point
of the same map. By definition, [x : AB s : TB]� = [x : AB p + do y Ð s; q : TB]�
which results in the following inequalities:

[x : AB s : TB]� ¥ [x : AB p]�, (3.12)

[x : AB s : TB]� ¥ [x : AB do y Ð s; q : TB]�. (3.13)

By (3.12) and (ind1), [x : AB s : TB]� ¥ [x : AB init y Ð s in q� : TB]� which by (3.13)
is in turn greater than [x : AB init y Ð p in q� : TB]� = µ f . (g ` h � f ). Therefore,
µ f . (g` h � f ) is indeed the least fixed point. Analogously, by appealing to (unf2) and
(ind2) one can prove that µ f . (e` f � h) makes the least fixed point of f ÞÑ e` f � h.

The proof of the property (3.1) is as follows:

µ f . (e ` f � h) � g

= [x : BB do z Ð (init y Ð ret x in q�); r : TC]� �

[x : AB p : TB]�

= [t : TBB do x Ð t; z Ð (init y Ð ret x in q�); r : TC]� �

[x : AB p : TB]� [by 1.5, def. of :]

= [x : AB do x Ð p; z Ð (init y Ð ret x in q�); r : TC]� [by def. of �]

= [x : AB do z Ð (do x Ð p; init y Ð ret x in q�); r : TC]� [by (assoc)]

= [x : AB do z Ð (init y Ð (do x Ð p; ret x) in q�); r : TC]� [by (init)]

= [x : AB do z Ð (init y Ð p in q�); r : TC]� [by (unit1)]

= [t : TBB do z Ð t; r : TC]� �

[x : AB init y Ð p in q� : TB]� [by def. of �]

= [z : BB r : TC]� � [x : AB init y Ð p in q� : TB]� [by 1.5, def. of :]
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= e � µ f . (g` h � f )

Finally, let us prove the continuity of strength. We have by definition on one hand:

µ f . (τA,B(id�g)` τA,B(id�h) � f )

= [x : AB init〈x, y〉Ð (do y Ð p; ret〈x, y〉) in(do y Ð q; ret〈x, y〉)� : T(A� B)]�

and on the other hand:

τA,B(id�µ f . (g` q � h)) = [x : AB do y Ð (init y Ð p in q�); ret〈x, y〉 : T(A� B)]�.

By Lemma 3.2 it suffices to establish the inequality:

do y Ð (init y Ð p in q�); ret〈x, y〉

¤ init〈x, y〉Ð (do y Ð p; ret〈x, y〉) in(do y Ð q; ret〈x, y〉)�. (3.14)

Let us denote (init〈x, y〉Ð ret〈x, y〉 in(do y Ð q; ret〈x, y〉)�) by s and prove that

do y Ð (init y Ð p in q�); s ¤ do y Ð p; s. (3.15)

By (ind2), (3.15) amounts to the inequality

do y Ð (do y Ð p; q); s ¤ do y Ð p; s

which is proven as follows:

do y Ð (do y Ð p; q); s

= do y Ð (do y Ð p; q);

init〈x, y〉Ð ret〈x, y〉 in(do y Ð q; ret〈x, y〉)� [by def. of s]

= init〈x, y〉Ð (do y Ð (do y Ð p; q); ret〈x, y〉) in

(do y Ð q; ret〈x, y〉)� [by (init)]

= init〈x, y〉Ð (do 〈x, y〉Ð (do y Ð p; ret〈x, y〉); [by (assoc),

y Ð q; ret〈x, y〉) in(do y Ð q; ret〈x, y〉)� (unit2)]

¤ init〈x, y〉Ð (do y Ð p; ret〈x, y〉) in [by (unf1),

(do y Ð q; ret〈x, y〉)� def. of ¤]

= do y Ð p; init〈x, y〉Ð ret〈x, y〉 in

(do y Ð q; ret〈x, y〉)� [by (init)]

= do y Ð p; s. [by def. of s]
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The inequality (3.15) that we just proved implies (3.14) as follows:

do y Ð ( init y Ð p in q�); ret〈x, y〉

¤ do y Ð (init y Ð p in q�); [by (unf1)]

init〈x, y〉Ð ret〈x, y〉 in(do y Ð q; ret〈x, y〉)� def. of ¤]

¤ do y Ð p; init〈x, y〉Ð ret〈x, y〉 in

(do y Ð q; ret〈x, y〉)� [by 3.15]

¤ init〈x, y〉Ð (do y Ð p; ret〈x, y〉) in

(do y Ð q; ret〈x, y〉)�. [by (init)]

The completeness part is thus proved. The proof of the theorem is completed.

In addition to ME� we introduce a calculus MEω for ω-continuous monads. It is ob-
tained from ME� by adding one more infinitary rule:

(ω)
@i. init x Ð p in qi res x Ñ r ¤ t

init x Ð p in q� res x Ñ r ¤ t

The premise should be read as the countable collection of inequalities with i ranging
over non-negative integers.

Remark 3.13. It is easily seen that the induction rules (ind1) and (ind2) become derivable
in MEω. E.g. let us show the first one. From (do x Ð p; q) ¤ p we can derive for
arbitrary i, (init x Ð p in qi) ¤ p by applying (unf2) sufficiently many times. Since
(init x Ð p in qi) is evidently provably equal to (init x Ð p in qi res x Ñ ret x) by (ω),
we obtain (init x Ð p in q� res x Ñ ret x) ¤ p or equivalently (init x Ð p in q�) ¤ p. In
the same way on can show (ind2).

Theorem 3.14. The infinitary calculus MEω is sound and strongly complete over strong con-
tinuous Kleene monads.

Proof. Soundness. By Theorem 3.12 we only need to establish soundness of the rule (ω).
Suppose the premise of (ω) is valid over some continuous strong Kleene monad T. Let
C := [[Γ]], D := [[A]], E := [[B]], g := [[Γ B p : TA]], h := [[Γ, x : A B q : TA]] and
e := [[Γ, x : AB r : TB]]. We have:

[[init x Ð p in qi res x Ñ r]]

= [[do x Ð (init x Ð p in qi); r]]

= [[do x Ð (do x Ð p; x Ð q; . . . ; q); r]] [by (assoc)]

= e � τC,D〈id, h〉 � . . . � τC,D〈id, h〉 � τC,E〈id, g〉 [by def. of [[ ]]]
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which means that the premise of (ω) gives rise to the family of inequalities:

e � τC,D〈id, h〉 � . . . � τC,D〈id, h〉 � τC,E〈id, g〉 ¤ [[ΓB t : TB]]. (3.16)

The conclusion of (ω) is now proved as follows:

[[init x Ð p in q� res x Ñ r]]

= [[do x Ð (init x Ð p in q�); r]]

= e � τC,D
〈
id, Tπ2 � µ f . (τC,D〈id, g〉` τC,D〈π1, h〉 � f )

〉
[by def. of [[ ]]]

= e � µ f .
(
τC,D〈id, g〉` τC,D〈π1, h〉 � f

)
[by 3.9]

= sup
{

e � τC,D〈id, h〉 � . . . � τC,D〈id, h〉 � τC,E〈id, g〉
}

[by Def. 3.3]

¤ [[ΓB t : TB]] [by 3.16]

Completeness. We modify the construction from the completeness part of Theorem 3.12
by requiring the congruence � to be stable under (ω). The obtained model KΣ,Φ there-
fore makes a strong Kleene monad. We are left to prove ω-continuity.

By unfolding the fixed point in e � µ f . (g` h � f ) sufficiently many times we can show
that e � µ f . (g` h � f ) is greater than any morphism of the form e � h � . . . � h � g. Thus
we are left to prove that whenever some u is greater than any e � h � . . . � h � g it is
also greater than e � µ f . (g` h � f ). By construction of KΣ,Φ, the morphisms g, h, e and
u admit the following presentation: g = [x : A B p : TB]�, h = [y : B B q : TB]�,
e = [z : BB r : TC]�, u = [A : xB t : TC]�. Then, by definition:

e � µ f . (g` h � f ) = [x : AB do z Ð (init y Ð p in q�); r : TC]�,

e � h � . . . � h � g = [x : AB do y Ð p; y Ð q; . . . ; y Ð q; z Ð q; r : TC]�.

We have thus proved that [x : AB do y Ð p; y Ð q; . . . ; y Ð q; z Ð q; r : TC]� =

[x : AB do z Ð (init y Ð p in qi); r : TC]� is smaller than [A : xB t : TC]�. Now the
continuity follows from (ω).

The calculus ME+ originally introduced for non-iterative programs, strictly speaking,
cannot be used for proofs about programs involving Kleene star, because it lacks the
corresponding congruence rule. Still, we agree to abuse notation slightly and use the
entailment sign $ME+ to refer to provability in ME+ endowed with the missing congru-
ence rule (cong star). It can easily be seen that the rewriting rationale established for
ME (Lemma 1.15) remains valid for MCE. Formally, it is a new fact, because we have
extended the language with a new binding construction. Hence we restate it literally.

Lemma 3.15 (Rewriting rationale). Let p, q be two programs with the same return type,
and let Φ be a set of program equations. Then Φ $ME+ p = q iff there is a sequence of
programs w1, . . . , wn such that p .

= w1, q .
= wn and for every i   n, wi and wi+1 have forms
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wi
.
= C{uσ}, wi+1

.
= C{rσ} for some context C, a variable substitution σ and programs u, r

such that either (u = r) P Φ or (r = u) P Φ or $ME+ u = r.

Proof. The proof is by minor adaptation of the proof of Lemma 1.15.

3.3 Confluence of Kleene star unfolding

In the spirit of the rewriting approach taken in the previous sections we introduce a
rewrite rule for unfolding a Kleene star:

k-rule: init x Ð p in q� � p + init x Ð (do x Ð p; q) in q�

The combined reduction relation �km := �mY�k evidently fails to terminate (be-
cause already the k-rule does not terminate), but it is still confluent. We prove this as
soon as we have collected enough auxiliary facts about�k and�km.

For every natural n we define an operator unfn, distributing over all term constructors
but the Kleene star, for which it is defined by the equation:

unfn(init x Ð p in q�) = ∑i n init x Ð unfn(p) in unfn(q)i+

init x Ð (init x Ð unfn(p) in unfn(q)n) in unfn(q)�.

Note that distributivity of unfn over term constructors implies, in particular, that it is
identical with respect to variables and constants.

Lemma 3.16. For all programs p and q such that p��
k q and for every natural n greater than

the length of the reduction sequence p��
k q there exists a reduction q��

k unfn(p).

Proof. Let us introduce an auxiliary syntactical construction: (init x Ð s in t(�+i)) and a
counterpart of the k-rule for it:

k1-rule: init x Ð p in q(�+i) � p + init x Ð (do x Ð p; q) in q(�+i�1)

where i is assumed to be greater than 0. The defined reduction relation is easily seen to
be strongly normalising. A formal proof of this fact is as follows. Let h be a recursive
function, assigning to every program a natural number in the following way: h(op) :=
1, for every 0-ary term constructor, e.g. constant or variable, h(init x Ð s in t(�+i)) :=
h(s) + h(t) � (i + 1) and h(op(t1, . . . , tn)) := h(t1) + . . . + h(tn) for the remaining term
constructors. Let ¡ be the well-founded strict partial order over programs, defined
by the equivalence p ¡ q ðñ h(p) ¡ h(q). By Lemma 2.9 the multiset extension
of it ¡m is also well-founded. Let m be the recursive operation used in Lemma 2.10,
taking single programs to finite multisets of (+-free) programs. It is easy to see by
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definition that p�k1 q implies m(p) ¡m m(q) which means that any infinite reduction
t1�k1 t2�k1 . . . gives rise to an infinite chain m(t1) ¡m m(t2) ¡m . . .. As we have seen,
the latter is impossible. Therefore�k1 is strongly normalising.

With this strong normalisation at hand, one easily concludes by Newman’s Lemma (cf.
e.g. [Klo92]) that the reduction relation�k1 is confluent.

For every i let κi be the operator, recursively replacing every (init x Ð t in s�) with
(init x Ð t in s(�+i)) and let ι be an operator, recursively replacing any (init x Ð t in s(�+i))

with (init x Ð t in s�). Evidently, for any i, ι � κi = id. Let r = κn(p). Then the chain
p��

k q can be step-wise simulated by a chain r��
k1 u so that every intermediate el-

ement in p��
k q is the image under ι of the corresponding intermediate element of

r��
k1 u. The reduction r��

k1 u can be extended to r��
k1 u��

k1 nfk1(u) � nfk1(r). We
will be done as soon as we prove that ι(nfk1(r)) � unfn(p). To that end we make use of
the confluence of�k1 : w.l.o.g. we assume that nfk1(r) is obtained from r by innermost
normalisation. This means that every redex

(
init x Ð s in t(�+n)) is replaced by the sum

∑i n init x Ð s in ti + init x Ð (init x Ð s in tn) in t�

which is precisely unfn(init x Ð s in t(�+n)). Innermost normalisation guarantees that
the recursive definition of unfn is simulated properly, and thus we are done.

If we take in the statement of the lemma q := p and the reduction sequence p��
k q to

be empty we immediately obtain

Corollary 3.17. Every program p k-reduces to unfn(p) for any n.

In Chapter 1 we defined a reduction context as a term with at most one hole. More
generally we call a (reduction) multicontext a term with many holes. We assume that
the holes of a multicontext are ordered from left to right with respect to the string pre-
sentation of the corresponding term. Then, given a multicontext C with n holes and
some terms t1, . . . , tn, we denote by C{t1, . . . , tn} a term obtained by replacing the i-th
hole with ti. The notation C{t1, . . . , tn} shall always imply that all the holes of C are
filled by the terms in brackets. More generally, C{C1, . . . , Cn} denotes a multicontext
whose holes are replaced by the multicontexts Ci accordingly. Let� be some reduction
relation. We say that p parallel reduces to q under� and denote it p� q if for some mul-
ticontext C with at least one hole and some terms t1, . . . , tn, s1, . . . , sn, p .

= C{t1, . . . tn},
q .
= C{s1, . . . sn} and for every i, ti� si (cf. e.g. [BKdV03]). By definition, we have
� �� ��+.

Lemma 3.18. Let p�m s and p�k t. Then there exists q such that s��
k q and t�m q.
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Proof. Let p .
= C{init x Ð r in u�} where C is some context and the term inside it is the

k-redex. The k-reduction hence takes the form:

C{init x Ð r in u�} � C{r + init x Ð (do x Ð r; u) in u�}.

As the term (init x Ð r in u�) cannot be a redex of any m-rule, there only two principal
options for the placement of the m-redex.

The term (init x Ð r in u�) is a proper subterm of some m-redexes, i.e. C can be presented in
the form K{p1, . . . , pk�1, M, pk+1, . . . , pn} where M is a context, s .

= K{s1, . . . , sn} and
for every i, pi�m si, with pk

.
= M{init x Ð r in u�}. W.l.o.g. we assume that pk co-

incides with the m-redex, since any possible surrounding context can be turned into a
part of K. It suffices to find such l that

M{r + init x Ð (do x Ð r; u) in u�}�m l and sk�
�
k l. (3.17)

We consider only the situation when the reduction pk�m sk was performed accord-
ing to the second unit law and omit the rather simpler verification of the remaining
rules. The rewrite rule corresponding to the second unit law contains two metavari-
ables. Hence it can only take one of the forms

do y Ð ret w; N{init x Ð r in u�} �m N[w/y]{init x Ð r[w/y] in u[w/y]�},

do y Ð ret N{init x Ð r in u�}; w �m w[N{init x Ð r in u�}/y]

where N is some reduction context. We put

l := N[w/y]{r[w/y] + init x Ð (do x Ð r[w/y]; u[w/y]) in u[w/y]�}

in the first case and

l := w[N{r + init x Ð (do x Ð r; u) in u�}/y]

in the second case. The condition (3.17) is evidently satisfied.

The term (init x Ð r in u�) is not a subterm of any m-redex. Then p can be presented in the
form K{p1, . . . , pk�1, (init x Ð r in u�), pk+1, . . . , pn} where the terms pi and the multi-
context K are such that s .

= K{s1, . . . , sk�1, (init x Ð w in v�), sk+1, . . . , sn}, for every
i � k, pi�m si, r�m w and u�m v. In this case we put

q := K{s1, . . . , sk�1, (w + init x Ð (do x Ð w; v) in v�), sk+1, . . . , sn}

which completes the proof of the lemma.
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Corollary 3.19. The reduction relations �+
m and ��

k commute, i.e. for all programs p, s, t
whenever p�+

m s and p��
k t there must exist q such that s��

k q and t��
m q.

Proof. Since�m ��m ��+
m we immediately conclude from the lemma that when-

ever p�m s and p�k t, there exists q such that s�k q and t��
m q. By straightforward

induction over the length of the chain of k-reductions, we generalise this statement to:

whenever p�m s and p��
k t, there exists q such that s��

k q and t�+
m q.

This in turn can be generalised by induction over the length of the chain of m-reduction
so as to obtain the claim.

Lemma 3.20. For some p and q, let p��
k q. Then nf(q) can be reached from p by a reduction

sequence of the form:

p .
= w1�

�
m nf(w1)�k w2��

m nf(w2)�k . . .�k wn
.
= nf(q). (3.18)

Proof. Let us inductively form a sequence of reductions: q1��
m . . .��

m qn in parallel
with the programs w1, . . . , wn and such that for every k, wk��

k qk. Let q1 := q. Suppose
we have constructed the wk and qk for every k ¤ i. If wi

.
= qi or wi�k qi then n := i

and we are finished. Consider the remaining case, i.e. for some w, wi�k w�+

k qi. If
wi is normal, then we put wi+1 := w and qi+1 := qi. If wi is not normal, then by
Corollary 3.19 there is u such that nf(wi)��

k u and qi�+
m u. In this case, let qi+1 := u

and let wi+1 be equal to the second program in the sequence nf(wi)��
k u if it contains

at least one reduction and qi+1 := u otherwise. By construction, (3.18) indeed holds for
the wk. The termination argument is based on the observation that, by construction,
we cannot obtain an infinite sequence qi

.
= qi+1

.
= . . . and on strong normalisability of

�m.

Theorem 3.21 (Confluence). The reduction relation�km is confluent.

Proof. We obtain the claim by Hindley-Rosen Lemma [Hin64]. To that end we need to
make sure that any pair of relations from {�m,�k}2 commutes. By Corollary 3.19 this
amounts to proving that both�m and�k individually are confluent. The confluence
of the former relation has already been argued in Theorem 2.17 for the non-iterative
case. The argument does not change in essence when extended to the MCE settings.
In order to show the confluence of the latter relation, suppose for some p, s, t, p��

k s
and p��

k t. Let n be the maximal number of reduction steps in p��
k s and p��

k t. By
Lemma 3.16, s��

k unfn(p) and s��
k unfn(p). This establishes a confluence of�k and

thus completes the proof of the theorem.
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3.4 Free strong (continuous) Kleene monads

In this section we require the underlying signature Σ to be plain (see Definition 1.31).

Theorem 2.18 provides a simple algorithm for deciding equality of non-iterative pro-
grams. Moreover it makes easy achieving metatheoretical results of the calculus for ad-
ditive monads. E.g. we can easily show that the equality (do x Ð a; p) = (do x Ð a; q)
with atomic a is provable in ME+ iff $ME+ p = q. Indeed, if either nf(p) � ret x or
nf(p) � ret eE, x : E then by Theorem 2.18, nf(do x Ð a; q) � nf(do x Ð a; p) � nf(a)
which is only possible if nf(p) � nf(q). The case, obtained from the previous one
by swapping p and q, follows by symmetry. For the remainder we have: nf(do x Ð
a; p) � (do x Ð nf(a); nf(p)), nf(do x Ð a; q) � (do x Ð nf(a); nf(q)) and therefore,
by Theorem 2.18, nf(p) � nf(q). In particular p = q is provable in ME+.

In the case of Kleene monads, we cannot use any similar approach, due to the infinitary
character of the Kleene star. That is why proving very simple and intuitive statements
like the following one turns out to be challenging.

Conjecture 3.1. Let for some programs p, q and a P AΣ,$ME� do x Ð a; p = do x Ð a; q.
Then $ME� p = q.

Our previous speculation, proving Conjecture 3.1 for non-iterative programs appeals to
Theorem 2.18, characterising provable equality in ME+. We can interpret this theorem
as a result about the structure of the free strong additive monad. The fact that the
unrestricted case of Conjecture 3.1 is rather more difficult means essentially that we
do not have any appropriate characterisation of this kind for the free strong Kleene
monad. In this section we establish some properties of free strong Kleene monads as
well as of free strong continuous Kleene monads, whose case is rather simpler. These
will imply Conjecture 3.1 for a broader class of programs than non-iterative ones, but
the general case will remain open. We adhere the presentation in terms of provability
in the calculi ME�, MEω, implying the obvious parallel with the corresponding free
structures.

The statement of the following lemma coincides with the statement of Lemma 1.30.
Note, however, that we expanded the underlying language from ME to MCE.

Lemma 3.22. Let t be some program.

1. If h(t) is normal and h P {fst, snd} then both h(t) and t are atomic.

2. If f (t) is normal and f P Σ then both f (t) and t are atomic.

3. If the return type of t is T-free and t is normal then t is atomic.
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Proof. The proof is obtained by some minor correction of the proof of Lemma 1.30 by
including Kleene star.

Remark 3.23. Like in the case of deterministic programs (cf. Remark 1.29), we can give
a simple description of m-normal form. Specifically, every normal program p falls into
the class P defined by the grammar:

P := ∅ | AΣ | ret P | 〈P, P〉 | P + P | init x Ð P in P� |

do x Ð (init y Ð P in P�); P | do x Ð AΣ; P.

Lemma 3.24. Let a be a normal atomic program whose return type is computational. Then a
cannot contain proper subterms with a computational return type.

Proof. Let a be a normal atomic program with a computational return type. Suppose,
on the contrary to the claim, there is a proper subterm b of a whose return type is
computational. Let S be the smallest set of terms such that b P S and 〈s, r〉 P S whenever
〈s, r〉 is a subterm of a and either s P S or r P S. Let c be the maximal element of S with
respect to the subterm relation. Note that c has a non-T-free return type. If c .

= a then
for typing reasons c must be equal to b. Therefore, b coincides with a, and thus it is not
a proper subterm of a.

Let c be distinct from a, i.e. c is a proper subterm of a. Then c should be an immediate
subterm of some subterm d of a. Since Σ is supposed to be plain, d cannot be equal
to f (c) for any f P Σ. By normality, d can be neither fst(c) nor snd(c). Since c is the
maximal element of S, d cannot have forms 〈d, r〉 or 〈r, d〉 for any r. We have thus
excluded all the possible options. Contradiction.

Let us define an operator prg taking every program with a computational return type
to a set of deterministic programs as follows:

prg(p) := {nf(p)} if nf(p) is atomic,

prg(∅) := /0,

prg(p + q) := prg(p)Y prg(q),

prg(ret p) := {ret p},

prg(do x Ð p; q) := {do x Ð s; t | s P prg(p), t P prg(q)},

prg(init x Ð p in q�) := /0.

Note that this definition is complete: for every f P Σ Y {fst, snd} and every appro-
priate p, nf( f (p)) is atomic by Lemma 3.24; any program of the form 〈p, q〉 is of non-
computational type.
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Essentially, prg flattens all nondeterminism on the top level, respecting the distributiv-
ity laws, and replaces the obtained nondeterministic sum by the set of its components.
Now we can introduce the crucial definition of this section: for every program p, let

γ(p) := prg(nf(p)).

This function features a number of properties. The immediately apparent ones include:
γ(∅) = /0, γ(p + q) = γ(p)Y γ(q), γ(init x Ð p in q�) = /0. In order to state the further
properties we need to introduce some auxiliary notions and notation.

Definition 3.25 (Shallow-deterministic programs). We call a program shallow-determin-
istic if it is in either of the forms: ret s, (do x Ð a; t) or a, where a is normal atomic and
t is shallow-deterministic.

It is easy to see that for every p with a computational return type, γ(p) consists of
shallow-deterministic programs. Note, however, that any program from γ(p) is also
normal, whereas in general shallow-deterministic programs must not be normal, e.g.
(do x Ð a; ret x).

Let � be an equivalence relation over programs. Then we can derive an equivalence
relation �̂ over shallow-deterministic programs based on � by the clauses:

1. a �̂ a where a P AΣ;

2. (do x Ð a; ret p) �̂ a if p � x where a P AΣ;

3. a �̂ (do x Ð a; ret q) if q � x where a P AΣ;

4. (do x Ð a; p) �̂ (do x Ð a; q) if p �̂ q where a P AΣ;

5. ret p �̂ ret q if p � q.

It is straightforward to see that �̂ is indeed an equivalence relation. Let us introduce
some useful shorthands: �Φ

� for �̂Φ
� and�Φ

ω for �̂Φ
ω where�Φ

� and�Φ
ω are provable equiv-

alence relations in ME� and MEω with the set of non-logical axioms Φ correspondingly.
Moreover, we shortcut �/0

� to �� and �/0
ω to �ω.

Let us denote by SΣ the set of all sets of shallow-deterministic programs over Σ. We ex-
tend �Φ

� and �Φ
ω over SΣ elementwise, e.g. we put P �Φ

� Q if for every p P P there exists
q P Q such that p �Φ

� q and vice versa. We also define ÀΦ
� and ÀΦ

ω by the equivalences:

P ÀΦ
� Q ðñ PYQ �Φ

� Q and P ÀΦ
ω Q ðñ PYQ �Φ

ω Q.

Evidently, both the relations ÀΦ
� and ÀΦ

ω are preorders for which: ÀΦ
� X (ÀΦ

� )
�1 =�Φ

�

and ÀΦ
ω X (ÀΦ

ω)
�1 =�Φ

ω .
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Since by definition γ always returns as the result a set of shallow-deterministic pro-
grams, the sets in the codomain of γ can be compared under �Φ

� , ÀΦ
� , �Φ

ω and ÀΦ
ω .

Lemma 3.26. Let p be a normal program distinct from ∅ and not of the form u + r for any u, r.
Then γ(p) � /0 iff p is shallow-deterministic.

Proof. If p is shallow-deterministic then, as directly follows from the definition of γ,
γ(p) = {p} � /0. Now assume that p is not shallow-deterministic. By assumption
it is normal, hence p is of the form (do x̄ Ð s̄; t) where at least one term within
{s1, . . . , sn, t} is of the form (init y Ð u in r�). By definition, we immediately have:
γ(p) = prg(nf(p)) = prg(p) = /0.

Lemma 3.27. For some program p, let γ(p) = /0. Then for any appropriately typed u and r,
also γ(do x Ð p; r) = /0 and γ(do x Ð u; p) = /0.

Proof. Let nf(p) .
= ∑i do x̄i Ð p̄i; qi be the presentation, described in Remark 3.23, i.e.

all the pi
j are atomic and all the qi are normal. Then

γ(p) = γ(nf(p)) =
⋃

i
γ(do x̄i Ð pi; qi).

Since by assumption γ(p) = /0, for every i, γ(do x̄i Ð pi; qi) = /0. By Lemma 3.26
neither of the (do x̄i Ð pi; qi) is shallow-deterministic, i.e. for every i, at least one of
the pi

j, qi is of the form (init y Ð s in t�).

By definition of γ, γ(do x Ð p; r) = γ(w) where w :=
(
∑i do x̄ Ð p̄i; x Ð qi; r

)
. More

generally, w has form
(
∑k do z̄k Ð s̄k; tk

)
and the following condition is satisfied: for

every k either nf(do z̄ Ð s̄k; tk)
.
= ∅ or at least one of the sk

j , tk has form (init y Ð s in t�).
It is easy to see that this condition is invariant under m-reductions. By definition, prg
applied to any program satisfying this invariant returns /0. In particular, prg(nf(w)) =

γ(w) = /0. We have thus proved that γ(do x Ð p; r) = /0. The proof of the other
identity runs analogously.

Lemma 3.28. Given two programs a and p where a P AΣ,

γ(do x Ð a; p) �� {do x Ð nf(a); t | t P γ(p)}.

Proof. Let nf(p) .
= ∑i do x̄i Ð p̄i; qi be the presentation, described in Remark 3.23.

Then, by definition:

γ(do x Ð a; p)

= γ(do x Ð nf(a); nf(p)

= γ
(

do x Ð nf(a);
(
∑i do x̄i Ð p̄i; qi

))
=
⋃

i
γ
(
do x Ð nf(a); x̄i Ð p̄i; qi

)
.
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We will be done once we prove that for every i:

γ
(
do x Ð nf(a); x̄i Ð p̄i; qi

)
�� γ

{
do x Ð nf(a); t | t P γ(do x̄i Ð p̄i; qi)

}
. (3.19)

Indeed, then we would be able to prove the claim as follows:

γ(do x Ð a; p)

=
⋃

i
γ
(
do x Ð nf(a); x̄i Ð p̄i; qi

)
��

⋃
i

{
do x Ð nf(a); t | t P γ(do x̄i Ð p̄i; qi)

}
[by 3.19]

��

{
do x Ð nf(a); t | t P γ

(
∑i do x̄i Ð p̄i; qi

)}
��

{
do x Ð nf(a); t | t P γ(p)

}
.

Let us fix some i. By Lemma 3.26, if either of the pi
j, qi has form (init y Ð s in t�) then

both sides (3.19) turn into /0. Let us consider the remaining option. By definition, all the
pi

j must be atomic and qi must be either atomic or of the form ret s. If |p̄| ¡ 0 then one
can conclude from the form of m-rules that (do x Ð nf(a); x̄i Ð p̄i; qi) must be normal,
and thus both sides of (3.19) evaluate to the singleton: {do x Ð nf(a); x̄i Ð p̄i; qi}.
Finally, let |p̄i| = 0. If either qi

.
= x or qi

.
= ret eE where x has type E P U then

the left-hand side of (3.19) is equal to {nf(a)}, the right-hand side of (3.19) is equal to
{do x Ð nf(a); ret x}, and these are equivalent under �� by definition. If |p̄i| = 0 but
none of the cases we have considered applies, then (do x Ð nf(a); x̄i Ð p̄i; qi) must be
normal and the proof of (3.19) runs identically to the case |pi| ¡ 0.

Lemma 3.29. For all programs p and q, if p��
km q then γ(p) À� γ(q).

Proof. It suffices to prove the claim for the one-step reductions. The general case will
then follow by induction over the length of the reduction chain. If p�m q then, by
definition γ(p) = prg(nf(p)) = prg(nf(q)) = γ(q) and we are done.

Consider the other case, i.e. p�k q. In particular, we have p�km nf(q). Since, as we
have seen previously, γ(nf(q)) = γ(q), we will be done once we show the inequality:
γ(p) À� γ(nf(q)). By Lemma 3.20 and transitivity of À� instead we can prove that
γ(p) À� γ(nf(q)), whenever p��

m nf(p)�k q.

By Remark 3.23, for some programs s, t and some context C, nf(p) .
= C{init x Ð s in t�}

and q .
= C{s + init x Ð (do x Ð s; t) in t�}. As C must be normal, it can be presented

in the form

C � ∑i do x̄ Ð āi; bi + ∑j do ȳ Ð c̄j; ret Cj + ∑k do z̄ Ð K̄k; Mk + E

where all the ai
l , cj

l , bi are atomic, all the Kk
l , Mk, Cj are contexts (no more than one of

them indeed contains the hole), E is either l or ∅ and for every k at least one element



Chapter 3: Kleene monads 90

of the sequence (K̄k, Mk) has form (init y Ð K in M�). By the definition of γ for every k:

γ((do z̄ Ð K̄k; Mk){init x Ð s in t�}) = /0,

γ((do z̄ Ð K̄k; Mk){s + init x Ð (do x Ð s; t) in t�}) = /0 .

Therefore, by the definitions of γ and ��:

γ(p) = γ(nf(p))

= γ
(
∑i do x̄ Ð āi; bi

)
Y

γ
(
∑j do x̄ Ð c̄j; ret Cj{init x Ð s in t�}

)
Y γ

(
E{init x Ð s in t�}

)
�� γ

(
∑i do x̄ Ð āi; bi

)
Y

γ
(
∑j do x̄ Ð c̄j; ret Cj{s + init x Ð (do x Ð s; t) in t�}

)
Y

γ
(

E{s + init x Ð (do x Ð s; t) in t�}
)

Á� γ(q)

and thus the proof is completed.

Lemma 3.30. Let for some p and q, p�m q. Then for every natural n, p��
k .��

m unfn(q).

Proof. Let p .
= C{s} and q .

= C{t} where s� t is an m-rule instance and C some
context. We proceed by induction over the complexity of C.

Induction Base: C .
= l. In this case p�m q is an instance of an m-reduction rule. In

order to prove the claim we need to consider all these rules one by one. We restrict
ourselves as usual only to the second unit law rule, as the remainder can be verified in
a similar vein (but rather more easily). Suppose p .

= (do x Ð ret s; t) and q .
= t[s/x].

It easily follows from the definition of unfn that unfn(t[s/x]) .
= unfn(t)[unfn(s)/x]. The

reduction in question is now as follows:

p .
= (do x Ð ret s; t)��

k(do x Ð ret unfn(s); unfn(t))�m unfn(t)[unfn(s)/x].

Induction Step. Unless C has a Kleene star on top we can easily switch to the induction
hypothesis by distributivity of unfn over the term constructors distinct from the Kleene
star. For instance, if C .

= (do x Ð K; M) then the reduction sequence in question is:

p .
= do x Ð K{t}; M{t}��

k .��
m

do x Ð unfn(K{s}); unfn(M{s}) .
= unfn(do x Ð K{s}; M{s}).

Let C .
= (init x Ð K in M�). In this case we have
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p .
= init x Ð K{t} in M{t}���

k

init x Ð unfn(K{t}) in unfn(M{t})n��
k .��

m

do x Ð unfn(K{s}); unfn(M{s}) .
= unfn(do x Ð K{s}; M{s}).

This completes the proof of the induction step, and thus the lemma is proved.

Now let us introduce one more function, sending programs to SΣ. For every p we put
by definition:

NF(p) :=
⋃

{γ(q) | p��
km q}.

The intuition behind this definition is as follows. Given a program p, we rewrite it
nondeterministically by applying m-rules and unfolding the Kleene star. Then at some
point we ensure that the m-normalisation step was the latest and flatten the top-level
nondeterminism under prg. By definition, NF(p) is the union of all sets of programs
obtained in this way.

The construction of NF(p) brings a hope that every m-normal t ¤ p such that the nonde-
terministic operators (deadlock, choice, Kleene star) occur in t under ret’s, is provably
equivalent to some s P NF(p).

Example 3.1. Let p be a program with a computational return type. If p is non-iterative,
then nf(p) = ∑iPI pi (possibly with I = /0) where all pi are shallow-deterministic (and
moreover non-iterative). Then it is easy to see that NF(p) = {pi | i P I}.

If p is shallow-deterministic, then by definition NF(p) = {nf(p)}.

Let p be of the form (init x Ð q in r�) where q and r do not contain ‘ret’. Then it is easy
to see that NF(p) = {nf(init x Ð s in ti) | s P NF(q), t P NF(r)}.

Our goal now is to show that the class of reduction chains p��
km q in the definition of

NF(p) can be specified more precisely if we are allow identification modulo ��. For
example, we are going to see that we can replace the class of all reductions p��

km q by
the reductions of the form p��

k unfn(p) (Lemma 3.31).

Lemma 3.31. For any program p:

NF(p) �� NF(nf(p)), (3.20)

NF(p) ��

⋃
i
γ(unf i(p)). (3.21)

Proof. For some q, let p��
km q. Since for every p, p��

m nf(p), by Theorem 3.21 there
is r such that nf(p)��

km r and q��
km r. By Lemma 3.29, γ(p) À� γ(q) À� γ(r). Now

we have: NF(p) =
⋃ {γ(q) | p��

km q} À�

⋃ {γ(r) | nf(p)��
km r} = NF(nf(p)). On

the other hand NF(nf(p)) À�

⋃{γ(r) | p��
km nf(p)��

km r} � NF(p) and thus we
have (3.20) proved.
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We prove the identity (3.21) by establishing mutual inequality. Note that the right-hand
side of (3.21) is obtained from the union

⋃{γ(q) | p��
km q} by cancelling the reductions

not having form p��
k unf i(p). Therefore:

⋃
i
γ(unf i(p)) À� NF(p) =

⋃
{γ(q) | p��

km q}.

We are left to prove that NF(p) À�

⋃
i γ(unf i(p)). By definition, it suffices to show that

for every q such that p��
km q there exists i such that γ(q) À� γ(unf i(p)). We prove it

by induction over n, the number of one-step m-reductions in p��
km q. If n = 0 then we

take as i the length of the sequence p��
km q. By Lemma 3.16 q��

k unf i(p) and therefore,
by Lemma 3.29 γ(q) À� γ(unf i(p)).

Suppose n ¡ 0 and consider the last step of the reduction chain p��
km q. If it cor-

responds to an m-reduction then there must exist r such that p��
km r�m q and the

number of one-step m-reductions in the sequence p��
km r is smaller than originally.

By induction hypothesis, γ(r) À� γ(unf i(p)). By definition of γ, γ(r) = γ(q), which
proves the induction step. Suppose the last step in the chain p��

km q is by the k-rules.
Let u��

k q be the longest tail of k-reductions in p��
km q. Since n ¡ 0 the original chain

decomposes to
p��

km r�m u��
k q. (3.22)

By Lemma 3.16, assume w.l.o.g. that q .
= unfk(u), for some k. Then, by Lemma 3.30,

there exists w such that (3.22) is equivalent to

p��
km r��

k w��
m q.

By the induction hypothesis γ(w) À� γ(unf i(p)). Again, by definition of γ, γ(w) = γ(q),
which implies: γ(q) À� γ(unf i(p)) and thus the proof is complete.

Lemma 3.32. For all appropriately typed programs p, q, r and u

NF(do x Ð p; y Ð (init z Ð q in r�); u)

��

⋃
i
NF(do x Ð p; y Ð (init z Ð q in ri); u). (3.23)

Proof. First transform the left-hand side of (3.23) as follows.

NF(do x Ð p; y Ð (init z Ð q in r�); u)

��

⋃
i
γ(unf i(do x Ð p; y Ð (init z Ð q in r�); u)) [by 3.21]

��

⋃
i

⋃
j i

γ(unf i(do x Ð p; y Ð (init z Ð q in rj); u)) Y⋃
i
γ(do x Ð unf i(p); y Ð (init z Ð (init z Ð unf i(q) in

unf i(r)i) in unf i(r)�); unf i(u)) [by def. of unf i]
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It follows from Lemmas 3.26, 3.27 that the latter indexed union evaluates to the empty
set. Therefore the goal simplifies down to

NF(do x Ð p; y Ð (init z Ð q in r�); u)

��

⋃
i

⋃
j i

γ(unf i(do x Ð p; y Ð (init z Ð q in rj); u)). (3.24)

Let us show that the right-hand side of (3.24) is greater than

γ(unf i(do x Ð p; y Ð (init z Ð q in rj); u))

for any i, j (note, this is trivial when j   i ). Let n be the length of the reduction sequence

do x Ð p; y Ð (init z Ð q in rj); u ��
k unf i(do x Ð p; y Ð (init z Ð q in rj); u)

Then, by Lemma 3.16 for k = max{j, n}+ 1

unf i(do x Ð p; y Ð (init z Ð q in rj); u) ��
k unfk(do x Ð p; y Ð (init z Ð q in rj); u)

Therefore

γ(unf i(do x Ð p; y Ð (init z Ð q in rj); u))

À� γ(unfk(do x Ð p; y Ð (init z Ð q in rj); u)) [by Lemma 3.29]

À�

⋃
i

⋃
j i

γ(unf i(do x Ð p; y Ð (init z Ð q in rj); u))

We have thus shown that we can drop the condition j   i for the indexed union in (3.24),
after which we are done by Lemma 3.21.

Lemma 3.33. Let for some programs q and r, $MEω q = r. Then for every p1, . . . , pn,
NF(do x̄ Ð p̄; ret q) �ω NF(do x̄ Ð p̄; ret r). If, moreover, $ME� q = r then NF(do x̄ Ð
p̄; ret q) �� NF(do x̄ Ð p̄; ret r).

Proof. First, let us show that w.l.o.g. n = 1. By assumption, $MEω q = r and therefore

$MEω q[prn
1(z)/x1, . . . , prn

n(z)/xn] = r[prn
1(z)/x1, . . . , prn

n(z)/xn] (3.25)

If we had the claim proved with n = 1 we would prove the general case as follows:

NF(do x̄ Ð p̄; ret q)

�ωNF(do z Ð (do x̄ Ð p̄; ret x̄); ret q[prn
1(z)/x1, . . . , prn

n(z)/xn]) [by 3.20]

�ωNF(do z Ð (do x̄ Ð p̄; ret x̄); ret r[prn
1(z)/x1, . . . , prn

n(z)/xn]) [by 3.25]

�ωNF(do x̄ Ð p̄; ret r) [by 3.20]

The same argument applies to the case $ME� q = r.
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We are left to prove that $ME� q = r ùñ NF(do x Ð p; ret q) �� NF(do x Ð p; ret r)
and$MEω q = r ùñ NF(do x Ð p; ret q) �ω NF(do x Ð p; ret r). We consider only the
former implication because the latter one can be proved analogously. We have:

NF(do x Ð p; ret q)

��

⋃
i
γ(unf i(do x Ð p; ret q)) [by 3.21]

��

⋃
i
γ(do x Ð unf i(p); ret unf i(q)) [by def. of unf i]

��

⋃
i
γ(do x Ð nf(unf i(p)); ret unf i(q)) [by def. of γ].

In the same way, NF(do x Ð p; ret r) ��

⋃
i γ(do x Ð nf(unf i(p)); ret unf i(r)). There-

fore it suffices to prove the equivalence

γ(do x Ð nf(unf i(p)); ret unf i(q)) �� γ(do x Ð nf(unf i(p)); ret unf i(r))

for every i. Let us fix i. By m-normality, nf(unf i(p)) has form (∑j do x̄j Ð s̄j; tj). Since
by (3.20), γ(do x Ð nf(unf i(p)); ret unf i(q)) ��

⋃
j γ(do x̄j Ð s̄j; x Ð tj; ret unf i(q)) and

γ(do x Ð nf(unf i(p)); ret unf i(r)) ��

⋃
j γ(do x̄j Ð s̄j; x Ð tj; ret unf i(r)) we will be

done as soon as we establish the equivalence:

γ(do x̄j Ð s̄j; x Ð tj; ret unf i(q)) �� γ(do x̄j Ð s̄j; x Ð tj; ret unf i(r))

for every tj. By Lemma 3.27 both sides of this equivalence evaluate to /0 if one of the
sj

1, . . . , sj
nj , tj has a Kleene star on top. Consider the remaining case. By construction, all

the sj
k must be atomic. If tj is also atomic then we are done by the definition of �� and

the calculation: $ME� unf i(q) = q = r = unf i(r). Finally, consider the only remaining
option: tj

.
= ret w with some w. Then

γ(do x̄j Ð s̄j; x Ð tj; ret unf i(q))

= γ(do x̄j Ð s̄j; x Ð ret w; ret unf i(q))

�� γ(do x̄j Ð s̄j; ret(do x Ð ret w; unf i(q))) [by 3.20]

�� γ(do x̄j Ð s̄j; ret(do x Ð ret w; unf i(r))) [by def. of ��]

�� γ(do x̄j Ð s̄j; x Ð ret w; ret unf i(q)) [by 3.20]

= γ(do x̄j Ð s̄j; x Ð tj; ret unf i(q)).

In this calculation we made use of the following fact:

$ME� do x Ð ret w; unf i(q) = do x Ð ret w; unf i(r)

whose proof is as follows:

do x Ð ret w; unf i(q)

= do x Ð ret w; q [by def. of unf i]
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= do x Ð ret w; r [by assm.]

= do x Ð ret w; unf i(r). [by def. of unf i]

The proof is now completted.

Lemma 3.34. Let Φ be a set of program equations and let � be an equivalence relation over SΣ

such that � is weaker than �Φ
� and for every (s = t) P Φ, all programs u1, . . . , un, r and every

normal a P AΣ:

NF(do x̄ Ð ū; y Ð a[s/v]; r) � NF(do x̄ Ð ū; y Ð a[t/v]; r). (3.26)

Let p and q be two programs such that Φ $ME� p = q. Then for every u1, . . . , un, r and for
every normal a P AΣ:

NF(do x̄ Ð ū; y Ð a[p/v]; r) � NF(do x̄ Ð ū; y Ð a[q/v]; r). (3.27)

Proof. Note for the future that since � is weaker than ��, it suffices to prove

NF(do x̄ Ð ū; y Ð a[p/v]; r) �� NF(do x̄ Ð ū; y Ð a[q/v]; r). (3.28)

instead of (3.27). We will be done once we prove the claim in two cases: if p = q is a
logical axiom of ME�, and if p = q is obtained from Φ in one step. The general case
would then follow by induction over the proof complexity of Φ $ME� p = q.

For the axioms of ME+ (3.28) and thus (3.27) follows from (3.20). Indeed, if p = q is an
axiom of ME+ then $ME+ a[p/v] = a[q/v]. Therefore, by Theorem 2.18, nf(a[p/v]) �
nf(a[q/v]). Then we have by (3.20) and the definition of nf:

NF(do x̄ Ð ū; y Ð a[p/v]; r)

��NF(do x̄ Ð ū; y Ð nf(a[p/v]); r)

��NF(do x̄ Ð ū; y Ð nf(a[q/v]); r)

��NF(do x̄ Ð ū; y Ð a[q/v]; r).

The remaining three axioms of ME�, presented in Fig. 3.1 can be proved by Lemma 3.32.
We will prove only (unf1) and drop the proofs of the other two, since they can be per-
formed analogously. Let p .

= (init z Ð s in t�) and q .
= s + do z Ð (init z Ð s in t�); t.

Note that by Lemma 3.24, a either does not depend on v or a .
= v. The former case is

trivial and we stick to the latter one. By Lemma 3.32:

NF(do x̄ Ð ū; y Ð a[p/v]; r) ��

⋃
i
NF(do x̄ Ð ū; y Ð (init z Ð s in ti); r),

NF(do x̄ Ð ū; y Ð a[q/v]; r) ��

⋃
i
NF(do x̄ Ð ū; z Ð (init z Ð s in ti); y Ð t; r) Y

NF(do x̄ Ð ū; y Ð s; r).
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Now the proof of (3.28) follows from (3.21):

⋃
i
NF(do x Ð u; y Ð (init z Ð s in ti); r)

��

⋃
i¡0

NF(do x Ð u; y Ð (init z Ð s in ti); r) Y⋃
i=0

NF(do x Ð u; y Ð s; r)

��

⋃
i
NF(do x Ð u; z Ð (init z Ð s in ti); y Ð t; r) Y

NF(do x Ð u; y Ð s; r).

We have thus proved (3.27) for all axioms of ME�. Let us proceed with the derivation
rules. Verification of (sym) and (trans) is trivial due to symmetry and transitivity of �.
Let us verify the congruence rules.

Consider the congruence rule for signature symbols. Let for some (s = t) P Φ, f P Σ,
p .
= f (s) and q .

= f (t). By the premise of the lemma, for every u1, . . . , un, r and every
normal a P AΣ:

NF(do x̄ Ð ū; y Ð b[s/z]; r) � NF(do x̄ Ð ū; y Ð b[t/z]; r)

where b := nf(a[ f (z)/v]) and z is chosen so that z R Vars(a) from which we conclude
with the help of (3.20) the goal:

NF(do x̄ Ð ū; y Ð a[ f (s)/v]; r) � NF(do x̄ Ð ū; y Ð a[ f (t)/v]; r).

In the same way one can prove (cong fst) and (cong snd). Let us consider (cong pair).
Suppose for some s1, s2, t1, t2, Φ $ s1 = t1, Φ $ s2 = t2, p .

= 〈s1, t1〉 and q .
= 〈s2, t2〉.

By normality and for typing reasons the atomic program a in (3.27) must be in either
of the forms: h1(. . . (hk(v)) . . .) or h1(. . . (hk( f (w))) . . .) where f P Σ and for every i,
hi P {fst, snd}. Consider the former case. For typing reasons k must be at least 1.
Suppose e.g. hk = fst (case hk = snd is analogous). Then the proof of (3.29) is as
follows:

NF(do x̄ Ð ū; y Ð a[〈s1, t1〉/v]; r)

�� NF(do x̄ Ð ū; y Ð h1(. . . (hk�1(s1)) . . .); r) [by 3.20]

� NF(do x̄ Ð ū; y Ð h1(. . . (hk�1(s2)) . . .); r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð a[〈s2, t2〉/v]; r) [by 3.20].

Suppose a .
= h1(. . . (hk( f (w))) . . .). Let v1, v2 be two fresh variables such that 〈v1, v2〉

has the same return type as v. By Lemma 3.22, nf(a[〈s1, v2〉/v]), which is equal to
h1(. . . (hk( f (nf(w[〈s1, v2〉/v])))) . . .), is atomic. For the same reason, nf(a[〈v1, t2〉/v])
must be atomic. Then the proof of (3.29) runs as follows:

NF(do x̄ Ð ū; y Ð a[〈s1, t1〉/v]; r)
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�� NF(do x̄ Ð ū; y Ð nf(a[〈s1, v2〉/v])[t1/v2]; r) [by 3.20]

� NF(do x̄ Ð ū; y Ð nf(a[〈s1, v2〉/v])[t2/v2]; r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð nf(a[〈v1, t2〉/v])[s1/v1]; r) [by 3.20]

� NF(do x̄ Ð ū; y Ð nf(a[〈v1, t2〉/v])[s2/v1]; r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð a[〈s2, t2〉/v]; r). [by 3.20]

We proceed with the verification of the remaining congruence rules capturing the con-
trol operators. Note that for all of them by Lemma 3.24, the atomic program a in (3.27)
must be equal to v.

Consider the congruence rule for ret. Suppose p .
= ret s, q .

= ret t and $ME� s = t.
By (3.20) the goal (3.27) is equivalent to

NF(do x̄ Ð ū; y Ð ret s; nf(r)) � NF(do x̄ Ð ū; y Ð ret t; nf(r)).

By Remark 3.23, nf(r) has the form ∑j do z̄j Ð āj; wj. Since by (3.20),

NF(do x̄ Ð ū; y Ð ret s; nf(r)) ��

⋃
j
NF(do x̄ Ð ū; z̄j Ð āj[s/y]; wj[s/y]),

NF(do x̄ Ð ū; y Ð ret t; nf(r)) ��

⋃
j
NF(do x̄ Ð ū; z̄j Ð āj[t/y]; wj[t/y])

we will be done once we prove the equivalence

NF(do x̄ Ð ū; z̄j Ð āj[s/y]; wj[s/y]) � NF(do x̄ Ð ū; z̄j Ð āj[t/y]; wj[t/y]) (3.29)

for all j. By Lemmas 3.27 and 3.26, the latter equivalence becomes trivial if either of
the aj

i , wj has a Kleene star on top. Therefore we assume henceforth that all the aj
i are

atomic and every wj is either atomic or is of the form ret u. Let us fix j and suppose
wj

.
= ret u. We proceed by further induction over m := |ā|. Let m = 0. Recall that

(s = t) P Φ. Therefore, Φ $ME� u[s/y] = u[t/y] and we are done by Lemma 3.33. Let
m ¡ 0. Then the proof of (3.29) is as follows:

NF(do x̄ Ð ū; x̄ Ð ā[s/y]; ret u[s/y])

= NF(do x̄ Ð ū; x1 Ð a1[s/y]; . . . ; xm Ð am[s/y]; ret u[s/y])

� NF(do x̄ Ð ū; x1 Ð a1[t/y]; . . . ; xm Ð am[s/y]; ret u[s/y]) [by 3.26]

� NF(do x̄ Ð ū; x1 Ð a1[t/y]; . . . ; xm Ð am[t/y]; ret u[t/y]) [by ind.]

= NF(do x̄ Ð ū; x̄ Ð ā[t/y]; ret u[t/y]).

The situation when wj is atomic can be reduced to the one just considered by the equiv-
alence:

NF(do x̄ Ð ū; z̄j Ð āj[u/y]; wj[u/y])

�� NF(do x̄ Ð ū; z̄j Ð āj[u/y]; z Ð wj[u/y]; ret z),
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which itself follows from (3.20). We have thus completed the proof of (cong ret).

Let us prove the congruence rule for binding. Suppose p .
= (do z Ð s1; t1), q .

=

(do z Ð s2; t2) and {s1 = s2, t1 = t2} � Φ. The proof of (3.27) runs as follows:

NF(do x̄ Ð ū; y Ð a[p/v]; r)

�� NF(do x̄ Ð ū; z Ð s1; y Ð t1; r) [by 3.20]

� NF(do x̄ Ð ū; z Ð s2; y Ð t1; r) [by 3.26]

� NF(do x̄ Ð ū; z Ð s2; y Ð t2; r) [by 3.26]

�� NF(do x Ð u; y Ð a[q/v]; r). [by 3.20]

Let us prove the congruence rule for the Kleene star. Let p .
= (init z Ð s1 in t�1), q .

=

(init z Ð s2 in t�2) and {s1 = s2, t1 = t2} � Φ. By Lemma 3.32:

NF(do x̄ Ð ū; y Ð a[p/v]; r) ��

⋃
i
NF(do x̄ Ð ū; y Ð (init z Ð s1 in ti

1); r),

NF(do x̄ Ð ū; y Ð a[q/v]; r) ��

⋃
i
NF(do x̄ Ð ū; y Ð (init z Ð s2 in ti

2); r).

Therefore, it suffices to prove for every i the equivalence:

NF(do x̄ Ð ū; y Ð (init z Ð s1 in ti
1); r) � NF(do x̄ Ð ū; y Ð (init z Ð s2 in ti

2); r).

We proceed by further induction over i. If i = 0 we are immediately done by (3.26). If
i ¡ 0 then the proof is as follows:

NF(do x̄ Ð ū; y Ð (init z Ð s1 in ti
1); r)

�� NF(do x̄ Ð ū; z Ð (init z Ð s1 in ti�1
1 ); y Ð t1; r) [by 3.20]

� NF(do x̄ Ð ū; z Ð (init z Ð s2 in ti�1
2 ); y Ð t1; r) [by ind.]

� NF(do x̄ Ð ū; z Ð (init z Ð s2 in ti�1
2 ); y Ð t2; r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð (init z Ð s2 in ti
2); r). [by 3.20]

Let us prove the congruence rule for the choice. Let p .
= s1 + t1, q .

= s2 + t2 and
{s1 = s2, t1 = t2}. Then the proof runs as follows:

NF(do x̄ Ð ū; y Ð a[p/v]; r)

�� NF(do x̄ Ð ū; y Ð (s1 + t1); r)

�� NF(do x̄ Ð ū; y Ð s1; r)YNF(do x̄ Ð ū; y Ð t1; r) [by def. of NF]

�� NF(do x̄ Ð ū; y Ð s2; r)YNF(do x̄ Ð ū; y Ð t2; r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð a[q/v]; r).
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We have thus verified all the congruence rules. Let us verify (inst). Let p .
= s1[t/v],

q .
= s2[t/v] and s1 = s2 P Φ. Then the proof is as follows:

NF(do x̄ Ð ū; y Ð a[p/v]; r)

= NF(do x̄ Ð ū; y Ð a[s1[t/z]/v]; r)

�� NF(do x̄ Ð ū; z Ð ret t; y Ð a[s1/v]; r) [by 3.20]

� NF(do x̄ Ð ū; z Ð ret t; y Ð a[s2/v]; r) [by 3.26]

�� NF(do x̄ Ð ū; y Ð a[s2[t/z]/v]; r). [by 3.20]

= NF(do x Ð u; y Ð a[q/v]; r).

Finally, we need to prove the induction rules (ind1) and (ind2). The proofs easily follow
from Lemma 3.32. We prove only (ind1) and drop the analogous case of the other one.
Suppose p .

= (init z Ð s in t�) + s, q .
= s and (do z Ð s; t + s = s) P Φ. By Lemma 3.24,

a .
= v in (3.28). By Lemma 3.32 we are left to show that for every i:

NF(do x̄ Ð ū; y Ð s; r) � NF(do x̄ Ð ū; y Ð s; r) Y

NF(do x̄ Ð ū; y Ð (init z Ð s in ti); r).

This equivalence can be easily proved by induction over i similar to the case of the
congruence rule for the Kleene star.

After instantiating in Lemma 3.34 Φ with /0, ū with the empty sequence, r with ret y,
and �with ��, we obtain

Corollary 3.35. Let p and q be two programs with the same computational return type. Then
$ME� p = q implies NF(p) �� NF(q).

Lemma 3.36. Let Φ be a set of program equations and let � be an equivalence relation over SΣ

such that � is weaker than �Φ
ω and for every (s = t) P Φ, every programs u1, . . . , un, r and

every normal a P AΣ:

NF(do x̄ Ð ū; y Ð a[s/v]; r) � NF(do x̄ Ð ū; y Ð a[t/v]; r). (3.30)

Let p and q be two programs such that Φ $MEω p = q. Then for every u1, . . . , un, r and for
every normal a P AΣ:

NF(do x̄ Ð ū; y Ð a[p/v]; r) � NF(do x̄ Ð ū; y Ð a[q/v]; r). (3.31)

Proof. We will be done by induction over proof complexity of Φ $MEω p = q once we
prove the two specific cases: p = q is an axiom of MEω and p = q is obtained from Φ in
one step by one of the derivation rules. Since MEω share the axioms with ME� and �Φ

ω

is weaker than �Φ
� the former statement follows from Lemma 3.34, with � instantiated

by�Φ
ω . Let us consider the latter statement. For all the rules of MEω which happen to be
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rules of ME� we obtain the proof by calling Lemma 3.34 once more. The only remaining
rule is (ω). Let

(ω)
@i. init x Ð s in ti res x Ñ l ¤ w

init x Ð s in t� res x Ñ l ¤ w

be the instance of (ω) in question, i.e.

{init x Ð s in ti res x Ñ l = init x Ð s in ti res x Ñ l + w}i � Φ, (3.32)

p .
= (init x Ð s in t� res x Ñ l) and q .

= (init x Ð s in t� res x Ñ l) + w. Note that by
Lemma 3.24 a in (3.31) must be equal to v, and thus the goal (3.31) transforms to:

NF(do x̄ Ð ū; x Ð (init x Ð s in t�); y Ð l; r)

�Φ
ω NF(do x̄ Ð ū; x Ð (init x Ð s in t�); y Ð l; r) Y

NF(do x̄ Ð ū; y Ð w; r).

By Lemma 3.32 we switch equivalently to

NF(do x̄ Ð ū; x Ð (init x Ð s in ti); y Ð l; r)

�Φ
ω NF(do x̄ Ð ū; x Ð (init x Ð s in ti); y Ð l; r) Y

NF(do x̄ Ð ū; y Ð w; r).

which should be proved for every i. In fact, due to (3.32), for every i the latter equiva-
lence is an instance of the assumption (3.30). The proof is thus completed.

After instantiating in Lemma 3.36 Φ with /0, ū with the empty sequence, r with ret y
and �with ��, we obtain

Corollary 3.37. Let p and q be two programs with the same computational return type. Then
$MEω p = q implies NF(p) �ω NF(q).

Lemma 3.38. In any strong continuous Kleene monad, for every p with a computational return
type: p = supNF(p) .

Proof. Let us fix for the sequel an underlying strong continuous Kleene monad T. Ob-
serve that by the definition of NF, for every t P NF(p), t ¤ p. Let q be a program
satisfying the condition: for every t P NF(p), t ¤ q. We will be done as soon as we
prove that p ¤ q.

W.l.o.g. we assume that p has the form (do x Ð w; ret x) which is justified by the
first unit law. We proceed by induction over n, the number of Kleene stars occurring
in p. Let n = 0 and let p̄ be a vector of shallow-deterministic programs such that
nf(p) .

= ∑i pi. Then NF(p) =
⋃

i NF(pi) = {p1, . . . , pm}. Therefore p = ∑i pi ¤ q and
we are done.
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Suppose n ¡ 0. Let us normalise p under the associativity rule. Then it takes the form
p .
= ∑i do x̄i Ð p̄i; ret zi (in particular this sum might contain only one summand). We

successively transform p by replacing every (do x̄i Ð p̄i; ret zi) where for some k, pi
k

has the form u + r by the two new summands:

do xi
1 Ð pi

1; . . . ; xk�1 Ð pi
k�1; xk Ð u; xk+1 Ð pi

k+1; . . . ; ret zi,

do xi
1 Ð pi

1; . . . ; xk�1 Ð pi
k�1; xk Ð r; xk+1 Ð pi

k+1; . . . ; ret zi

normalised under associativity. We repeat this transformation as long as possible. Ter-
mination is guaranteed by Lemma 2.16. We have thus ensured that for every i and k, pi

k

is either atomic or deadlock or Kleene star. Note that by (3.20) all these manipulations
do not change NF(p), i.e. the assumption @t P NF(p). t ¤ q is maintained. We have thus
for every i: @t P NF(do x̄i Ð p̄i; ret zi). t ¤ q. We will be done if we manage to prove
that for every i

do x̄i Ð p̄i; ret zi ¤ q. (3.33)

Indeed, then we would have p = ∑i do x̄i Ð p̄i; ret zi ¤ q.

We proceed with the proof of (3.33). Let us fix some index i. If for every k pi
k does

not contain Kleene star, then the proof of (3.33) runs the same way as the proof of the
induction base. Suppose, on the contrary, for some k, pi

k
.
= (init x Ð u in r�). Then

NF(do x̄i Ð p̄i; ret zi) =
⋃

j NF(qj) with

qj := do xi
1 Ð pi

1; . . . ; xk�1 Ð pi
k�1; xk Ð (init x Ð u in rj); xk+1 Ð pi

k+1; . . . ; ret zi.

According to the assumption, for every t P NF(qj), t ¤ q. It can easily be seen by
construction that the number of Kleene stars in (do x̄i Ð p̄i; ret zi) is not greater than n.
Therefore, the number of Kleene stars in every qj is strictly less than n. By the induction
hypothesis, for every j, qj ¤ q. For every j we have thus by (assoc):

init x Ð (do xi
1 Ð pi

1; . . . ; xk�1 Ð pi
k�1; u) in rj res xk Ñ (do . . . ; ret zi) ¤ q

from which we deduce by (ω):

init x Ð (do xi
1 Ð pi

1; . . . ; xk�1 Ð pi
k�1; u) in r� res xk Ñ (do . . . ; ret zi) ¤ q.

By (init) the letter inequality is equivalent to (3.33).

By Corollary 3.37 we know that $MEω p = q implies NF(p) �ω NF(q). On the other
hand, if for some p, q, NF(p) �ω NF(q), then for every t P NF(p) there is s P NF(q) such
that $MEω s = t and thus $MEω t = s ¤ q which by Lemma 3.38 implies $MEω p ¤ q. By
the symmetric argument, $MEω q ¤ p. We have thus proved
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Corollary 3.39. Let p and q be two programs with the same computational return type. Then
$MEω p = q iff NF(p) �ω NF(q).

3.5 Undecidability and incompleteness

Whereas conditional program equality is undecidable even for the deterministic case
(see Theorem 1.26), the unconditional case remains decidable not only for plain vanilla
monads but also for additive monads (see Theorem 2.18). After introducing the Kleene
star into the reasoning we made the underlying language look essentially more ex-
pressive, but the question is still whether MCE can indeed capture more interesting
cases of program equivalence than those which can be captured either by ME or by
Kleene algebra. The answer can be justified by an (un-)decidability theorem. E.g. it
is a well-known fact, justified by Rice’s theorem (cf. e.g. [Rog87]), that all the non-
trivial properties of recursive programs (e.g. program equivalence) are undecidable.
On the other hand, the language under consideration operates with a very restricted
sort of recursion and there is no obvious way to model natural numbers so as to make
this recursion full-fledged. Furthermore, program equivalence in Kleene algebra, a fair
prototype of Kleene monads, is decidable [Koz94]. Despite these considerations in the
present section, we establish two negative results: program equality in ME� is undecid-
able (Theorem 3.41) and program equality in MEω is non-r.e. (Theorem 3.42). The core
of both proofs is a reduction from the Post Correspondence Problem (PCP) in which
we are aided considerably by the theory of NF operator developed in Section 3.4.

Before we proceed with the announced proofs let us clarify the notion of PCP and
the background terminology. Let Ξ be a finite alphabet, containing at least two dis-
tinct letters. Recall that Ξ+ denotes the set of all nonempty words over Ξ. For every
t P Ξ+ we denote by t�1 the reversed string. A PCP instance is a finite set of the form
{(p1, q1), . . . , (pn, qn)} where {p1, q1, . . . , pn, qn} � Ξ+. A solution of a PCP instance
{(p1, q1), . . . , (pn, qn)} is the finite sequence of indices i1, . . . , in such that pi1 pi2 . . . pin =

qi1 qi2 . . . qin .

A conventional way of presenting pairs of strings in PCP instances is by domino-like
tables arranged vertically. Then a solution of a PCP instance can be presented by

a table with two lines. E.g. the PCP instance

{
0

100
,

01
00

,
110
11

}
has as a solution

110 01 110 0
11 00 11 100

. The following theorem is the basis for the upcoming undecidability

results.

Theorem 3.40 (cf. e.g. [RS97]). It is undecidable to check if a PCP instance has a solution.

Now we can proceed with the main text.
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Theorem 3.41 (Undecidability). The equational theory of ME� is undecidable.

Proof. Let Ξ := {a, b, c} be an alphabet, and let P := {〈p1, q1〉, . . . , 〈pn, qn〉} be an arbi-
trary PCP instance in Ξz{c}. We can treat elements of Ξ as functional symbols whose
types are 1 Ñ T1. Then symbol concatenation will correspond to the binding operator.
Given some s1, . . . , sn P Ξ we will thus use both notations s1 . . . sn and (do s1; . . . ; sn)

interchangeably. The idea of the proof is to construct a program equation over the sig-
nature Ξ which is provable in ME� iff the PCP instance has a solution. Let

s := do x Ð
(

init x Ð ∑n
i=1 ret(do pi; c; q�1

i ) in ∑n
i=1 ret(do pi; x; q�1

i )�
)

; x.

It is easy to see that NF(s) is precisely the set of all strings of the form lcr�1 where
l = pi1 . . . pik and r = qi1 . . . qik for some finite sequences of indices i1, . . . , ik. In the same
way we define

r := init x Ð ret c in ∑n
i=1 ret(do a; x; a + do b; x; b)�

and observe that NF(r) is the set of all terms of the form ret(wcw�1). The fact that the
PCP instance does have a solution can now be encoded by the inequality

ret s ¤ do x Ð r; ret(s + x). (3.34)

Let us show that if the inequality (3.34) is provable in ME� the PCP instance has a so-
lution. Let (3.34) be provable. By Corollary 3.35, NF(ret s) À� NF(do x Ð r; ret(s + x)).
By the definition ofÀ�, there exists w P Ξ+ such that NF(s) is pointwise provably equal
to NF(s)Y {wcw�1} or, equivalently, for some w P Ξ+, wcw�1 is provably equal to an
element of NF(s). The latter precisely means that the PCP instance has a solution.

Now let us prove that if the PCP instance has a solution then (3.34) is provable in ME�.
If the PCP instance has a solution then by definition NF(s) contains at least one element
of the form wcw�1 where w P Ξ+. By (3.21), NF(s) =

⋃
i γ(unf i(s)). It can easily be seen

that for every i the words from γ(unf i+1(s))zγ(unf i(s)), are longer than i. Therefore,
wcw�1 belongs to some γ(unf i(s)), and thus the inequality $ME� wcw�1 ¤ s can be
shown by applying the axiom (unf2) finitely many times. We have thus in ME�:

do x Ð r; ret(s + x)

¥ do x Ð ret(wcw�1); ret(s + x)

= ret(s + wcw�1) = ret s

which proves (3.34), and thus we are done.

In contrast to strong Kleene monads, which are only undecidable, strong continuous
Kleene monads are moreover logically intractable.
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Theorem 3.42. Program equality in MEω is non-r.e.

Proof. We prove this theorem in much the same manner as Theorem 3.41. But instead of
encoding PCP we encode its dual, which is co-r.e. complete. This encoding is inspired
by [Koz96]. Again, let Ξ = {a, b, c}, and {〈p1, q1〉, . . . , 〈pn, qn〉} be an instance of PCP
in the alphabet Ξz{c}. Besides the program s from Theorem 3.41 which generates all
potential solutions of the PCP instance, we introduce a program t generating all pairs
of distinct strings. The program t can be defined using the term r from the proof of
Theorem 3.41 by the assignment:

t := do x Ð r; y Ð 7; z Ð 7;(
do y; a; x; b; z + do y; b; x; a; z +

do x; b; z + do x; a; z + do y; a; x + do y; b; x
)
,

where 7 denotes the ‘chaos’ program

init x Ð ret ret � in
(
ret(do x; a) + ret(do x; b)

)�.

For example, it can be easily verified that aacab ¤ t, but bacab ¦ t which precisely
captures the facts: aa � (ab)�1 and ba = (ab)�1. According to the definition of s, NF(s)
presents the set of strings presenting the potential solutions of the PCP instance. In the
same way, observe that NF(t) presents the set of pairs of distinct strings. We will be
done with the proof once we show that $MEω s ¤ t is equivalent to NF(s) � NF(t). By
Corollary 3.39, $MEω s ¤ t ðñ NF(s) Àω NF(t). But both NF(s) and NF(t) consist of
deterministic ret-free programs. Therefore by definition, NF(s) Àω NF(t) amounts to
the inclusion NF(s) � NF(t), and thus we are done.

Remark 3.43. The result about strong continuous Kleene monads (scKM) we have es-
tablished can be pushed a little bit forward by noticing that the encoding of PCP we
have used does not make use of deadlock and the axioms for it. Careful examination
of the proofs behind Corollary 3.39 on which the result of Theorem 3.42 is based shows
that all the concerns about ∅ never affect the arguments. We can therefore introduce
a class of monads whose complete axiomatisation is obtained from MEω by removing
the rules for ∅, e.g. let us call these monads strong continuous pseudo-Kleene monads
(scpKM), and obtain for them an analogue of Corollary 3.39. It can be seen then that
application of the partiality monad transformer λX. X + 1 to an scpKM produces an
scKM, which means in particular that any program equation not involving ∅ is valid
over the scpKM iff it is valid over scKM. As a consequence, for any class of monads C

between scpKM and scKM, a program equation not involving ∅ is valid over C iff it
is valid over scKM. Since the construction from Theorem 3.42 involves only programs
that do not contain ∅, this results in the analogous non-r.e. property for C.
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One of the implications of these considerations is that, e.g. a powerset exception monad
P( + E) that fails to be scKM but is nonetheless scpKM still cannot be captured by
a reasonable tractable class of strong monads with nondeterminism and continuous
iteration.

3.6 Contribution and related work

In the present chapter we have introduced the core concept of this thesis, which is the
notion of strong Kleene monads. Our axiomatisation of Kleene monads was strongly
influenced by Kozen’s axiomatisation of Kleene algebra [Koz94]. Roughly, the calculus
of strong Kleene monads can be seen as the union of Kleene algebra theory and the
theory of strong monads. Unlike the more abstract concept of Kleene algebra, Kleene
monads justify the computational interpretation of sequencing, Kleene stars, deadlock,
etc. The most essential differences distinguishing Kleene monads from Kleene alge-
bras are multivariable contexts and the interpreted return operator. These two features
make MCE, an internal language of strong Kleene monads, very close to a full-fledged
programming language. The non-recursive enumerability result (Theorem 3.42) for-
mally justifies the fact that MCE is indeed a very expressive language unlike the com-
ponents it is made of, i.e. ME and Kleene algebra, which are both decidable. Our
proof of non-recursive enumerability is similar to an analogous proof for the Horn the-
ory of �-continuous Kleene algebras [Koz96], but in our case already the equational
theory fails to be r.e.

There is a number of works by other researchers attempting to capture the notion of
monad-based recursion. A good many of them present attempts to generalise certain
constructions from domain theory or process algebra originally established for some
very specific types of side-effects and thus presenting substantial limitations for further
generalisation over reasonably wide classes of computational effects, particularly those
that include stateful computations. A widely recognized work of Crole and Pitts [CP90]
introduces a notion of a fixpoint object as a basis for fixed-point computations with mon-
ads. A notable distinction between the approach of Crolle and Pitts and ours is that the
calculus from [CP90] is only consistent with respect to domain-like models, whereas
our calculus is also consistent with respect to rather simpler set-theoretic models. An-
other important distinction is that our notion of recursion essentially benefits from the
explicit operations for nondeterminism, which are absent in [CP90] and which cannot
be naturally introduced due to underspecified computational behaviour of nondeter-
ministic choice. Finally, no counterpart of ω-continuity appears in [CP90], hence no
completeness/decidability issues with respect to ‘standard’ models (the problem cen-
tral for our studies) have been raised.
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A line of research studying coalgebraic traces, e.g. [HJS06, Jac10], involves fixed points
of effectful operators where the effects are supposed to be of a certain type, namely
those that admit a coalgebraic interpretation. These are, e.g. the powerset monad,
exception monad, etc. On the other hand, the result of instantiating the underlying
monad with stateful computations is not easily interpreted.

A significant source of inspiration for doing effectful recursion is the notion of itera-
tion theory [BE93]. Iteration theories are sum and substance of algebraic recursion; they
capture the identities featured by recursion operators and known to be complete over
a wide range of various interpretations, including order-enriched ones. The notion of
the iteration monad introduced in [AMV10] can be seen as an interpretation of iteration
theories in a Kleisli category of a monad. It should be noted that the idea of introduc-
ing recursion for effectful computations by instantiating an existing algebraic notion of
recursion in a Kleisli category is generally coherent with our approach. Roughly, itera-
tion theories are to iteration monads as Kleene algebras are to Kleene monads. On the
other hand, we should emphasise that in contrast to others we do take multivariable
contexts seriously, i.e. our treatment of monad-based recursion implies all the axioms
of monadic strength, plus we adhere to all the monad laws. Theorem 3.42 justifies the
fact that this attitude dramatically contrasts the existing approaches based on iterative
theories, as the latter commonly lead to expressly positive results [SP00, HK02b].

A notable extension of Kleene algebra pretty much resembling the look of the metalan-
guage of control and effects has been introduced in [AHK07]. No essential theoretical
study of the corresponding logical calculus has been undertaken though.

The notion of a complete additive monad previously appears in [EG03] but under the
name Kleene monad and thus creates a clash with our terms. Consequently, our notion
of a Kleene monad is weaker than the one from [EG03]. While sharing the concepts (and
terms) with [EG03] there does not seem to be any essential overlap in contribution.
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An immediate consequence of Theorem 3.42 is incompleteness of the calculus ME� over
strong continuous Kleene monads. Furthermore, it cannot be completed in any finitary
way. Although our encoding of Post Correspondence Problem makes use of only a
small part of the expressive power of the language, one may still hope to impose some
reasonable syntactic restrictions over programs in order to regain completeness. A nat-
ural restriction of this kind is to limit the usage of the return operator. In this chapter
we introduce various solvable classes of the program equality problem, attempting to
come as close as possible to the non-r.e. border.

Throughout the chapter we assume that the underlying signature Σ is plain.

4.1 Computational networks and the commutation lemma

According to the soundness and completeness result (Theorem 3.12), all the properties
of strong Kleene monads are encoded in the calculus ME�. Being itself rather simple
and concise, the proof calculus ME� entails a great deal of facts and proof principles
that are far from being immediately apparent.

In Section 3.2 we introduced a pattern-matching notation as a shorthand for the com-
monly used program idioms:

do x̄ Ð p; q for do z Ð p; q[prn
1(z)/x1, . . . , prn

n(z)/xn] and

init x̄ Ð p in q� for init z Ð p in q[prn
1(z)/x1, . . . , prn

n(z)/xn]
�.

In most cases we do not need to distinguish programs in pattern-matching notation
from the ordinary ones. In case we do, we refer to the former ones as pattern-matching

107
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programs. Most of the statements about ordinary programs stay valid for pattern-
matching programs. E.g. the modified version of axiom (dist+1 )

do x̄ Ð (p + q); r = do x̄ Ð p; r + do x̄ Ð q; r

is clearly a provable identity. Non-trivial examples important for the further calcula-
tions are the pattern-matching versions of the laws (assoc) and (init).

Lemma 4.1. Let x̄ and ȳ be two vectors of variables, satisfying the condition: Vars(r) X
Vars(ȳ) � Vars(x̄). Then the identities

do x̄ Ð (do ȳ Ð p; q); r = do ȳ Ð p; x̄ Ð q; r, (4.1)

init x̄ Ð (do ȳ Ð p; q) in r� = do ȳ Ð p; init x̄ Ð q in r� (4.2)

are provable in ME�.

Proof. Let us prove the first identity. We have:

do x̄ Ð (do ȳ Ð p; q); r

= do z Ð (do v Ð p; q[prm
1 (v)/y1, . . . , prm

m(v)/ym]);

r[prn
1(z)/x1, . . . , prn

n(z)/xn] [by def.]

= do v Ð p; z Ð q[prm
1 (v)/y1, . . . , prm

m(v)/ym];

r[prn
1(z)/x1, . . . , prn

n(z)/xn] [by (assoc)]

= do v Ð p; x̄ Ð q[prm
1 (v)/y1, . . . , prm

m(v)/ym]; r [by def.]

= do v Ð p; (do x̄ Ð q; r)[prm
1 (v)/y1, . . . , prm

m(v)/ym] [by assm.]

= do ȳ Ð p; (do x̄ Ð q; r). [by def.]

In a similar fashion:

init x̄ Ð (do ȳ Ð p; q) in r�

= init z Ð (do v Ð p; q[prm
1 (v)/y1, . . . , prm

m(v)/ym]) in

r[prn
1(z)/x1, . . . , prn

n(z)/xn]
� [by def.]

= do v Ð p; init z Ð q[prm
1 (v)/y1, . . . , prm

m(v)/ym] in

r[prn
1(z)/x1, . . . , prn

n(z)/xn]
� [by (init)]

= do v Ð p; init x̄ Ð q[prm
1 (v)/y1, . . . , prm

m(v)/ym] in r� [by def.]

= do v Ð p; (init x̄ Ð q in r�)[prm
1 (v)/y1, . . . , prm

m(v)/ym] [by assm.]

= do ȳ Ð p; init x̄ Ð q in r� [by def.]

and thus the second identity is proved.
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In the following lemma we will collect some provable statements of ME� needed ex-
ceptionally for further references.

Lemma 4.2. The following equations are provable in ME�.

init x̄ Ð p in q� = init x̄ Ð (init x̄ Ð p in q�) in q�, (4.3)

init x̄ Ð p in(q + r)� = init x̄ Ð p in q� + init x̄ Ð p in q�

res x̄ Ñ
(
init x̄ Ð r in(q + r)�

)
. (4.4)

Proof. Let us prove (4.3) by establishing mutual inequality. For one thing we have:

init x̄ Ð (init x̄ Ð p in q�) in q�

= init x̄ Ð (do x̄ Ð (init x̄ Ð p in q�); ret x̄) in q� [by (unit1)]

= do x̄ Ð (init x̄ Ð p in q�); (init x̄ Ð ret x̄ in q�) [by (init)]

¥ do x̄ Ð p; (init x̄ Ð ret x̄ in q�) [by (unf2)]

= init x̄ Ð (do x̄ Ð p; ret x̄) in q� [by (init)]

= init x̄ Ð p in q�. [by (unit1)]

In order to prove the converse inequality observe that by (unf1):

do x̄ Ð (init x̄ Ð p in q�); q ¤ init x̄ Ð p in q�.

Now the inequality in question follows by (ind1).

Let us prove (4.4) by establishing mutual equality. To that end we make use of the
inequalities:

init x̄ Ð p in q� ¤ init x̄ Ð p in(q + r)�, (4.5)

init x̄ Ð p in r� ¤ init x̄ Ð p in(q + r)�. (4.6)

E.g. let us prove the first one. Observe that by (unf1), and (dist+2 ):

do x̄ Ð (init x̄ Ð p in(q + r)�); q ¤ init x̄ Ð p in(q + r)�

from which we conclude by (ind1):

init x̄ Ð (init x̄ Ð p in(q + r)�) in q� ¤ init x̄ Ð p in(q + r)�.

The left-hand side of the latter inequality is obviously greater than (init x̄ Ð p in q�)
and hence (4.5). Let us proceed with the proof of (4.4). We have:

init x̄ Ð p in(q + r)�

= init x̄ Ð
(
init x̄ Ð p in(q + r)�

)
in(q + r)�
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= init x̄ Ð p in(q + r)� +

init x̄ Ð
(
init x̄ Ð p in(q + r)� res x̄ Ð (q + r)

)
in(q + r)� [by 4.3]

¥ init x̄ Ð p in q� +

init x̄ Ð (init x̄ Ð p in q� res x̄ Ð r) in(q + r)� [by 4.5, 4.6]

= init x̄ Ð p in q� +

init x̄ Ð p in q� res x̄ Ñ
(
init x̄ Ð r in(q + r)�

)
. [by Lem. 4.1]

In order to complete the proof of (4.4) we are left to establish the converse inequality.
Let us denote the right-hand side of (4.3) by w and observe the following:

w .
= init x̄ Ð p in q� +

init x̄ Ð p in q� res x̄ Ñ
(
init x̄ Ð r in(q + r)�

)
= p + (init x̄ Ð p in q� res x̄ Ñ q) +

(init x̄ Ð p in q� res x̄ Ñ r) +

init x̄ Ð p in q�

res x̄ Ñ
(
init x̄ Ð r in(q + r)� res x̄ Ñ (q + r)

)
[by (unf1)]

¥ do x̄ Ð
(
init x̄ Ð p in q� + [by Lem. 4.1,

init x̄ Ð p in q� res x̄ Ñ (init x̄ Ð r in(q + r)�)
)
; (q + r) (dist+2 )]

= do x̄ Ð w; (q + r).

By (ind1) we conclude w ¥ init x̄ Ð w in(q + r)�. Since w is evidently greater than p,
init x̄ Ð w in(q + r)� ¥ init x̄ Ð p in(q + r)� and thus we are done.

Definition 4.3 (Computational net). Let x̄1, . . . , x̄n be a collection of vectors of distinct
variables; let for every i, j such that 1 ¤ i, j ¤ n, pi,j be a pattern-matching program
whose return type is the same as the type of x̄j; and let for every i, j, k, Vars(pi,j) X

Vars(x̄k) � Vars(x̄i). We call the triple (n, λi. x̄i, λi. λj. pi,j) a computational net.

Let (n, λi. x̄i, λi. λj. pi,j) be a computational net. For every 0 ¤ m ¤ n we recursively
define the programs pm

i,j as follows:

p0
i,i := ret x̄i + pi,i,

p0
i,j := pi,j, if i � j,

pm
i,j := pm�1

i,j + init x̄m Ð pm�1
i,m in(pm�1

m,m )� res x̄m Ñ pm�1
m,j .

Let for every appropriate i, j, p̂i,j := pn
i,j. We call the triple (n, λi. x̄i, λi. λj. p̂i,j) the tran-

sitive closure of (n, λi. x̄i, λi. λj. pi,j). Let us show that (n, λi. x̄i, λi. λj. p̂i,j) is indeed a
computational net, i.e. let us establish the inclusion Vars(x̄k)XVars( p̂i,j) � Vars(x̄i) for
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every i, j, k. Let us show that moreover Vars(x̄k)X Vars(pm
i,j) � Vars(x̄i) by induction

over m. Case m = 0 is trivial. If m ¡ 0 then

Vars(x̄k)XVars(pm
i,j)

= Vars(x̄k)XVars(pm�1
i,j )YVars(x̄k)XVars(pm�1

i,m ) Y

Vars(x̄k)X (Vars(pm�1
m,m )zVars(x̄m)) Y

Vars(x̄k)X (Vars(pm�1
m,j )zVars(x̄m)) [by def. of pm

i,j]

� Vars(x̄k)XVars(pm�1
i,j )YVars(x̄k)XVars(pm�1

i,m ) Y

Vars(x̄k)XVars(pm�1
m,m )YVars(x̄k)XVars(pm�1

m,j )

� Vars(x̄i) [by ind.]

and we are done.

Lemma 4.4. Let (n, λi. x̄i, λi. λj. pi,j) be a computational net and let (n, λi. x̄i, λi. λj. p̂i,j) be
the transitive closure of it. Then for all appropriate i, j, k:

$ME� do x̄k Ð p̂i,k; p̂k,j ¤ p̂i,j

Proof. More generally, we prove that provided 1 ¤ i, j, l ¤ n and 1 ¤ k ¤ l,

$ME� do x̄k Ð pl
i,k; pl

k,j ¤ pl
i,j. (4.7)

The proof is by induction over l. If k = l we have:

do x̄l Ð pl
i,l ; pl

l,j

= do x̄l Ð (pl�1
i,l + init x̄l Ð pl�1

i,l in(pl�1
l,l )� res x̄l Ñ pl�1

l,l ); [by def. of

(pl�1
l,j + init x̄l Ð pl�1

l,l in(pl�1
l,l )� res x̄l Ñ pl�1

l,j ) pl
i,l , pl

l,j]

= do x̄l Ð (init x̄l Ð pl�1
i,l in(pl�1

l,l )�);

(pl�1
l,j + init x̄l Ð pl�1

l,l in(pl�1
l,l )� res x̄l Ñ pl�1

l,j ) [by (unf1)]

= do x̄l Ð
(
init x̄l Ð pl�1

i,l in(pl�1
l,l )� +

init x̄l Ð (do x̄l Ð (init x̄l Ð pl�1
i,l in

(pl�1
l,l )�); pl�1

l,l ) in(pl�1
l,l )�

)
; pl�1

l,j [by (dist+1 )]

= do x̄l Ð (init x̄l Ð (init x̄l Ð pl�1
i,l in(pl�1

l,l )�) in(pl�1
l,l )�); pl�1

l,j [by (unf2)]

= init x̄l Ð pl�1
i,l in(pl�1

l,l )� res x̄l Ñ pl�1
l,j [by 4.3]

The last program of this calculation is by definition smaller than pl
i,j. We have thus

proved the induction base (k = l = 1) for (4.7) and partly the induction step. We will
be done as soon as we prove the induction step for k   l. First, observe that

pl
i,k ¤ pl�1

i,k + do x̄l Ð pl
i,l ; pl�1

l,k , (4.8)
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pl
k,j ¤ pl�1

k,j + do x̄l Ð pl�1
k,l ; pl

l,j. (4.9)

Indeed,

pl
i,k = pl�1

i,k + init x̄l Ð pl�1
i,l in(pl�1

l,l )� res x̄l Ñ pl�1
l,k [by def. of pl

i,k]

= pl�1
i,k + do x̄l Ð pl�1

i,l ; pl�1
l,k +

do x̄l Ð (init x̄l Ð pl�1
i,l in(pl�1

l,l )� res x̄l Ñ pl�1
l,l ); pl�1

l,k [by (unf1)]

¤ pl�1
i,k + do x̄l Ð pl�1

i,l ; pl�1
l,k + do x̄l Ð pl

i,l ; pl�1
l,k [by def. of pl

i,l]

¤ pl�1
i,k + do x̄l Ð pl

i,l ; pl�1
l,k [by def. of pl

i,l]

and analogously,

pl
k,j = pl�1

k,j + init x̄l Ð pl�1
k,l in(pl�1

l,l )� res x̄l Ñ pl�1
l,j [by def. of pl

k,j]

= pl�1
k,j + do x̄l Ð pl�1

k,l ; pl�1
l,j +

init x̄l Ð (do x̄l Ð pl�1
k,l ; pl�1

l,l ) in(pl�1
l,l )� res x̄l Ñ pl�1

l,j [by (unf2)]

= pl�1
k,j + do x̄l Ð pl�1

k,l ; pl�1
l,j +

do x̄l Ð pl�1
k,l ; init x̄l Ð pl�1

l,l in(pl�1
l,l )� res x̄l Ñ pl�1

l,j [by (init)]

¤ pl�1
k,j + do x̄l Ð pl�1

k,l ; pl�1
l,j + do x̄l Ð pl�1

k,l ; pl
l,j [by def. of pl

l,j]

¤ pl�1
k,j + do x̄l Ð pl�1

k,l ; pl
l,j [by def. of pl

l,j]

Now we can prove the induction step for (4.7) with k   l as follows:

do x̄k Ð pl
i,k; pl

k,j

¤ do x̄k Ð (pl�1
i,k + do x̄l Ð pl

i,l ; pl�1
l,k ); pl

k,j [by 4.8]

¤ do x̄k Ð (pl�1
i,k + do x̄l Ð pl

i,l ; pl�1
l,k );

(pl�1
k,j + do x̄l Ð pl�1

k,l ; pl
l,j) [by 4.9]

= do x̄k Ð pl�1
i,k ; pl�1

k,j + do x̄k Ð pl�1
i,k ; x̄l Ð pl�1

k,l ; pl
l,j +

do x̄k Ð (do x̄l Ð pl
i,l ; pl�1

l,k ); x̄l Ð pl�1
k,l ; pl

l,j +

do x̄k Ð (do x̄l Ð pl
i,l ; pl�1

l,k ); pl�1
k,j [by (dist+2 )]

¤ pl�1
i,j + do x̄l Ð pl

i,l ; x̄l Ð pl�1
l,l ; pl

l,j + [by ind.,

do x̄l Ð pl�1
i,l ; pl

l,j + do x̄l Ð pl
i,l ; pl�1

l,j Lemma 4.1]

¤ pl
i,j + do x̄l Ð pl

i,l ; x̄l Ð pl
l,l ; pl

l,j + [by def. of pl
i,j,

do x̄l Ð pl
i,l ; pl

l,j + do x̄l Ð pl
i,l ; pl

l,j pl
l,l , pl

i,l , pl
l,j]

The latter term of this calculation is smaller than or equal to pl
i,j. This follows from (4.7)

with k := l, i.e. from the partial case of (4.7) which we had established previously. The
proof of (4.7) is therefore complete.
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Lemma 4.5 (Commutation Lemma). Let (n, λi. x̄i, λi. λj. pi,j), (n, λi. ȳi, λi. λj. qi,j) be two
computation nets and let (n, λi. x̄i, λi. λj. p̂i,j), (n, λi. ȳi, λi. λj. q̂i,j) be their transitive closures.
Suppose we can put into corespondence to every pair (i, j) such that 1 ¤ i ¤ n, 1 ¤ j ¤ n, a
program ri,j so that for every appropriate i, j:

$ME� ∑k do x̄k Ð ri,k; pk,j = ∑k do ȳk Ð qi,k; rk,j. (4.10)

Suppose, moreover that for every i, j, k

Vars(ȳi)XVars(pj,k) � Vars(x̄j), Vars(ȳi)XVars(rj,k) � Vars(ȳj).

Then for every appropriate i, j:

$ME� ∑k do x̄k Ð ri,k; p̂k,j = ∑k do ȳk Ð q̂i,k; rk,j. (4.11)

Proof. In order to prove the claim we show that the following inequalities are provable
in ME� for all appropriate i, j, l, m which evidently implies the claim:

∑k do ȳk Ð q̂i,k; rk,j ¥ do x̄l Ð ri,l ; pm
l,j, (4.12)

∑k do x̄k Ð ri,k; p̂k,j ¥ do ȳl Ð qm
i,l ; rl,j. (4.13)

Let us prove (4.12) by induction over m. If m = 0 then:

∑k do ȳk Ð q̂i,k; rk,j

¥ ∑k do ȳk Ð qi,k; rk,j + rl,l [by def. of q̂i,k]

= ∑k do x̄k Ð ri,k; pk,j + rl,l [by 4.10]

¥ do x̄l Ð ri,l ; pl,j + rl,l

¥ do x̄l Ð ri,l ; p0
l,j. [by def. of p0

l,j]

Let m ¡ 0. First of all, let us observe the following:

do x̄m Ð
(
∑k do ȳk Ð q̂i,k; rk,m

)
; pm�1

m,m

= ∑k do ȳk Ð q̂i,k; x̄m Ð rk,m; pm�1
m,m [by Lemma 4.1]

¤ ∑k ∑k1 do ȳk Ð q̂i,k; ȳk1 Ð q̂k,k1 ; rk1,m [by ind.]

= ∑k ∑k1 do ȳk1 Ð (do ȳk Ð q̂i,k; q̂k,k1); rk1,m [by Lemma 4.1]

¤ ∑k1 do ȳk1 Ð q̂i,k1 ; rk1,m. [by Lemma 4.4]

If we now apply (ind1) we obtain:

$ME� ∑k do ȳk Ð q̂i,k; rk,m ¥ init x̄m Ð
(
∑k do ȳk Ð q̂i,k; rk,m

)
in(pm�1

m,m )�.
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Since $ME� ∑k do ȳk Ð q̂i,k; rk,m ¥ do ȳi Ð q̂i,i; ri,m ¥ ri,m we can obtain:

$ME� ∑k do ȳk Ð q̂i,k; rk,m ¥ init x̄m Ð ri,m in(pm�1
m,m )�. (4.14)

Let us return to the proof of (4.12). By the definition of pm
l,j, (4.12) can be split into two

inequalities:

∑k do ȳk Ð q̂i,k; rk,j ¥ do x̄l Ð ri,l ; pm�1
l,j ,

∑k do ȳk Ð q̂i,k; rk,j ¥ do x̄l Ð ri,l ; (init x̄m Ð pl,m in(pm�1
m,m )� res x̄m Ñ pm�1

m,j ).

The first of them is precisely the induction hypothesis. The proof of the second runs as
follows:

∑k do ȳk Ð q̂i,k; rk,j

¥ ∑k do ȳk Ð
(
∑k1 do ȳk1 Ð q̂i,k1 ; q̂k1,k

)
; rk,j [by Lem. 4.4]

= ∑k ∑k1 do ȳk1 Ð q̂i,k1 ; ȳk Ð q̂k1,k; rk,j [by Lem. 4.1]

¥ ∑k1 do ȳk1 Ð q̂i,k1 ; x̄m Ð rk1,m; pm�1
m,j [by ind.]

¥ ∑k1 do ȳk1 Ð
(
∑k do ȳk Ð q̂i,k; q̂k,k1

)
; x̄m Ð rk1,m; pm�1

m,j [by Lem. 4.4]

¥ ∑k1 do x̄m Ð
(

do ȳk1 Ð
(
∑k do ȳk Ð q̂i,k; q̂k,k1

)
; rk1,m

)
; pm�1

m,j [by Lem. 4.1]

¥ ∑k1 do x̄m Ð
(
∑k do ȳk Ð q̂i,k; ȳk1 Ð q̂k,k1 ; rk1,m

)
; pm�1

m,j [by Lem. 4.1]

¥ ∑k do x̄m Ð (do ȳk Ð q̂i,k; init x̄m Ð rk,m in(pm�1
m,m )�); pm�1

m,j [by 4.14]

= init x̄m Ð
(
∑k do ȳk Ð q̂i,k; rk,m

)
in(pm�1

m,m )� res x̄m Ñ pm�1
m,j [by Lem. 4.1]

¥ init x̄m Ð (do x̄l Ð ri,l ; pl,m) in(pm�1
m,m )� res x̄m Ñ pm�1

m,j [by ind.]

= do x̄l Ð ri,l ; (init x̄m Ð pl,m in(pm�1
m,m )� res x̄m Ñ pm�1

m,j ). [by Lem. 4.1]

In a similar fashion we prove (4.13) by induction over m. For m = 0 we have:

∑k do x̄k Ð ri,k; p̂k,j

¥ ∑k do x̄k Ð ri,k; pk,j + rl,l [by def. of p̂k,j]

= ∑k do ȳk Ð qi,k; rk,j + rl,l [by 4.10]

¥ do ȳl Ð qi,l ; rl,j + rl,l

¥ do ȳl Ð q0
i,l ; rl,j. [by def. of q0

i,l]

Let m ¡ 0. Again, we would like to prove an auxiliary statement, similar to (4.14). First
observe that:

do ȳm Ð qm�1
m,m ;

(
∑k do x̄k Ð rm,k; p̂k,i

)
= ∑k do x̄k Ð (do ȳm Ð qm�1

m,m ; rm,k); p̂k,i [by Lemma 4.1]
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¤ ∑k do x̄k Ð
(
∑k1 do x̄k1 Ð rm,k1 ; p̂k1,k

)
; p̂k,i [by ind.]

= ∑k ∑k1 do x̄k1 Ð rm,k1 ; x̄k Ð p̂k1,k; p̂k,i [by Lemma 4.1]

¤ ∑k1 do x̄k1 Ð rm,k1 ; p̂k1,i. [by Lemma 4.4]

Then by (ind2):

$ME� ∑k do x̄k Ð rm,k; p̂k,i ¥

init ȳm Ð ret ȳm in(qm�1
m,m )� res ȳm Ñ

(
∑k do x̄k Ð rm,k; p̂k,i

)
.

Since $ME� ∑k do x̄k Ð rm,k; p̂k,i ¥ do x̄i Ð rm,i; p̂i,i ¥ rm,i we can obtain:

$ME� ∑k do x̄k Ð rm,k; p̂k,i ¥ init ȳm Ð ret ȳm in(qm�1
m,m )� res ȳm Ñ rm,i. (4.15)

By the definition of pm
l,j, we will be done with the proof of (4.13) once we show that the

following inequalities are provable in ME�:

∑k do x̄k Ð ri,k; p̂k,j ¥ do ȳl Ð qm�1
i,l ; rl,j,

∑k do x̄k Ð ri,k; p̂k,j ¥ do ȳl Ð (init ȳm Ð qi,m in(qm�1
m,m )� res ȳl Ñ qm�1

m,l ); rl,j.

The first inequality coincides with the induction hypothesis. The second one is proven
as follows:

∑k do x̄k Ð ri,k; p̂k,j

¥ ∑k ∑k1 do x̄k Ð ri,k; x̄k1 Ð p̂k,k1 ; p̂k1,j [by Lem. 4.4]

¥ ∑k1 do x̄k1 Ð
(
∑k do x̄k Ð ri,k; p̂k,k1

)
; p̂k1,j [by Lem. 4.1]

¥ ∑k1 do x̄k1 Ð (do ȳm Ð qm�1
i,m ; rm,k1); p̂k1,j [by ind.]

¥ ∑k1 ∑k do x̄k1 Ð (do ȳm Ð qm�1
i,m ; rm,k1); x̄k Ð p̂k1,k; p̂k,j [by Lem. 4.4]

= ∑k1 ∑k do x̄k Ð (do x̄k1 Ð (do ȳm Ð qm�1
i,m ; rm,k1); p̂k1,k); p̂k,j [by Lem. 4.1]

= ∑k do x̄k Ð
(
∑k1 do ȳm Ð qm�1

i,m ; x̄k1 Ð rm,k1 ; p̂k1,k

)
; p̂k,j [by Lem. 4.1]

¥ ∑k do x̄k Ð (init ȳm Ð qm�1
i,m in(qm�1

m,m )� res ȳm Ñ rm,k); p̂k,j [by 4.15]

= ∑k init ȳm Ð qm�1
i,m in(qm�1

m,m )� res ȳm Ñ (do x̄k Ð rm,k; p̂k,j) [by Lem. 4.1]

¥ init ȳm Ð qm�1
i,m in(qm�1

m,m )� res ȳm Ñ (do ȳl Ð qm,l ; rl,j) [by ind.]

= do ȳl Ð (init ȳm Ð qi,m in(qm�1
m,m )� res ȳl Ñ qm�1

m,l ); rl,j [by Lem. 4.1]

We have thus completed the proof of (4.13), and therefore we are done.

Lemma 4.6. Let p be a pattern-matching program; let r̄ = 〈r1, . . . , rn〉 be a finite sequence of
pattern-matching programs; let (n, λi. ȳi, λi. λj. qi,j) be a computational net whose transitive
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closure is (n, λi. ȳi, λi. λj. q̂i,j), and the following condition holds for all i:

$ME� do x̄ Ð ri; p = ∑j do ȳj Ð qi,j; rj. (4.16)

If, moreover, for every i, j, Vars(p)XVars(ȳi) � Vars(x̄) and Vars(ri)XVars(ȳj) � Vars(ȳi)

then for every i,
$ME� init x̄ Ð ri in p� = ∑j do ȳj Ð q̂i,j; rj (4.17)

Proof. Let (n, λi. x̄i, λi. λj. pi,j) be the computational net where for every i, x̄i .
= x̄ and

for every i, j, pi,j
.
= p. Let for every i, j, ri,j := ri. Then (4.16) can be rewritten to

$ME� ∑k do x̄k Ð ri,k; pk,j = ∑k do ȳk Ð qi,k; rk,j. (4.18)

Let (n, λi. x̄i, λi. λj. p̂i,j) be the transitive closure of (n, λi. x̄i, λi. λj. pi,j). By Lemma 4.5,
for every i, j,

$ME� ∑k do x̄k Ð ri,k; p̂k,j = ∑k do ȳk Ð q̂i,k; rk,j. (4.19)

Recall that ri,k
.
= ri, x̄k .

= x̄. It can easily be seen that for every i, j, p̂i,j is provably equal
to (init x̄ Ð ret x̄ in p�). Therefore for every i, j, k, $ME� do x̄k Ð ri,k; p̂k,j = init x̄ Ð
ri in p� and thus (4.19) is equivalent to the goal (4.17).

Lemma 4.7. Let q be a pattern-matching program; let r̄ = 〈r1, . . . , rn〉 be a finite sequence
of pattern-matching programs; and let (n, λi. x̄i, λi. λj. pi,j) be a computational net with the
transitive closure (n, λi. x̄i, λi. λj. p̂i,j) such that the following condition holds for all i:

$ME� do ȳ Ð q; ri = ∑j do x̄j Ð rj; pj,i. (4.20)

If, moreover, for every i, j, Vars(pi,j)XVars(ȳ) � Vars(x̄i) then for every i,

$ME� init ȳ Ð ret ȳ in q� res ȳ Ñ ri = ∑j do x̄j Ð rj; p̂j,i. (4.21)

Proof. Let (n, λi. ȳi, λi. λj. qi,j) be the computational net where for every i, j, ȳi .
= ȳ and

qi,j
.
= q. Let for all i, j, ri,j

.
= rj. Then (4.20) can be rewritten to

$ME� ∑k do ȳk Ð qj,k; rk,i = ∑k do x̄k Ð rj,k; pk,i. (4.22)

Let (n, λi. ȳi, λi. λj. q̂i,j) be the transitive closure of (n, λi. ȳi, λi. λj. qi,j). By Lemma 4.5,
for every i, j,

$ME� ∑k do ȳk Ð q̂j,k; rk,i = ∑k do x̄k Ð rj,k; p̂k,i. (4.23)

Recall that rk,i
.
= ri, ȳk .

= ȳ. It can easily be seen that for every j, k, q̂j,k is provably equal
to (init ȳ Ð ret ȳ in q�), and thus (4.23) is equivalent to the goal (4.21).

After instantiating n with 1 in the latter lemma, we obtain



Chapter 4: Decidable fragments of MCE 117

Corollary 4.8. Let for some appropriately typed programs p, q, r:

$ME� do x̄ Ð r; p = do ȳ Ð q; r (4.24)

and Vars(ȳ)XVars(r) � Vars(x̄). Then:

$ME� init x̄ Ð r in p� = init ȳ Ð ret ȳ in q� res ȳ Ñ r. (4.25)

The proof of the Commutation Lemma is reminiscent of the celebrated Kleene’s theo-
rem about the equivalence of finite automata and regular expressions (cf. e.g. [Koz97]).
In fact, we can make this point more precise by showing how the difficult direction of
this theorem can be obtained as a consequence of Lemma 4.6.

Suppose we are given a nondeterministic finite state machine (FSM) A with n states,
and a transition function σ : S2 Ñ P(Ξ) where S := {1, . . . , n} is the set of states and
Ξ is the input alphabet. Let b be the initial state of A. For simplicity we assume that
there is only one final state e. Now let us interpret Ξ as the underlying signature of the
metalanguage of effects by attaching to every a P Ξ the type 1 Ñ T1. Let us instantiate
the data from the statement of Lemma 4.6 as follows:

for every i let ri := ret〈∅, . . . , ret �, . . . ,∅〉 where the only component distinct
from ∅ is on the i-th position;

let p := ∑i,j ∑aPσ(i,j) do xi; a; rj;

let for every i, j, qi,j := ∑aPσ(i,j) a;

all the vectors ȳi collapse into one variable of the unit type, and hence we omit
them in bindings.

It is easy to see that the commutativity condition (4.16) is fulfilled. Therefore, by
Lemma 4.8 we have the presentation (4.17). After inserting both sides of (4.17) in the
context (do x̄ Ð l; xe), instantiating i by b and performing evident simplification, we
obtain:

init x̄ Ð rb in
(
∑i,j ∑aPσ(i,j) do xi; a; rj

)�
res x̄ Ñ xe = q̂b,e.

We refer to the left and the right sides of this equality by M and L correspondingly.
The equation M = L can now be read as follows. The left-hand side M essentially
uses the facilities of the metalanguage of effects. Specifically, the ret operation cannot
be eliminated from M easily, as it is essential for encoding the original FSM A as a
ME expression. On the other hand, L does not contain non-trivial occurrences of ret
operator, e.g. L can be seen as a regular expression in the classical sense. The fact that
the equality M = L is provable in ME� means that the regular expression L we have
constructed generates just the same language as the one recognised by the original
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FSM A. This can be justified as follows. It is easy to see that NF(M) is the language
recognised by A and NF(L) is the language generated by L. By Corollary 3.35 we have
the equivalence NF(M) �� NF(L), which in this case by definition amounts to the
equality of sets NF(M) = NF(L).

4.2 Reduction to Kleene algebra

The goal of this section is to prove completeness of provable equality in ME� over a con-
tinuous Kleene monad in case the programs come from a rather restricted class which
we call tight programs. The idea of the proof is to relate programs with regular expres-
sions and then make use of a completeness theorem for equality of regular expressions
over the algebra of regular events. The reduction mechanism will also easily imply
decidability of program equality.

The discussion in this section involves some terms and facts concerning Kleene algebra,
regular expressions, etc. Let us briefly recall the necessary information (it can also be
found in more detail in [Koz94]).

Let Ξ be an arbitrary set of symbols. Then the set of regular expressions over Ξ is
defined by the BNF:

E ::= a | ∅ | 1 | E � E | E + E | E�

where a ranges over Ξ. The algebra of regular events over Ξ is the set of all sets of finite
strings over Ξ (including the empty one, denoted by λ) under the usual set-theoretic
operations. We can interpret any regular expression over the corresponding algebra of
regular events by operator ρ defined by the assignments:

ρ(a) := {a} if a P Ξ;

ρ(1) := {λ};

ρ(∅) := /0;

ρ(a + b) := ρ(a)Y ρ(b);

ρ(a � b) := {st | s P ρ(a), t P ρ(b)};

ρ(a�) := {s . . . s | s P ρ(a)}.

The algebra of regular events is an instance of the general notion of Kleene algebra, a
structure subject to the axioms presented in Fig. 4.1. An important result about the
calculus of Kleene algebra is the following theorem, proved by Kozen.

Theorem 4.9. [Koz94] The equational theory of Kleene algebras is complete over the algebra of
regular events.

We proceed now with the main text. Before we formally introduce the class of programs
for which we have announced the completeness result, we shall prove several facts
about generic programs. Recall that we have previously called ret-free the programs
not containing ret operator. The following definition generalises this notion slightly.
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a +∅ = a a + b = b + a a + a = a a + (b + c) = (a + b) + c

∅ � a = ∅ (a + b) � c = a � c + b � c a �∅ = ∅ (a + b) � c = a � c + b � c

a � b ¤ b ùñ a� � b ¤ b a � b ¤ a ùñ a � b� ¤ a

FIGURE 4.1: Kleene algebra axioms.

Definition 4.10 (Almost ret-freeness). We call programs of the form ret p with cartesian
p administrative. A program is almost ret-free if every subterm ret r of it is administrative.

Almost ret-free programs are obviously closed under reductions by�km. The notions
and notation of Section 3.4 become more simple in the case of almost ret-free programs.
In particular, both the relations �� and �ω over almost ret-free shallow-deterministic
programs coincide with the usual α-equivalence. Operator prg, defined on page 86, can
be described in the ret-free case as follows. Given an almost ret-free program p of a
computational return type, let nfσ(p) .

= ∑i pi where the pi do not contain the choice
operator on top. Then, by definition, prg(p) returns precisely the set of those pi which
are deterministic.

Given a program p with a computational return type, let tr(p) :=
⋃ {prg(q) | p��

k q}.
Elementary properties of tr include:

tr(∅) = /0;

tr(p + q) = tr(p)Y tr(q);

tr(p) = {p} if p is deterministic;

tr(do x Ð p; q) = {do x Ð s; t | s P tr(p), t P tr(q)};

tr(init x Ð p in q�) =
⋃

i tr(init x Ð p in qi).

Operator tr is similar to NF but it does not call normalisation under�m. The relation-
ship between tr and NF can be justified by the following:

Lemma 4.11. Let p be an almost ret-free program and let r be any program. Then

NF(do x Ð p; ret r) �� {nf(do x Ð t; ret r) | t P tr(p)}. (4.26)

Proof. Let us show first that

NF(do x Ð p; ret r) ��

⋃
{γ(do x Ð q; ret r) | p��

k q}. (4.27)
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First observe that by definition of NF and by (3.21), for every t,

NF(t) =
⋃

{γ(s) | t��
km s} Á� {γ(s) | t��

k s} Á�

⋃
i
γ(unf i(t)) �� NF(t).

Therefore, NF(t) ��

⋃ {γ(s) | t��
k s}. After instantiating t with (do x Ð p; ret r), by

definition of�k, we obtain

NF(do x Ð p; ret r) ��

⋃
{γ(do x Ð q; ret u) | p��

k q, r��
k u}.

Hence (4.27) can be equivalently replaced with

⋃
{γ(do x Ð q; ret u) | p��

k q, r��
k u} ��

⋃
{γ(do x Ð q; ret r) | p��

k q}.

Clearly, the left-hand side is greater than the right-hand side. In order to show the con-
verse, we fix some q and u such that p��

k q, r��
k u and some t P γ(do x Ð q; ret u). By

Remark 3.23, nf(q) must be of the form ∑i qi. Since by definition, γ(do x Ð q; ret u) =⋃
i γ(do x Ð qi; ret u), there is i such that t P γ(do x Ð qi; ret u). By Lemma 3.26, qi

must be deterministic, i.e. either qi
.
= (do x̄ Ð ā; a) or qi

.
= (do x̄ Ð ā; ret w) where

a and all the ai are atomic. W.l.o.g. it suffices to consider only the latter case because
the former one can be reduced to it by switching to (do x̄ Ð ā; z Ð a; ret z). Therefore
we have t P γ(do x̄ Ð ā; ret u[w/x]). It follows by induction from Lemma 3.28 that
t P γ(do x̄ Ð ā; ret r[w/x]) = γ(do x Ð qi; r) À�

⋃ {γ(do x Ð q; ret r) | p��
k q}. The

proof of (4.27) is thus completed.

Another fact needed to prove the claim is the equivalence

prg(nf(do x Ð q; ret r)) �� {nf(t) | t P prg(do x Ð q; ret r)} (4.28)

which can be easily proved for every almost ret-free q by induction over term complex-
ity of q. Now the proof of (4.26) runs as follows:

NF(do x Ð p; ret r)

��

⋃
{γ(do x Ð q; ret r) | p��

k q} [by 4.27]

��

⋃
{prg(nf(do x Ð q; ret r)) | p��

k q} [by def. of γ]

��

⋃
{nf(t) | t P prg(do x Ð q; ret r), p��

k q} [by 4.28]

��

⋃
{nf(do x Ð t; ret r) | t P prg(q), p��

k q} [by def. of prg]

�� {nf(do x Ð t; ret r) | t P tr(p)}. [by def. of tr]

The proof is completed.

Recall that for almost ret-free programs �� turns into α-equivalence. Then by taking
r := x in Lemma 4.11 we obtain by (3.20) and definition of nf
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Corollary 4.12. For every almost ret-free program p whose return type is computational,
NF(p) = {nf(t) | t P tr(p)}.

Definition 4.13 (Flatness). Given an atomic program a and a vector of distinct variables
x̄ we denote by ai�x̄ the program (do xi Ð a; ret x̄) if 0   i ¤ |x̄| and (do a; ret x̄) if
i = 0. For every vector of distinct variables x̄ we define the class of x̄-flat programs by
induction as follows.

FL1. Every ai�x̄, ret x̄ and ∅ are x̄-flat;

FL2. (p + q) is x̄-flat, provided both p and q are x̄-flat;

FL3. (do ȳ Ð p; q) is x̄-flat, provided p is ȳ-flat and q is x̄-flat.

FL4. (init x̄ Ð p in q�) is x̄-flat, provided both p and q are x̄-flat.

We call a program simply flat if it is x̄-flat for some x̄. If some flat program p happens
to be x̄-flat with some x̄, we refer to x̄ as a footprint of p.

The class of flat programs is by definition smaller than the class of almost ret-free pro-
grams. Modulo the first unit law it is also wider than the class of ret-free programs: we
can switch from a ret-free program to a flat program by replacing every atomic a : TA
with a1�vA where vA : A is a fresh variable name uniquely corresponding to the type A.

Definition 4.14 (Tightness). We call a flat deterministic program p tight if all atomic
subterms of p are normal and for every subterm u of p having form (do x̄ Ð s; t),
Vars(t) = Vars(x̄) unless s is an atomic program (i.e. u .

= ai�x̄ for some atomic a). We
call any flat program p tight if all the (deterministic) programs from tr(p) are tight.

Immediate properties of tight programs include the following.

If u .
= (do x̄ Ð p; q) is tight, then Vars(u) = Vars(p).

If u .
= (init x̄ Ð p in q�) is tight, then Vars(u) = Vars(p).

If (p + q) is flat, then it is tight iff both p, q are tight.

If (do x̄ Ð p; q) is flat, then it is tight iff p, q are tight and Vars(q) = Vars(x̄).

If (init x̄ Ð p in q�) is flat, then it is tight iff p, q are tight and Vars(q) = Vars(x̄).

The requirement for atomic programs of a tight program to be normal ensures the fol-
lowing important property which we will commonly use henceforth.

Lemma 4.15. Given a deterministic tight program p, Vars(p) = Vars(nf(p)).
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Proof. It can easily be seen that rewriting under the associativity law neither spoils
tightness nor affects the set of free variables. Therefore, w.l.o.g. p is of the form

do x̄1 Ð w1; . . . ; x̄n Ð wn; w

where every wi is either ai
ki�x̄i or ret x̄i and w is either ak�x̄ or ret x̄. Let us cancel from

p all the program sections of the form x̄i Ð ret x̄i, replace every program section of
the form x̄i Ð ai

ki�x̄i by xi
ki
Ð ai and denote the result by q. Obviously, p��

β q and
Vars(p) = Vars(q). Observe that q must be of the form (do z̄ Ð b̄; u) where all the bi

are atomic and u is either atomic or equal to ret x̄. In the former case q is normal, which
means q = nf(p), and we are done. The latter case follows in the same way unless
q .
= (do z1 Ð b1; . . . ; zm Ð bm; ret zm) or q .

= (do z1 Ð b1; . . . ; zm Ð bm; ret eE) and zm

is of type E P U. Both these forms are only one step behind the normal form, which
is (do z1 Ð b1; . . . ; zm�1 Ð bm�1; bm) and of course Vars(q) = Vars(nf(q)). Therefore,
Vars(p) = Vars(nf(p)), and we are done.

The idea behind the definition of tightness is that we capture thereby the class of those
programs which can be associated with Kleene algebra terms. We would like to make
this association precise and then prove the completeness and decidability result by re-
duction to Theorem 4.9. In order to do so, we will need to introduce one more condition.
Informally speaking, we need to make sure that the bound variable names used in pro-
grams obey some definite global convention. This will allow us to ignore α-equivalence
and stick with the syntactic equality of terms.

Definition 4.16 (Name pool). A name pool is a set of fresh variable names Λ equipped
with a well-ordering ¨ isomorphic to ω and such that Λ contains infinitely many vari-
ables of any type from TypeT

W.

Let us denote by minA Λ the smallest element of Λ under ¨, whose type is A. Let us
also define by induction: minA Λ := min0

A Λ and minn+1
A Λ := minn

A(ΛzminA Λ). For
every κ P Λ let us denote by Λκ the initial segment {v ¨ κ} of Λ.

Let Λ be a name pool. Given a z̄-flat tight deterministic program p and an injective
substitution σ : Vars(p)Ñ Λ, we recursively define a flat program nfσ

Λ(p), α-equivalent
to pσ by the following assignments respecting the applicable clauses of Definition 4.13.
Expression σOς here denotes overlapping of σ by ς, i.e. σOς sends every x to xσ if
xς = x and to xς otherwise.

FL1. nfσ
Λ(ret z̄) := ret z̄σ,

nfσ
Λ(a0�z̄) := (aσ)0�z̄σ,

nfσ
Λ(ai�z̄) := (aσ)i�z̄ς where i ¡ 0, ς := σO[v/zi], v := minA(ΛzVars(z̄ı̂ σ)) and A

is the type of zi.
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FL3. nfσ
Λ(do x̄ Ð p; q) := do v̄ Ð nfσ

Λ(p); nfς
Λ(q) where nfσ

Λ(p) is v̄-flat and ς := [v̄/x̄].

Definition 4.17 (Λ-normality). Given a name pool Λ, we call a tight deterministic pro-
gram Λ-normal if it belongs to the codomain of nfσ

Λ for some appropriate σ, q. More
generally, we call a tight program p Λ-normal if every element of tr(p) is Λ-normal.

Lemma 4.18. Let w .
= (do v̄ Ð p; q) be a tight program such that both p and q are Λ-normal

and p is not atomic (i.e. w is not of the form ai�z̄). Then w is itself Λ-normal.

Proof. First consider the deterministic case. By definition, there exist programs u, r and
injective substitutions σ : Vars(u) Ñ Λ, θ : Vars(r) Ñ Λ such that p .

= nfσ
Λ(u) and

q .
= nfθ

Λ(r). Let x̄ be the footprint of u. Since w is tight, Vars(rθ) = Vars(q) = Vars(v̄).
Let s be the program obtained from r by replacing every variable x P Vars(r) with
(xθ)[x̄/v̄] throughout. Then Vars(s) = Vars(x̄). We prove that w .

= nfσ
Λ(do x̄ Ð u; s).

Indeed, by definition, nfσ
Λ(do x̄ Ð u; s) .

= (do v̄ Ð nfσ
Λ(u); nf

ς
Λ(s)) where ς = [v̄/x̄].

Observe that s is α-equivalent to (rθ)[x̄/v̄]. Therefore, by definition of nf
ς
Λ and nfθ

Λ,
nf

ς
Λ(s)

.
= (rθ)[x̄/v̄][v̄/x̄] .

= rθ
.
= nfθ

Λ(r) and we are done by the calculation:

nfσ
Λ(do x̄ Ð u; s) .

= (do v̄ Ð nfσ
Λ(u); nf

θ
Λ(r))

.
= (do v̄ Ð p; q).

Now consider the general case. Every element of tr(w) has the form (do v̄ Ð s; t) with
s P tr(p), t P tr(q) and is inherently tight. The programs s and t are both deterministic
Λ-normal. As we have argued above, (do v̄ Ð s; t) must be Λ-normal. By definition of
Λ-normality, w is Λ-normal.

Lemma 4.19. Let s .
= (do x̄ Ð (do ȳ Ð p; q); r) be a tight Λ-normal program with respect to

some name pool Λ, and p, q and r are not atomic. Then the program t .
= (do ȳ Ð p; x̄ Ð q; r)

is also tight and Λ-normal. Moreover, $ME+ s = t.

Proof. By the definition of flatness, p is ȳ-flat and q is x̄-flat. Obviously this implies
flatness of t. Let us prove that t is tight. Since p, q, r are inherently tight we only need
to show that Vars(r) = Vars(x̄) and Vars(do x̄ Ð q; r) = Vars(ȳ). The former equation
directly follows from the tightness of s. The latter one holds because, again, by the
tightness of s, Vars(do x̄ Ð q; r) = Vars(q) and Vars(ȳ) = Vars(q).

Let us show how Λ-normality of s implies Λ-normality of t. First consider the case
when p, q and r are all deterministic. Then s must be the image under nfσ

Λ of some
program (do z̄ Ð (do v̄ Ð u; w); l) for some injective substitution σ, which by def-
inition implies: p .

= nfσ
Λ(u), q .

= nf
ς
Λ(w), r .

= nfθ
Λ(l) where ς := [v̄/ȳ], θ := [z̄/x̄].

As a result p, q and r are Λ-normal. By Lemma 4.18, t is Λ-normal. In general, if s is
not deterministic, we are done by the same argument applied to all the components of
tr(s).

Finally, observe that$ME+ s = t follows from Lemma 4.1, whose conditions are satisfied
since by tightness Vars(r) = Vars(x̄).
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Lemma 4.20. Given a name pool Λ, let p and q be two deterministic Λ-normal flat programs
for which nf(p) � nf(q). Then the footprints of p and q coincide.

Proof. Let x̄ be the footprint of p and let ȳ be the footprint of q. We transform p prov-
ably equivalently under ME+ as follows. First let us reduce p by Lemma 4.19 to the
form (do x̄1 Ð w1; . . . ; x̄n Ð wn; w) where every wi is either ak�x̄i for some atomic a or
ret x̄i, and w is either ak�x̄ for some atomic a or ret x̄. Then we cancel from the result all
the program sections of the form x̄i Ð ret x̄i. Finally, if w .

= ak�x̄ then we replace it by
(do x̄ Ð ak�x̄; ret x̄) and p takes the form (do x̄1 Ð a1

k1�x̄1 ; . . . ; x̄n Ð an
kn�x̄n ; ret x̄n) where

all the ai are atomic. Note that Λ-normality was maintained under these transforma-
tions. Analogously we reduce q to the form (do ȳ1 Ð b1

l1�ȳ1 ; . . . ; ȳm Ð bm
lm�ȳm ; ret ȳm). It

is straightforward that n = m. Let us show by induction over n that x̄n = ȳn. This will
complete the proof. If n = 0 then we are trivially done.

Consider the case when n ¡ 0. Let p1 := (do x̄2 Ð a2
k2�x̄2 ; . . . ; x̄n Ð an

kn�x̄n ; ret x̄n) and
q1 := (do ȳ2 Ð b2

l2�ȳ2 ; . . . ; ȳn Ð bn
ln�ȳn ; ret ȳn). If k1 = l1 = 0 then the assumption

nf(p) � nf(q) implies nf(p1) � nf(q1) and we are done by induction hypothesis.

Let us show that the situation when precisely one of k1, l1 equals 0 is impossible. Let
e.g. k1 = 0, l1 � 0. The assumption nf(p) � nf(q) implies nf(p1) � nf(q1[v/y1

l1
]) where

v is some fresh variable, and we have:

Vars(x̄1) = Vars(p1) = Vars(nf(p1)) =

Vars(nf(q1[v/y1
l1 ])) = Vars(q1[v/y1

l1 ]) = Vars(ȳ1[v/y1
l1 ]).

Therefore, v P Vars(x̄) which contradicts the choice of v.

Finally, assume that both k1 and l1 are positive. Then nf(p1[v/x1
k1
]) � nf(q1[v/y1

l1
]) for

some fresh variable v which in conjunction with the tightness of p and q implies:

Vars(x̄1[v/x1
k1
]) = Vars(p1[v/x1

k1
]) = Vars(nf(p1[v/x1

k1
])) =

Vars(nf(q1[v/y1
l1 ])) = Vars(q1[v/y1

l1 ]) = Vars(ȳ1[v/y1
l1 ])

and therefore: Vars(x̄1
k̂1
) = Vars(ȳ1

l̂1
). Since, by assumption, both p and q are Λ-normal,

x1
k1
= minC(ΛzVars(x̄1

k̂1
)) = minC(ΛzVars(ȳ1

l̂1
)) = y1

l1
where C is the return type of x1

k1

and y1
l1

. Therefore nf(p1) � nf(q1) and thus we are done by induction hypothesis.

Remark 4.21. Many proofs about flat programs can be slightly facilitated if the program
under consideration satisfies the condition: in every subterm (init x̄ Ð p in q�) of it
p .
= ret x̄. In fact we can always ensure this condition by transforming the original

program under the reduction rule

init x̄ Ð p in q�� p + do x̄ Ð p; (init x̄ Ð ret x̄ in q�)
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applied once to every redex. Evidently this transformation is sound under ME�, and it
spoils neither flatness nor tightness. Actually, it will not spoil many other properties of
flat programs that we are going to introduce.

Lemma 4.22. Let Λ be a name pool. Then for every z̄-flat tight program p there exists an
effectively computable κ(p) P Λ such that for every κ © κ(p) and every pair of injective
substitutions σ : Vars(p)Ñ Λκ, ς : Vars(z̄)Ñ Λκ there is an effectively computable program
pσ,ς possessing the following properties:

1. every pσ,ς is tight z̄ς-flat;

2. every pσ,ς is Λ-normal;

3. $ME� pσ = ∑ς pσ,ς;

4. if for all t P tr(pσ), Vars(t) = Vars(pσ) then for all t P tr(pσ,ς), Vars(t) = Vars(pσ).

Proof. By Remark 4.21 we transform the original programs p so that Kleene star occurs
in it only in the form (init x̄ Ð ret x̄ in q�). It is clear that the reduction specified in
Remark 4.21 does respect the properties (1)–(4). Then we define the element κ(p) P Λ
in question by induction over the term complexity of p in respect of the clauses of
Definition 4.13.

FL1. If p .
= ∅ then we define κ(p) := min Λ, pσ,ς := ∅ for every σ, ς and the claim

becomes trivial.

For p .
= ret z̄ we put κ(p) := min Λ. The injections σ, ς become instantiated to

σ, ς : Vars(z̄) Ñ Λκ. Let us put pσ,ς := pσ if σ = ς and pσ,ς := ∅ otherwise. The
conditions (1)–(4) are easily verified.

Similarly, if p .
= a0�z̄ then κ(p) := min Λ and for every pair of injections σ, ς :

Vars(z̄)Ñ Λκ we put pσ,ς := (aσ)0�z̄σ if σ = ς and pσ,ς := ∅ otherwise.

If p .
= ai�z̄ and i ¡ 0 then κ(p) := min|z̄|A Λ where A is the type zi. The injections

σ, ς take form σ : Vars(a)YVars(z̄ı̂) Ñ Λκ and ς : Vars(a)YVars(z̄) Ñ Λκ. Let
us define pσ,ς := (aσ)i�z̄ς if ς = σO[v/zi], v = minA(ΛzVars(z̄ı̂ σ)) and pσ,ς := ∅
otherwise. As we can see, every pσ,ς is either nfσ

Λ(p) or ∅. This observation im-
mediately implies the conditions (1), (2), and (4). In order to establish (3), we
need to prove that for every σ at least one of the pσ,ς is distinct from ∅. Equiv-
alently, we need to prove that minA(ΛzVars(z̄ı̂ σ)) P Λκ. The latter follows from
the calculation: minA(ΛzVars(z̄ı̂ σ)) ¨ min|z̄|A Λ = κ(p) ¨ κ.

FL2. Let p .
= (q + r). By induction hypothesis there exist κ(q) and κ(r), satisfying the

statement of the lemma for q and r. Then we put κ(p) := max{κ(q), κ(r)}. If
tr(q) = /0 then we put pσ,ς := rσ2,ς and if tr(r) = /0 then we put pσ,ς := qσ1,ς. In
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both these cases, (1)–(4) follow trivially by induction. We assume henceforth that
both tr(q) and tr(r) are nonempty.

Every substitution σ : Vars(p) Ñ Λκ being restricted to Vars(q) and Vars(r) cor-
respondingly generates substitutions σ1 : Vars(q) Ñ Λκ and σ2 : Vars(r) Ñ Λκ.
Since by definition κ © κ(q), κ © κ(r), by induction hypothesis, for every ς :
Vars(z̄)Ñ Λκ there exists appropriate qσ1,ς and rσ2,ς. We define pσ,ς := qσ1,ς + rσ2,ς.

The conditions (1)–(3) can be verified easily. Let us prove (4). Suppose that for
every t P tr(pσ), Vars(t) = Vars(pσ), let s P tr(pσ,ς) and prove that Vars(s) =

Vars(pσ). Since tr(pσ,ς) = tr(qσ1,ς)Y tr(rσ2,ς), s should come either from tr(qσ1,ς)

or from tr(rσ2,ς). Due to symmetry it suffices to prove only the former case.

Every t from tr(qσ1) must belong to tr(pσ). Therefore, according to the assump-
tion, for every t P tr(qσ1), Vars(t) = Vars(pσ) � Vars(qσ1). On the other hand,
for every t P tr(qσ1), Vars(t) � Vars(qσ1). We have thus proved that

@t P Vars(qσ1). Vars(t) = Vars(qσ1).

By applying the induction hypothesis we obtain: Vars(s) = Vars(qσ1). We will
be done once we show that Vars(qσ1) = Vars(pσ). Since Vars(pσ) = Vars(qσ1)Y

Vars(rσ2) it suffices to establish the inclusion Vars(pσ) � Vars(qσ1). By assump-
tion, tr(q) is nonempty. Therefore tr(qσ1) is also nonempty, i.e. there is at least
one t P tr(qσ1) � tr(pσ). By the assumption Vars(t) = Vars(pσ). On the other
hand, Vars(t) � Vars(qσ1) and we can conclude the inclusion in question.

FL3. Let p .
= (do x̄ Ð q; r). Let us again put κ(p) := max{κ(q), κ(r)}. If q .

= ∅
then pσ,ς := ∅ and (1)–(4) are trivially satisfied. We assume henceforth that q is
distinct from ∅. Since p is tight, Vars(p) = Vars(q). Therefore the substitution σ

takes the form: σ : Vars(q)Ñ Λκ. Since κ © κ(p) © κ(q), for every injection θ :
Vars(x̄) Ñ Λκ there exists qσ,θ as required by the induction invariant. According
to the induction hypothesis there exist correctly defined rθ,ς. We put therewith

pσ,ς := ∑θ
do x̄θ Ð qσ,θ ; rθ,ς (4.29)

where x̄θ := x̄θ. Let us prove the conditions (1)–(4).

1. By induction, every rθ,ς is z̄ς-flat. Therefore, by the definition of flatness, pσ,ς

is also z̄ς-flat. We prove tightness by showing that every element of the sum
in (4.29) is tight. Since r is tight, for every t P tr(r), Vars(t) = Vars(r). There-
fore, for every t P tr(rθ), Vars(t) = Vars(rθ). By induction hypothesis, for
every t P tr(rθ,ς), Vars(t) = Vars(rθ). Since p is tight, Vars(rθ) = Vars(x̄θ).
Therefore (do x̄θ Ð qσ,θ ; rθ,ς) is tight, and we are done.
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2. By induction hypothesis and Lemma 4.18, every (do x̄θ Ð qσ,θ ; rθ,ς) must be
Λ-normal. Observe that every t P tr(pσ,ς) belongs to tr(do x̄θ Ð qσ,θ ; rθ,ς) for
some θ. Therefore, by the definition of Λ-normality every pσ,ς is Λ-normal.

3. The proof is done by the calculation:

pσ
.
= do x̄ Ð qσ; r

= ∑θ
do x̄ Ð qσ,θ ; r [by ind.]

= ∑θ
do x̄θ Ð qσ,θ ; r[x̄θ/x̄]

.
= ∑θ

do x̄θ Ð qσ,θ ; rθ

= ∑ς ∑θ
do x̄θ Ð qσ,θ ; rθ,ς [by ind.]

= ∑ς
pσ,ς [by 4.29]

4. Let for all t P tr(pσ), Vars(t) = Vars(pσ) and let s P tr(pσ,ς). We need to
show that Vars(s) = Vars(pσ). By the definition of tr, s must be of the form
(do x̄θ Ð t; w) where t P tr(qσ,θ), w P tr(rθ,ς). By induction hypothesis,
Vars(t) = Vars(qσ). Using the fact that both s and p are tight, the equality in
question is now proven as follows:

Vars(s) = Vars(t) = Vars(qσ) = Vars(pσ).

FL4. Suppose p .
= (init z̄ Ð ret z̄ in q�). Let κ(p) := κ(q). Let us enumerate all the

injective substitutions from Vars(z̄) Ñ Λκ and denote the i-th one by σi. Recall
that by tightness, Vars(q) = Vars(z̄). Therefore, both σ and ς must be among the
σi. Let v̄i := z̄σi and let qi,j := qσi ,σj . By induction hypothesis, for every i:

$ME� do z̄ Ð ret z̄σi; q = ∑j do v̄j Ð qi,j; ret z̄σj

and for every i, j, k, Vars(v̄i) X Vars(qj,k) � Vars(v̄j), Vars(v̄i) X Vars(ret zσj) �

Vars(v̄j), Vars(q) X Vars(v̄i) � Vars(z̄). By Lemma 4.6 and by (unit1), (unit2)
there exist programs q̂i,j such that:

$ME� pσi = do z̄ Ð ret z̄σi; q = ∑j do v̄j Ð q̂i,j; ret z̄σj = ∑j q̂i,j.

Let us put for every i, j, pσi ,σj := q̂i,j. It is immediately clear that for every i, j,
pσi ,σj is v̄j-flat, and the condition (3) is satisfied. In order to establish (1) and (2),
we prove by further induction over k that every qk

i,j is Λ-normal, and for every
t P tr(qi,j), Vars(t) = Vars(v̄i).

Induction Base. By definition, q0
i,j

.
= ret v̄i + qi,i if i = j and q0

i,j
.
= qi,j if i � j.

In both cases Λ-normality follows by the outer induction. Let t P tr(q0
i,i), i.e.

t P tr(qi,i)Y {ret v̄i}. If t .
= ret v̄i then of course Vars(t) = Vars(v̄i). Otherwise,
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t P Vars(q0
i,i) and Vars(t) = Vars(v̄i) by tightness of p. Similarly, if t P tr(q0

i,j) and
i � j, Vars(t) = Vars(v̄i).

Induction Step. According to the definition,

qk
i,j

.
= qk�1

i,j + init v̄k Ð qk�1
i,k in(qk�1

k,k )� res v̄k Ñ qk�1
k,j .

Let t P tr(qk
i,j) = tr(qk�1

i,j ) Y
⋃

m tr
(
init v̄k Ð qk�1

i,k in(qk�1
k,k )m res v̄k Ñ qk�1

k,j

)
. We

need to prove that t is Λ-normal and Vars(t) = Vars(v̄i). If t falls into tr(qk�1
i,j )

we are immediately done by the outer induction. Consider the remaining case:
t P tr

(
init v̄k Ð qk�1

i,k in(qk�1
k,k )m res v̄k Ñ qk�1

k,j

)
for some m. It is straightforward to

show by further induction over m that
(
init v̄k Ð qk�1

i,k in(qk�1
k,k )m) is tight, and for

every s P tr
(
init v̄k Ð qk�1

i,k in(qk�1
k,k )m), Vars(s) = Vars(v̄k). Now, by definition,(

init v̄k Ð qk�1
i,k in(qk�1

k,k )m res v̄k Ñ qk�1
k,j

)
also must be tight. By the successive

application of Lemma 4.18, we can show that it is also Λ-normal. Therefore t is
also Λ-normal. Finally, Vars(t) = Vars(qk�1

i,k ) = Vars(v̄k).

We have at the moment ensured (1), (2) and (3). In order to show (4), recall that
we have proved that for every t P tr(q̂i,j) = tr(pσi ,σj), Vars(t) = Vars(v̄i) =

Vars(z̄σi) = Vars(pσi). This proves the righ-hand side of the implication (4), and
thus it proves the whole implication.

Lemma 4.23. Given tight programs p, q : TA, the problems $MEω p = q and $ME� p = q are
equivalent and decidable.

Proof. Let Λ be some name pool. First we argue that it suffices to proceed with the
assumption that p and q are both Λ-normal and have the same footprint. For an ar-
bitrarily chosen substitution σ : Vars(p) Y Vars(q) Ñ Λ we can equivalently switch
from p, q to pσ, qσ. By Lemma 4.22, pσ and qσ can be effectively and equivalently un-
der ME� reduced to the forms ∑i pi and ∑i qi respectively, where for every i, pi and qi

are Λ-normal and have the same footprint uniquely defined by i. Then

$MEω p = q

ðñ
⋃

i
NF(pi) =

⋃
i
NF(qi) [by Corollary 3.35]

ðñ @i. @s P tr(pi). Dj. Dt P tr(qj). nf(s) � nf(t) ^

@i. @s P tr(qi). Dj. Dt P tr(pj). nf(s) � nf(t) [by Corollary 4.12]

ðñ @i. @s P tr(pi). Dt P tr(qi). nf(s) � nf(t) ^

@i. @s P tr(qi). Dt P tr(pi). nf(s) � nf(t) [by Lemma 4.20]

ðñ @i.NF(pi) = NF(qi) [by Corollary 4.12]

ðñ @i. $ME� pi = qi [by Corollary 3.35]
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Therefore, if we proved the equivalence $ME� pi = qi ðñ $MEω pi = qi for every i, the
claim would follow from the circular chain of implications:

$MEω p = q ùñ @i. $MEω pi = qi ùñ @i. $ME� pi = qi

ùñ $ME� p = q ùñ $MEω p = q.

We continue henceforth under the assumption that both p and q are tight z̄-flat.

By definition, $ME� p = q implies $MEω p = q. Assume $MEω p = q and prove
$ME� p = q. By the definition of Λ-normality, both tr(p) and tr(q) consist of Λ-normal
programs. In the remainder we shall be guided by the diagram:

$MEω p = q

f
��

$ME� h( f (p)) = h( f (q))

ρ( f (p)) = ρ( f (q)) // $ f (p) = f (q)

h

OO

Here, f and h respectively denote translations of program equalities to equalities of
regular expressions and vice versa. The operator ρ is the standard interpretation of reg-
ular expressions over the algebra of regular events. The dotted line on the bottom of the
diagram refers to Kozen’s completeness proof (i.e. Theorem 4.9). All the arrows except
the bottom one shall be defined below (recall that TA is the return type of p and q).

For any normal atomic program a we introduce a new symbol â, and for every pair
(a, x) where a is a normal atomic program with some return type C and a variable
x P Λ of type C, we introduce the new symbols âx. Let f be the function, recursively
sending tight programs to terms of Kleene algebra over the signature

Ξ := {âx | a P AΣ}Y {â | a P AΣ}

according to the assignments:

f (∅) := ∅;

f (ret x̄) := 1;

f (ai�x̄) := âxi (i ¡ 0);

f (a0�x̄) := â;

f (s + t) := f (s) + f (t);

f (do x̄ Ð s; t) := f (s) � f (t);

f (init x̄ Ð s in t�) := f (s) � ( f (t))�.

Prove that the sets ρ( f (p)) and ρ( f (q)) are equal, i.e. the equation f (p) = f (q) holds
over the algebra of regular events. Since $MEω p = q, by Corollary 3.35, NF(p) and
NF(q) must be pointwise α-equivalent. By Corollary 4.12 NF(p) = {nf(s) | s P tr(p)}
and NF(q) = {nf(t) | t P tr(q)}. Therefore, for every s P tr(p) there exists t P tr(q) such
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that nf(s) � nf(t) and vice versa. Show that for any such pair (s, t):

ρ( f (s)) = ρ( f (t)). (4.30)

More generally, we prove (4.30) for every pair (s, t) of deterministic tight Λ-normal
programs such that nf(s) � nf(t). Let us proceed by induction over m, the common
number of maximal atomic subterms (i.e. those atomic subterms which are not proper
subterms of any other atomic subterms) of s and t. If m = 0 then by the definition of
f and ρ, ρ( f (s)) = {λ} = ρ( f (t)). Suppose m ¡ 0. Let us reduce s and t to one of
the forms: ret z̄, ai�z̄ or (do x̄ Ð ai�x̄; r) so that the number of maximal atomic subterms
does not increase, making sure that the premise of induction remains valid. To that end,
consider s and suppose it is not yet in the necessary form. Then there are two options:

1. s .
= (do x̄ Ð ret x̄; r). By the definition of Λ-normality, r is Λ normal. Also, it can

easily be seen that ρ( f (s)) = ρ( f (r)). Therefore we can switch from s to r and the
premise of induction does hold for the pair (r, t).

2. s .
= (do x̄ Ð (do ȳ Ð r; u); w) with r being non-atomic. Then we switch from s

to s1 := (do ȳ Ð r; x̄ Ð u; w). Let us show that the premise of induction remains
valid for the pair (s1, t). Obviously ρ( f (s)) = ρ( f (s1)). By Lemma 4.19 s1 is Λ-
normal, tight and $ME+ s1 = s. Therefore, by Theorem 2.17 nf(s1) � nf(s) � nf(t).

Successively applying the reductions (1)–(2), we eventually reach one of the specified
forms for s. In the same manner we reduce r. Termination of these reductions is guar-
anteed by the fact that the relation�β, which is implicit here, is strongly normalising.

Let us now proceed with the induction step. Consider the possible cases.

1. s .
= t .

= ret z̄. Trivially, ρ( f (s)) = ρ( f (t)).

2. s .
= ai�z̄ and t .

= bj�z̄. The assumption nf(s) � nf(t) immediately implies a � b,
i = j and the equation (4.30) becomes trivial.

3. s .
= ai�z̄ and t .

= (do x̄ Ð bj�x̄; r). The assumption nf(s) � nf(t) implies a � b.
Obviously r may not contain signature symbols, because otherwise the identity
nf(s) � nf(t) would fail. It can easily be seen by induction hypothesis that nf(r) .

=

ret z and ρ( f (r)) = {λ}. The identity nf(s) � nf(t) takes the form nf(ai�z̄) �

nf(aj�z̄). By Λ-normality, i = j. If both i, j are 0, then ρ( f (s)) = {â} = ρ(â � λ) =
ρ( f (t)). If both i, j are distinct from 0, then ρ( f (s)) = {âi�z̄} = ρ(âi�z̄ � λ) =

ρ( f (t)). The proof of (4.30) is thus complete.

4. s .
= (do x̄ Ð ai�x̄; r) and t .

= bj�z̄. This case is treated symmetrically to the
previous one.
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5. s .
= (do x̄ Ð ai�x̄; r) and t .

= (do ȳ Ð bj�ȳ; u). Obviously, a .
= b. Let us assume

that one of i, j, e.g. i is equal to 0 and prove that the other one is too. By con-
tradiction: let j � 0. Then nf(s) � nf(t) implies nf(do a; r) � nf(do yj Ð a; u)
and thus nf(r) � nf(u[v/yj]) where v is some fresh variable. Note that Vars(x̄) =
Vars(r) = Vars(nf(r)) = Vars(nf(u[v/yj])) = Vars(u[v/yj]) = Vars(ȳ[v/yj]) and
thus v P Vars(x̄). But v was a brand new variable. Contradiction. We have thus
proved that once either i or j is 0 then the other one is too. Suppose this is the
case. Then ρ( f (s)) = {â � w | w P ρ( f (r))}, ρ( f (t)) = {â � w | w P ρ( f (u))} and
we are done by induction hypothesis.

Suppose neither i nor j is equal to 0. Then the assumption nf(s) � nf(t) takes the
form nf(do xi Ð a; r) � nf(do yj Ð a; u). Therefore nf(r[v/xi]) � nf(u[v/yj])

where v is a fresh variable. Then Vars(x̄[v/xi]) = Vars(r[v/xi]) = Vars(nf(r[v/xi])) =

Vars(nf(u[v/yj])) = Vars(ȳ[v/yj]) and therefore Vars(x̄ı̂) = Vars(ȳ ̂). Since both
s and t are Λ-normal, xi = minC(ΛzVars(x̄ı̂)) = minC(ΛzVars(ȳ ̂)) = yj where
C is the return type of xi. As a consequence: ρ( f (s)) = {âxi �w | w P ρ( f (r))},
ρ( f (t)) = {âxi �w | w P ρ( f (u))} and nf(r) � nf(u). By definition of Λ-normality
both r and u are Λ-normal. We are done by calling the induction invariant to (r, u).

It can easily be seen that the remaining options for s and t (e.g. s .
= ret z̄, t .

= ai�z̄) do
not satisfy the condition nf(s) � nf(t). Therefore, the proof of (4.30) is completed.

It can easily be seen by induction that for every flat u,

ρ( f (u)) =
⋃

tPtr(u)
ρ( f (t)). (4.31)

Now the identity ρ( f (p)) = ρ( f (q)) is shown as follows:

ρ( f (p)) =
⋃

sPtr(p)
ρ( f (s)) [by 4.31]

=
⋃

tPtr(q)
ρ( f (t)) [by 4.30]

= ρ( f (q)). [by 4.31]

By Theorem 4.9 the equality f (p) = f (q) must be provable in the Kleene algebra calcu-
lus. Let v̄ be the vector of all bound variables occurring in p, q, and for every i, let Ai be
the type of vi. We define a function h recursively translating any Kleene algebra term t
over Ξ to a flat program v1 : A1, . . . , vn : An B h(t) : T(A1 � . . .� An) as follows:

h(∅) := ∅;

h(1) := ret v̄;

h(â) := a0�v̄;

h(âx) := ai�v̄ where x = vi;

h(p + q) := h(p) + h(q);

h(p � q) := do v̄ Ð h(p); h(q);

h(p�) := init v̄ Ð ret v̄ in h(p)�.
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It is easy to see that h, when applied to the axioms and derivation rules of Kleene
algebra, produces theorems and admissible rules of the calculus ME�, which means
that h( f (p)) = h( f (q)) is provable in ME�.

Now we are left to show that for every x̄-flat subterm t of either p or q,

$ME� do v̄ Ð h( f (t)); ret x̄ = t

This will complete the proof of the implication: $MEω p = q ùñ $ME� p = q as follows:
$ME� p = do v̄ Ð h( f (p)); ret z̄ = do v̄ Ð h( f (q)); ret z̄ = q. We proceed by induction
over term complexity. By Definition 4.13, the following cases are possible:

FL1. Let t .
= ai�x̄. Then $ME� (do v̄ Ð h( f (t)); ret x̄) = (do v̄ Ð aj�v̄; ret x̄) = ai�x̄

where j is such that xi = vj and 0 if i = 0. The cases t .
= ret x̄ and t .

= ∅ follow
trivially.

FL2. Let t .
= (u + w). By Definition 4.13, both u and w must be x̄-flat. Then $ME�

(do v̄ Ð h( f (t)); ret x̄) = (do v̄ Ð h( f (u)); ret x̄) + (do v̄ Ð h( f (w)); ret x̄) and
we are done by the induction hypothesis.

FL3. Let t .
= (do ȳ Ð u; w). By Definition 4.13, u is ȳ-flat and w is x̄-flat. We are done

by the following calculation in ME�:

do ȳ Ð u; w

= do ȳ Ð (do v̄ Ð h( f (u)); ret ȳ); w [by ind.]

= do v̄ Ð h( f (u)); ȳ Ð ret ȳ; w [by Lemma 4.1]

= do v̄ Ð h( f (u)); v̄ Ð h( f (w)); ret x̄ [by (unit1), ind.]

= do v̄ Ð (do v̄ Ð h( f (u)); h( f (w))); ret x̄ [by Lemma 4.1]

= do v̄ Ð h( f (do ȳ Ð u; w)); ret x̄ [by def. of f , h]

FL4. Let t .
= (init x̄ Ð u in w�). By Definition 4.13 both u and w are x̄-flat. First note

the following:

init x̄ Ð u in w�

= init x̄ Ð (do v̄ Ð h( f (u)); ret x̄) in w� [by ind.]

= do v̄ Ð h( f (u)); init x̄ Ð ret x̄ in w� [by Lemma 4.1]

Observe that $ME� do x̄ Ð ret x̄; w = do v̄ Ð h( f (w)); ret x̄ and Vars(ret x̄) X
Vars(v̄) � Vars(x̄). Therefore by Corollary 4.8:

$ME� init x̄ Ð ret x̄ in w� = init v̄ Ð ret v̄ in h( f (w))� res v̄ Ñ ret x̄ (4.32)
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and we can continue the previous calculation as follows:

do v̄ Ð h( f (u)); init x̄ Ð ret x̄ in w�

= do v̄ Ð h( f (u)); init v̄ Ð ret v̄ in h( f (w))�

res v̄ Ñ ret x̄ [by 4.32]

= do v̄ Ð (do v̄ Ð h( f (u));

init v̄ Ð ret v̄ in h( f (w))�); ret x̄ [by Lem. 4.1]

= do v̄ Ð h( f (init x̄ Ð u in w�)); ret x̄ [by def. of f , h]

The last case is thus completed.

We have proved the equivalence $MEω p = q ðñ $ME� p = q. The decidability part
is shown as follows. As we have seen $MEω p = q implies validity of the equation
f (p) = f (q) over the algebra of regular events. On the other hand, if f (p) = f (q)
holds over the algebra of regular events, then by Theorem 4.9, f (p) = f (q) must be
provable in Kleene algebra calculus. As we have argued above, in this case $ME� p = q
and therefore $MEω p = q. In summary, p = q is provable in MEω iff both f (p) and f (q)
generate the same regular language. The latter problem is decidable (cf. e.g. [RS97]).
The proof is thus completed.

4.3 Completeness and decidability for flat programs

In the previous section we have established a completeness and decidability result for
a rather restricted class of programs. In order to make this result useful we need to
extend it at least for flat programs. We achieve this by providing suitable reductions of
flat programs to tight programs. These reductions are not straightforward and require
some auxiliary notions together with some elementary results about them.

Definition 4.24 (Referential variable). We say that a variable x is referential in a flat
program p if for every subterm ai�x̄ of p, x � xi.

Definition 4.25 (Cut-free programs). We call a flat program cut-free if for every z̄-flat
subterm p of it every variable z R Vars(z̄) is referential in p.

This idea behind the definition of cut-free programs can be explained as follows. Con-
sider the program

(
do x Ð (do 〈x, y〉 Ð a2�〈x,y〉; ret x); q

)
. As we can see, q might

depend on y but it is not going to be the same y to which the result of a was bound.
That y was cut, and we cannot recover its value at the point of interest. The notion
of being cut-free effectively rules out programs of this sort. E.g. for the example at
hand, y R Vars(x) but y is not referential in

(
do 〈x, y〉 Ð a2�〈x,y〉; ret x

)
. It is should
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be intuitively clear from the definition that the cut-free programs are rather more well-
behaved then the generic flat program. The exact benefit of using this notion will be-
come apparent in the process of establishing the announced program reductions. Our
plan is therefore as follows: first we shall show how to build a cut-free program by
a flat program (Lemma 4.28); then we shall show how to reduce cut-free programs to
tight programs (Lemma 4.29).

Lemma 4.26. Let p be a v̄-flat program, and let v̄ be a vector of distinct variables such that
Vars(z̄) � Vars(v̄) and all the variables from Vars(v̄)zVars(z̄) are referential in p. Then

$ME� p = do z̄ Ð (do v̄ Ð p; ret z̄); ret v̄.

Proof. We prove the claim by induction over term complexity of p with respect to the
clauses of Definition 4.13.

FL1. If p .
= ∅ or p .

= ret v̄ then the claim becomes trivial. Let p .
= ai�v̄ and i ¡ 0. Note

that by assumption of the lemma, vi P Vars(z̄). Therefore

p .
= do vi Ð a; ret v̄

= do z̄ Ð (do vi Ð a; ret z̄); ret v̄ [by Lemma 4.1]

= do z̄ Ð (do v̄ Ð (do vi Ð a; ret v̄); ret z̄); ret v̄ [by Lemma 4.1]

= do z̄ Ð (do v̄ Ð ai�v̄; ret z̄); ret v̄
.
= do z̄ Ð (do v̄ Ð p; ret z̄); ret v̄

The proof of the case i = 0 runs analogously.

FL2. Let p .
= (q + r). Then

p .
= q + r

= do z̄ Ð (do v̄ Ð q; ret z̄); ret v̄ +

do z̄ Ð (do v̄ Ð r; ret z̄); ret v̄ [by ind.]

= do z̄ Ð (do v̄ Ð (q + r); ret z̄); ret v̄ [by (dist+1 )]
.
= do z̄ Ð (do v̄ Ð p; ret z̄); ret v̄

and we are done.

FL3. Suppose p .
= (do x̄ Ð q; r). Let ȳ be a vector of distinct variables such that

Vars(ȳ) = Vars(x̄)z(Vars(v̄)zVars(z̄)). Then

Vars(x̄)zVars(ȳ) = Vars(x̄)X (Vars(v̄)zVars(z̄)) � (Vars(v̄)zVars(z̄)).
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Therefore, every variable from Vars(x̄)zVars(ȳ) is by induction referential in p
and thus in q. As a consequence:

$ME� p = do ȳ Ð (do x̄ Ð q; ret ȳ); r. (4.33)

Indeed:

p .
= do x̄ Ð q; r

= do x̄ Ð (do ȳ Ð (do x̄ Ð q; ret ȳ); ret x̄); r [by ind.]

= do ȳ Ð (do x̄ Ð q; ret ȳ); r [by Lem. 4.1, (unit2)]

Then the induction step is proven as follows:

p = do ȳ Ð (do x̄ Ð q; ret ȳ); r [by 4.33]

= do ȳ Ð (do x̄ Ð q; ret ȳ); z̄ Ð (do v̄ Ð r; ret z̄); ret v̄ [by ind.]

= do z̄ Ð (do ȳ Ð (do x̄ Ð q; ret ȳ); v̄ Ð r; ret z̄); ret v̄ [by Lem. 4.1]

= do z̄ Ð (do v̄ Ð (do ȳ Ð (do x̄ Ð q; ret ȳ); r); ret z̄);

ret v̄ [by Lem. 4.1]

= do z̄ Ð (do v̄ Ð p; ret z̄); ret v̄ [by 4.33]

FL4. Let p .
= (init v̄ Ð q in r�). By the assumption, the variables from Vars(v̄)zVars(z̄)

are referential in p and therefore also in q and r. Let us put by definition u :=
(init z̄ Ð (do v̄ Ð q; ret z̄) in(do v̄ Ð r; ret z̄)�) and show that

$ME� p = do z̄ Ð u; ret v̄. (4.34)

To that end we shall make use of the identity

$ME� init v̄ Ð ret v̄ in r� = init z̄ Ð ret z̄ in(do v̄ Ð r; ret z̄)� res z̄ Ñ ret v̄ (4.35)

which follows from the evidently provable identity

$ME� do v̄ Ð ret v̄; r = do z̄ Ð (do v̄ Ð r; ret z̄); ret v̄

by Corollary 4.8. Then we have:

p .
= init v̄ Ð q in r�

= init v̄ Ð (do z̄ Ð (do v̄ Ð q; ret z̄); ret v̄) in r� [by ind.]

= do z̄ Ð (do v̄ Ð q; ret z̄); init v̄ Ð ret v̄ in r� [by Lem. 4.1]

= do z̄ Ð (do v̄ Ð q; ret z̄);

init z̄ Ð ret z̄ in(do v̄ Ð r; ret z̄)� res z̄ Ñ ret v̄ [by 4.35]
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= init z̄ Ð (do v̄ Ð q; ret z̄) in(do v̄ Ð r; ret z̄)�

res z̄ Ñ ret v̄ [by Lem. 4.1]
.
= do z̄ Ð u; ret v̄

Then the induction step can be proven as follows:

p = do z̄ Ð u; ret v̄ [by 4.34]

= do z̄ Ð (do v̄ Ð (do z̄ Ð q; ret v̄); ret z̄); ret v̄ [by Lem. 4.1]

= do z̄ Ð (do v̄ Ð p; ret z̄); ret v̄ [by 4.34]

The proof of the lemma is thus completed.

Informally, Lemma 4.26 states that referential variables can be cut harmlessly.

Lemma 4.27. Suppose we are given a z̄-flat program p and a variable v not occurring in p. Let
z P Vars(p) and let v̄ := z̄[v/z]. Then there exist effectively computable programs p1 and p2

such that

1. $ME� p[v/z] = p1 + p2,

2. z R Vars(p1), z R Vars(p2),

3. p1 is z̄-flat, p2 is v̄-flat,

4. every variable referential in p is referential both in p1 and in p2,

5. if p is cut-free then both p1 and p2 are cut-free.

Proof. By Remark 4.21 we ensure that Kleene star occurs in p only in the form (init x̄ Ð
ret x̄ in r�). Then we construct the programs p1, p2 in question by induction over term
complexity of p with respect to the clauses of Definition 4.13.

FL1. We define p1 and p2 according to the specific form of p as follows.

If p .
= ai�z̄ and z = xi then p1 := (a[v/z])i�z̄ and p2 := ∅.

If p .
= ai�z̄ and either z � x or i = 0 then p1 := ∅ and p2 := (a[v/z])i�v̄.

If p .
= ret z̄ then p1 := ∅ and p2 = ret v̄.

If p .
= ∅ then p1 := ∅ and p2 := ∅.

The induction invariant is easily verified.

FL2. Let p .
= (q + r). By induction hypothesis there exist q1, q2 and r1, r2 satisfying the

induction invariant for q and r. We put pi := qi + ri for i = 1, 2. The remainder is
then easily proven by the induction hypothesis.
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FL3. Let p .
= (do x̄ Ð q; r). Suppose, z R Vars(x̄). By induction hypothesis there are

q1 and q2 satisfying the induction invariant for q and there are r1, r2 satisfying the
induction invariant for r. Note that since x̄[v/z] .

= x̄, both q1 and q2 are x̄-flat. Let
us put by definition:

p1 := do x̄ Ð (q1 + q2); r1,

p2 := do x̄ Ð (q1 + q2); r2.

Obviously, p[v/z] .
= (do z̄ Ð q[v/z]; r[v/z]) is provably equal to p1 + p2. By

induction, every variable that is referential in p is referential in p1, p2 and z R
Vars(p1), z R Vars(p2).

Suppose p is cut-free, and prove that p1, p2 are cut-free. By the definition of cut-
free, q and r are cut-free and every x R Vars(z̄) is referential in q. By induction,
q1, q2, r1, r2 are cut-free and every x R Vars(z̄) is referential in q1, q2. This imme-
diately implies that p1 is cut-free. In order to prove that p2 is also cut-free, we
are left to show that every x R Vars(v̄) = Vars(z̄[v/z]) is referential in q1, q2. If
x R Vars(z̄) then we are done. Otherwise, x = z. By assumption of the lemma, x
is referential in q. Therefore, by induction it is referential both in q1 and in q2, and
we are done.

Suppose z P Vars(x̄). Let q1, q2 and r1, r2 be the programs satisfying by the induc-
tion invariant for q and r correspondingly. We define:

p1 := do x̄ Ð q1; r + do ȳ Ð q2; r1

p2 := do ȳ Ð q2; r2

where ȳ := x̄[v/z]. Let us prove that both p1 and p2 satisfy the induction invari-
ant for p. Obviously p1 is z̄-flat, p2 is v̄-flat. It easily follows by induction that
z R Vars(p1), z R Vars(p2) (notice that the possible occurrences of z in the subterm
r of p1 are bound since z P Vars(x̄)). Let some variable x be referential in p. Then
it is referential both in q and r. By induction, x is referential in q1, q2, r1, r2 and thus
it is referential in p1, p2. The following calculation proves $ME� p[v/z] = p1 + p2:

p[v/z] � do x̄ Ð q[v/z]; r

= do x̄ Ð (q1 + q2); r [by ind.]

= do x̄ Ð q1; r + do ȳ Ð q2; r[v/z] [by (dist+1 )]

= do x̄ Ð q1; r + do ȳ Ð q2; r1 + do v̄ Ð q2; r2 [by ind.]

= p1 + p2 [by def. of pi]

Finally, suppose that p is cut-free, and prove that p1, p2 are too. By the definition



Chapter 4: Decidable fragments of MCE 138

of cut-free, q, r are cut-free and every x R Vars(z̄) is referential in q. By induc-
tion, q1, q2, r1, r2 are cut-free and x is referential in q1, q2. As an immediate conse-
quence, p1 is cut-free. In order to prove that p2 is also cut-free, observe that since
z R Vars(ȳ) it is referential in q. Therefore, every x R Vars(v̄) = Vars(z̄[v/z]) is
referential in q and thus, by induction, x is referential in q2, i.e. p2 is cut-free.

FL4. Let p .
= (init z̄ Ð ret z̄ in r�). First assume that z R Vars(z̄). This assumption im-

mediately implies identity of z̄ and v̄. Let r1 and r2 be the z̄-flat programs corre-
sponding to r by induction hypothesis. We put p1 := (init z̄ Ð ret z̄ in(r1 + r2)�),
p2 := ∅. It is easily verified that p1, p2 satisfy the induction invariant.

Suppose z P Vars(z̄). Let r1, r2 be the programs provided by the induction invari-
ant for r. Recall that r1 is z̄-flat and r2 is v̄-flat. Then we define

p1 := init v̄ Ð ret v̄ in r�2 res v̄ Ñ (init z̄ Ð r1 in r�),

p2 := init v̄ Ð ret v̄ in r�2 .

By induction: z R Vars(p1) and z R Vars(p2). Let us show that p[v/z] is provably
equal to p1 + p2. Observe that:

$ME� do z̄ Ð ret z̄; r = do z̄ Ð r; ret z̄,

$ME� do z̄ Ð ret v̄; r = do z̄ Ð r1; ret z̄ + do v̄ Ð r2; ret v̄.

We would like to match these equalities with the family of equalities in the premise
of Lemma 4.6. To that end, we first need to prove that

(2, {1 ÞÑ z̄, 2 ÞÑ v̄}, {(1, 1) ÞÑ r, (1, 2) ÞÑ ∅, (2, 1) ÞÑ r1, (2, 2) ÞÑ r2})

is a computational net. Indeed, we have:

Vars(v̄)XVars(r) � (Vars(z̄)XVars(r))Y ({v}XVars(r))

� Vars(z̄)Y /0 = Vars(z̄),

Vars(z̄)XVars(ri) � (Vars(v̄)XVars(ri))Y ({z}XVars(ri))

� Vars(v̄)Y /0 = Vars(v̄),

Vars(v̄)XVars(∅) = /0 � Vars(z̄)

where i = 1, 2. The remaining cases are trivial. In a similar fashion, one can make
sure that the further conditions of Lemma 4.6 are also met. We can thus conclude
that the following equation is provable in ME�:

init z̄ Ð ret v̄ in r� = do v̄ Ð w2
1,1; ret v̄ + do z̄ Ð w2

1,2; ret z̄ (4.36)
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where

w2
1,1

.
= w1

1,1 + init z̄ Ð w1
1,2 in(w1

2,2)
� res z̄ Ñ w1

2,1,

w2
1,2

.
= w1

1,2 + init z̄ Ð w1
1,2 in(w1

2,2)
� res z̄ Ñ w1

2,2,

w1
1,1

.
= w0

1,1 + init v̄ Ð w0
1,1 in(w0

1,1)
� res v̄ Ñ w0

1,1,

w1
2,2

.
= w0

2,2 + init v̄ Ð w0
1,1 in(w0

1,1)
� res v̄ Ñ w0

1,2,

w1
1,2

.
= w0

1,2 + init v̄ Ð w0
1,1 in(w0

1,1)
� res v̄ Ñ w0

1,2,

w1
2,1

.
= w0

2,1 + init v̄ Ð w0
2,1 in(w0

1,1)
� res v̄ Ñ w0

1,1,

w0
1,1

.
= ret v̄ + r2, w0

1,2
.
= r1,

w0
2,2

.
= ret v̄ + r, w0

2,1
.
= ∅.

After elementary simplifications in ME�, we obtain:

w1
2,1 = ∅,

w1
1,2 = init v̄ Ð ret v in r�2 res v̄ Ñ r1,

w1
2,2 = ret z̄ + r,

w1
1,1 = init v̄ Ð ret v̄ in r�2 ,

w2
1,2 = init v̄ Ð ret v̄ in r�2 res v̄ Ñ (init z̄ Ð r1 in r�),

w2
1,1 = init v̄ Ð ret v̄ in r�2 .

The equality p[v/z] = p1 + p2 can now be established as follows:

p[v/z] .
= init z̄ Ð ret v̄ in r�

= do v̄ Ð w2
1,1; ret v̄ + do z̄ Ð w2

1,2; ret z̄ [by 4.36]

= w2
1,1 + w2

1,2 [by (unit1)]

= init v̄ Ð ret v̄ in r�2 +

init v̄ Ð ret v̄ in r�2 res v̄ Ñ (init z̄ Ð r1 in r�)

� p1 + p2

Every variable that is referential in p is referential in r. By induction, it is referen-
tial in r1, r2 and thus by definition, it is referential in p1, p2. In the same manner, p
being cut-free implies that p1, p2 are also cut-free.

Lemma 4.28. Let p be a z̄-flat program. Then there exists an effectively computable cut-free
v̄-flat program q such that Vars(z̄) � Vars(v̄) and

$ME� p = do v̄ Ð q; ret z̄. (4.37)
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Proof. By Remark 4.21 we ensure that Kleene star occurs in p only as (init x̄ Ð ret x̄ in r�).
Then we proceed by induction over term complexity of p with respect to the clauses of
Definition 4.13.

FL1. For the programs matching this clause, we put q := p. The induction invariant is
trivially satisfied.

FL2. Let p .
= u + r. By induction hypothesis there exist cut-free v̄-flat programs u1 and

r1 such that $ME� do v̄ Ð u1; ret z̄ = u and $ME� do v̄ Ð r1; ret z̄ = r. Evidently
q := u1 + r1 proves the induction step.

FL3. Let p .
= (do x̄ Ð u; r). Let r1 and u1 be the cut-free programs ensured by the

induction hypothesis such that r1 is z̄1-flat, u1 is x̄1-flat and

$ME� do x̄1 Ð u1; ret x̄ = u,

$ME� do z̄1 Ð r1; ret z̄ = r.

Let x̄� be a vector of distinct variables such that Vars(x̄�) = Vars(x̄1)zVars(x̄)
and let x̄� be the vector of fresh distinct variables of the same length. Let w be
the program obtained from u1 by replacing every x�i by x�i throughout. Then
w[x̄�/x̄�] � u1 and

$ME� do v̄ Ð (do ȳ Ð w[x̄�/x̄�]; z̄1 Ð r1; ret v̄); ret z̄ = p (4.38)

where ȳ := x̄1[x̄�/x̄�] and v̄ is such that Vars(v̄) = Vars(z̄1)YVars(x̄�)YVars(x̄�).
Indeed:

do v̄ Ð (do ȳ Ð w[x̄�/x̄�]; z̄1 Ð r1; ret v̄); ret z̄

= do v̄ Ð (do ȳ Ð u1; z̄1 Ð r1; ret v̄); ret z̄

= do ȳ Ð u1; z̄1 Ð r1; ret z̄ [by Lemma 4.1]

= do ȳ Ð u1; r [by ind.]

= do x̄ Ð (do ȳ Ð u1; ret x̄); r [by Lemma 4.1]

= do x̄ Ð (do x̄1 Ð u1; ret x̄); r

= do x̄ Ð u; r. [by ind.]

We will be done once we manage to reduce (do ȳ Ð w[x̄�/x̄�]; z̄1 Ð r1; ret v̄) to a
cut-free v̄-flat program. We proceed by further induction over n := |x̄�|. If n = 0
then we are done by outer induction. Suppose n ¡ 0. By Lemma 4.27, w[x̄�n/x̄�n] is
provably equal to a sum w1 + w2 where w1 is ȳ-flat and w2 is ȳ[x̄�/x̄�]-flat. Then

do ȳ Ð w[x̄�/x̄�]; z̄1 Ð r1; ret v̄

= do ȳ Ð w1[x̄�n̂/x̄�n̂]; z̄1 Ð r1; ret v̄ +
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do ȳ Ð w2[x̄�n̂/x̄�n̂]; z̄1 Ð r1; ret v̄.

By induction, first summand of the latter sum is provably equal to a v̄-flat cut-
free program. We will be done as soon as we prove that the same is true for
the latter summand. Let ȳ1 := ȳ[x̄�n/x̄�n], or equivalently, ȳ1 := x̄1[x̄�n̂/x̄�n̂]. Let
y2 be a vector of distinct variables such that Vars(ȳ2) = Vars(ȳ)z{x�n}. Then
Vars(ȳ2) = Vars(ȳ1)z{x�n}. Note that x�n is referential in w2 and thus also in
w2[x̄�n̂/x̄�n̂]. Therefore we have:

do ȳ Ð w2[x̄�n̂/x̄�n̂]; z̄1 Ð r1; ret v̄

= do ȳ2 Ð (do ȳ Ð w2[x̄�n̂/x̄�n̂]; ret ȳ2); z̄1 Ð r1; ret v̄ [by Lem. 4.1]

= do ȳ2 Ð (do ȳ1 Ð w2[x̄�n̂/x̄�n̂]; ret ȳ2); z̄1 Ð r1; ret v̄

= do ȳ1 Ð (do ȳ2 Ð (do ȳ1 Ð w2[x̄�n̂/x̄�n̂]; ret ȳ2); ret ȳ1);

z̄1 Ð r1; ret v̄ [by Lem. 4.1]

= do ȳ1 Ð w2[x̄�n̂/x̄�n̂]; z̄1 Ð r1; ret v̄ [by Lem. 4.26]

and we are done by inner induction hypothesis.

FL4. Let p .
= (init z̄ Ð ret z in u�). According to the induction hypothesis we assume

that there is some z̄1-flat cut-free program u1 such that

$ME� u = do z̄1 Ð u1; ret z̄ (4.39)

and Vars(z̄) � Vars(z̄1). Let z̄� be a vector of distinct variables such that Vars(z̄�) =
Vars(z̄1)zVars(z̄) and let z̄� be the vector of fresh distinct variables of the same
length. Let w be the program obtained from u1 by replacing every z�i by z�i through-
out. Then w[z̄�/z̄�] � u1,

$ME� do v̄ Ð (init v̄ Ð ret v̄ in(do ȳ Ð w[z̄�/z̄�]; ret v̄)�); ret z̄ = p (4.40)

where ȳ := z̄1[z̄�/z̄�] and v̄ is such that Vars(v̄) = Vars(z̄1)YVars(z̄�). We have:

do v̄ Ð (init v̄ Ð ret v̄ in(do ȳ Ð w[z̄�/z̄�]; ret v̄)�); ret z̄

= init v̄ Ð ret v̄ in(do ȳ Ð u1; ret v̄)� res v̄ Ñ ret z̄

= init v̄ Ð ret v̄ in(do z̄ Ð (do ȳ Ð u1; ret z̄); ret v̄)�

res v̄ Ñ ret z̄ [by Lem. 4.1]

= init v̄ Ð ret v̄ in(do z̄ Ð (do z̄1 Ð u1; ret z̄); ret v̄)�

res v̄ Ñ ret z̄.

Observe that by Lemma 4.1 and (unit2):

$ME� do z̄ Ð ret z̄; (do z̄1 Ð u1; ret z̄)
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= do v̄ Ð (do z̄ Ð (do z̄1 Ð u1; ret z̄); ret v̄); ret z̄

and thus we can complete the calculation by Corollary 4.8:

init v̄ Ð ret v̄ in(do z̄ Ð (do z̄1 Ð u1; ret z̄); ret v̄)� res v̄ Ñ ret z̄

= init z̄ Ð ret z̄ in(do z̄1 Ð u1; ret z̄)� [Cor. 4.8]

= init z̄ Ð ret z̄ in u�. [by 4.39]

We show that (do ȳ Ð w[z̄�/z̄�]; ret v̄) is provably equal to an effectively com-
putable v̄-flat cut-free program. Since Vars(z̄) � Vars(z̄1) � Vars(v̄), by (4.40) this
would imply the claim. We proceed by induction over n := |z̄�|. If n = 0, i.e.
Vars(z̄) = Vars(z̄1) = Vars(v̄) then we are trivially done. Suppose n ¡ 0. By
Lemma 4.27, w[z�n/z�n] is provably equal to a sum w1 + w2 where w1 is ȳ-flat and
w2 is ȳ[z�n/z�n]-flat. Then

do ȳ Ð w[z̄�/z̄�]; ret v̄

= do ȳ Ð w1[z̄�n̂/z̄�n̂]; ret v̄ + do ȳ Ð w2[z̄�n̂/z̄�n̂]; ret v̄.

Like in the previous clause, first summand of the latter sum is provably equal to
a v̄-flat cut-free program. We will be done as soon as we show the same for the
second summand. Let ȳ1 := ȳ[z�n/z�n], or equivalently, ȳ1 := z̄1[z̄�n̂/z̄�n̂]. Let y2 be a
vector of distinct variables such that Vars(ȳ2) = Vars(ȳ)z{z�n}. Then Vars(ȳ2) =
Vars(ȳ1)z{z�n}. Note that z�n is referential in w2, and thus it is also referential in
w2[z̄�n̂/z̄�n̂]. Then

do ȳ Ð w2[x̄�/x̄�]; ret v̄

= do ȳ Ð (do ȳ2 Ð (do ȳ Ð w2[x̄�/x̄�];

ret ȳ2); ret ȳ); ret v̄ [by Lem. 4.26]

= do ȳ2 Ð (do ȳ Ð w2[x̄�/x̄�]; ret ȳ2); ret v̄ [by Lem. 4.1]

= do ȳ2 Ð (do ȳ1 Ð w2[x̄�/x̄�]; ret ȳ2); ret v̄

= do ȳ1 Ð w2[x̄�/x̄�]; ret v̄ [by Lem. 4.1]

and we are done by inner induction hypothesis.

Lemma 4.29. Let p be a z̄-flat cut-free program. For every vector of distinct variables v̄ there
is an effectively found v̄-flat tight program q such that $ME� q = do z̄ Ð p; ret v̄.

Proof. First, we ensure by Remark 4.21 that Kleene star occurs in p only in the form
(init x̄ Ð ret x̄ in r�). Then we construct by induction over term complexity of p a
vector of tight v̄-flat programs p̄ such that

$ME� do z̄ Ð p; ret v̄ = ∑i pi (4.41)
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and for every pi and every t P tr(pi), Vars(t) = Vars(pi) � Vars(p)Y (Vars(v̄)zVars(z̄)).
Let us proceed by case distinction over the clauses of Definition 4.13.

FL1. If p .
= ∅, then p̄ := �. If p .

= ret z̄, then p̄ := ret v̄. If p .
= ai�z̄, then p̄ := ai�v̄. The

induction invariant is trivially verified.

FL2. Let p .
= (u + r). Then, by induction, there exist vectors of z̄-flat programs ū and

r̄ such that $ME� do z̄ Ð r; ret v̄, $ME� do z̄ Ð u; ret v̄. We define p̄ := 〈ū, r̄〉. The
induction invariant is clearly satisfied.

FL3. Let p .
= (do x̄ Ð u; r). Let r̄ be the sequence of v̄-flat tight program such that

$ME� do z̄ Ð r; ret v̄ = ∑j rj whose existence is guaranteed by the induction hy-
pothesis. For every j, let ȳj be a vector of variables such that Vars(ȳj) = Vars(rj),
and let ūj be the sequence of ȳj-flat tight programs provided by induction hypoth-
esis, i.e. such that for every j, $ME� do x̄ Ð u; ret ȳj = ∑k uj

k.

By definition, every wj,k := (do ȳj Ð uj
k; rj) is v̄-flat. Let p̄ be a vector consist-

ing of all the wj,k arranged arbitrarily. Let us verify the induction invariant. By
induction, both uj

k and rj are tight and for every t P tr(rj), Vars(t) = Vars(rj) =

Vars(ȳj). Therefore, wj,k is also tight. For every t P tr(wj,k) there is s P tr(uj
k)

such that Vars(t) = Vars(s). By induction, Vars(s) = Vars(uj
k) and by tightness

of wj,k, Vars(uj
k) = Vars(wj,k). We have thus proved that for every t P tr(wj,k),

Vars(t) = Vars(wj,k). Moreover, by induction:

Vars(wj,k) � Vars(uj
k)

� Vars(u)Y (Vars(ȳj)zVars(x̄)) = Vars(u)Y (Vars(rj)zVars(x̄))

� Vars(u)Y (Vars(r)zVars(x̄))Y ((Vars(v̄)zVars(z̄))zVars(x̄))

� Vars(p)Y (Vars(v̄)zVars(z̄)).

Finally, let us verify (4.41). Let z̄1 be a vector of distinct variables satisfying the
equation Vars(ȳ) = Vars(z̄)XVars(x̄). Then we have:

∑j,k wj,k = ∑j ∑k do ȳj Ð uj
k; rj

= ∑j do ȳj Ð (do x̄ Ð u; ret ȳj); rj [by ind.]

= ∑j do x̄ Ð u; rj [by Lem. 4.1]

= do x̄ Ð u; z̄ Ð r; ret v̄ [by ind.]

= do x̄ Ð (do ȳ Ð (do x̄ Ð u; ret ȳ); ret x̄);

z̄ Ð r; ret v̄ [by Lem. 4.26]

= do ȳ Ð (do x̄ Ð u; ret ȳ); z̄ Ð r; ret v̄ [by Lem. 4.1]

= do z̄ Ð (do ȳ Ð (do x̄ Ð u; ret ȳ); r); ret v̄ [by Lem. 4.1]

= do z̄ Ð (do x̄ Ð (do ȳ Ð (do x̄ Ð u; ret ȳ);
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ret x̄); r); ret v̄ [by Lem. 4.1]

= do z̄ Ð (do x̄ Ð u; r); ret v̄. [by Lem. 4.26]

which completes the proof of the clause.

FL4. Let p .
= (init z̄ Ð ret z̄ in r�). Let {v̄1, . . . , v̄n} be a finite set of vectors of distinct

variables such that v̄1 .
= v̄ and {Vars(v̄i)}i = P(Vars(p)YVars(v̄)). By induction

hypothesis, for every i there exists a vector of tight v̄i-flat programs p̄i such that

$ME� do z̄ Ð r; ret v̄i = ∑j pi
j. (4.42)

Since for every i, j, Vars(pi
j) � Vars(p)Y (Vars(v̄i)zVars(z̄)) � Vars(p)YVars(v̄),

we can assume that for every i, |p̄i| = n and for every j, Vars(pi
j) = Vars(v̄j).

Otherwise we ensure this property by replacing every two distinct programs from
p̄i with the same set of free variables by their sum, rearranging the elements of p̄i

and possibly inserting some deadlocks.

For all appropriate i, j, k, Vars(v̄k) X Vars(pi
j) = Vars(v̄k) X Vars(v̄j) � Vars(v̄j)

and hence (n, λi. v̄i, λj. λi. pi
j) makes a computational net. Let (n, λi. v̄i, λj. λi. p̂i

j)

be its transitive closure. Similarly, for all i, j, Vars(z̄)X Vars(pi
j) � Vars(v̄j). Fi-

nally, by (unit2), (4.42) can be rewritten as:

$ME� do z̄ Ð r; ret v̄i = ∑j do v̄j Ð ret v̄j; pi
j.

Therefore, by Lemma (4.7), for every i:

$ME� do z̄ Ð r; ret v̄i = ∑j do v̄j Ð ret v̄j; p̂i
j.

In particular, if we instantiate i by 1 and perform simplification under (unit2), we
obtain: $ME� do z̄ Ð r; ret v̄ = ∑j p̂1

j . It can be easily shown by further induction
that for every j, k, p̂k

j is tight v̄-flat and Vars(pk
j ) = Vars(v̄j).

Let us return to the proof of the induction invariant. We define p̄ := 〈 p̂1
1, . . . , p̂1

n〉.
Under this definition we obtain (4.41) straight away. We are left to show that for
every j and every t P tr( p̂1

j ), Vars(t) = Vars( p̂1
j ) � Vars(p)Y (Vars(v̄)zVars(z̄)).

Let t P tr( p̂1
j ). Then by tightness, Vars(t) = Vars(s) where s P {ret v̄j, p1

j , . . . , pn
j },

i.e. Vars(t) = Vars(v̄j) = Vars( p̂1
j ). Finally,

Vars( p̂1
j ) = Vars(v̄j) = Vars(p1

j )

� Vars(r)Y (Vars(v̄)zVars(z̄)) � Vars(p)Y (Vars(v̄)zVars(z̄))

and thus we are done.

In conjunction with Lemma 4.28 the latter result gives rise to
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Corollary 4.30. For every flat program p, there exists an effectively computable tight program
q with the same footprint such that $ME� p = q.

Now we can prove the main result of this section.

Lemma 4.31. Let p and q be two flat programs with the same footprint. Then the problems
$ME� p = q and $MEω p = q are equivalent and decidable.

Proof. Let Λ be a name pool and let σ : Vars(p)Y Vars(q) Ñ Λ be an arbitrary injec-
tive substitution. We prove the statement of the lemma with p replaced by pσ and q
replaced by qσ. This would obviously imply the original formulation. Observe that by
definition, $ME� pσ = qσ implies $MEω pσ = qσ. Let us assume that $MEω pσ = qσ

and prove $ME� pσ = qσ. By Corollary 4.30 and Lemma 4.22, $ME� pσ = ∑ς pσp,ς and
$ME� qσ = ∑ς qσq,ς where σp is the restriction of σ to Vars(p), σq is the restriction of σ

to Vars(q) and ς ranges over injective substitutions from Vars(z̄) to some finite subset
of Λ. We refer to the statement of Lemma 4.22 for the full list of properties satisfied by
the programs pσp,ς and qσq,ς.

At the moment we have established: $MEω ∑ς pσp,ς = ∑ς qσq,ς. Let z̄ be the common
footprint of p and q. We denote by Ξv̄ the set of those ς for which z̄ς

.
= v̄. Then we

obviously have
$MEω ∑v̄ ∑ςPΞv̄

pσp,ς = ∑v̄ ∑ςPΞv̄
qσq,ς. (4.43)

Let us prove that for all v̄

$MEω ∑ςPΞv̄
pσp,ς = ∑ςPΞv̄

qσq,ς. (4.44)

By Corollary 3.39 it suffices to show that
⋃

ςPΞv̄
NF(pσp,ς) =

⋃
ςPΞv̄

NF(qσq,ς). Due to
symmetry it suffices to prove only that t P NF(pσp,ς) implies t P

⋃
ςPΞv̄

NF(qσq,ς) for
every v̄ and ς P Ξv̄. Let t be an arbitrary element of NF(pσp,ς). By Corollary 3.39
applied to (4.43) we have

⋃
v̄
⋃

ςPΞv̄
NF(pσp,ς) =

⋃
v̄
⋃

ςPΞv̄
NF(qσq,ς). By the assumption,

t must belong to the left-hand side of this equation. Therefore, it belongs (up to α-
equivalence) to the right-hand side, i.e. there exists v̄1 such that t P

⋃
ςPΞv̄1

NF(qσq,ς).
Note that

⋃
ςPΞv̄1

NF(qσq,ς) consists of tight deterministic v̄1-flat programs. Since t is tight
deterministic v̄-flat, by Lemma 4.20 v̄ .

= v̄1 and thus we have completed the proof
of (4.44).

By Lemma 4.23 for every v̄, (4.44) implies

$ME� ∑ςPΞv̄
pσp,ς = ∑ςPΞv̄

qσq,ς. (4.45)

Therefore, we can complete the ‘equivalence’ part of the lemma by the calculation:
$ME� pσ = ∑v̄ ∑ςPΞv̄

pσp,ς = ∑v̄ ∑ςPΞv̄
qσq,ς = qσ.
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Let us prove the ‘decidability’ part. As we have seen previously,

$MEω pσ = qσ ùñ @v̄. $MEω ∑ςPΞv̄
pσp,ς = ∑ςPΞv̄

qσq,ς ùñ $MEω pσ = qσ.

Therefore the problem of verifying $MEω pσ = qσ (or $ME� pσ = qσ) is equivalent to
the problem of verifying $MEω ∑ςPΞv̄

pσp,ς = ∑ςPΞv̄
qσq,ς for all v̄, and thus we are done

by Lemma 4.23.

4.4 Weakly-iterative programs as a decidability candidate

The goal of this section is to lay the groundwork for extending the completeness and
decidability result yet further. Specifically, we would like to re-establish it for the class
of programs that we call weakly-iterative.

Definition 4.32 (Weak iterativity). A program is weakly-iterative if every subterm of it
having the form (init x Ð p in q�) is almost ret-free. In particular, every almost ret-free
program is weakly-iterative.

The idea of the proof is again to provide suitable reductions, to bring a weakly-iterative
program to a simpler form and then to call the completeness and decidability result
established previously (Lemma 4.31). To that end, we need to develop the theory of flat
programs a little further.

Note that one of the inconveniences about the notion of the flat program is that it is
not stable under substitutions. E.g. given a flat program (do 〈x, y〉 Ð ret〈x, y〉; ret x),
already replacing y by a new variable z would produce (do 〈x, y〉 Ð ret〈x, z〉; ret x)
which does not match the definition of flatness.

Definition 4.33 (Stability). Given a class of programs C and a set of variables V, we
say that a program p is V-stably in C if for every vector of distinct variables v̄ such that
Vars(v̄) � V and every appropriately typed vector of atomic programs ā, p[ā/v̄] P C.
In particular, if p is V-stably in C, then p P C. We say that p is stably in C if it is Vars(p)-
stably in C. Also, we shortcut ‘{v}-stable’ to ‘v-stable’. If C is the set of all flat programs,
then we prefer to say ‘(V-)stably flat’ rather than ‘(V-)stable in C’.

Remark 4.34. Let C be a class of programs, closed under the operation of bulk replace-
ment of a variable with a fresh variable. The targeted example here is of course the
set of all flat programs. Given an arbitrary program that is stably in C, we can always
ensure by α-conversion that none of its bound variables come from any arbitrarily cho-
sen set. Let e.g. p be stably in C, and let V be the set of all variables (free and bound)
occurring in p. Let V1 be a set of fresh variables isomorphic to V, and, for every z P V,
let z1 be the image of z under this isomorphism. For every vector of variables z̄ such
that Vars(z̄) � V we denote by z̄1 the vector obtained from z̄ by replacing every zi with
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z1i. Let p1 be the program obtained by replacing every z P V by z1 throughout. Then
obviously p1 is stably in C. Since we might have renamed some free variables, p1 is not
necessarily α-equivalent to p (unless p is closed), but p1[v̄/v̄1] with v̄ being such that
Vars(v̄) = Vars(p) is α-equivalent to p. Since p1 is stably in C, p1[v̄/v̄1] is obviously also
stably in C.

In particular, given a stably x̄-flat program p and a set of variables V, we can always
switch to a stably x̄1-flat program q, α-equivalent to p and such that Vars(x̄1) X V =

Vars(x̄1)XVars(q) = /0.

Lemma 4.35. Let V be a set of variables and let v R V be some variable. We put V1 := V Y {v}.
Suppose we are given a V-stably z̄-flat program p. Let v̄ be a vector of distinct variables such
that Vars(v̄) = Vars(z̄)z{v}. Then there exists an effectively computable pair of V1-stably flat
programs p1, p2 such that

$ME� p = p1 + do v̄ Ð p2; ret z̄, (4.46)

p1 is z̄-flat, p2 is v̄-flat and p2
.
= ∅ whenever v R Vars(z̄).

Proof. Note that we do not need to adhere the condition: p2
.
= ∅ whenever v R Vars(z̄)

because it can always be ensured by redefining p1 and p2: p1 := p1 + p2, p2 := ∅.
We construct p1 and p2 by induction over term complexity of p with respect to the
clauses of Definition 4.13. To that end, we ensure first by Remark 4.21 that Kleene star
occurs in p only in the form (init x̄ Ð ret x̄ in q�). It can easily be seen that V-stability is
maintained under the reduction rule of Remark 4.21.

FL1. We define p1 and p2 according to the specific form of p as follows.

If p .
= ai�z̄ and zi = v, then p1 := p and p2 := ∅.

If p .
= ai�z̄ with zi � v, then p1 := ∅ and p2 := ai�v̄.

If p .
= ret z̄, then p1 := ∅ and p2 := ret v̄.

If p .
= ∅, then p1 := ∅ and p2 := ∅.

In all these cases the induction invariant is easily verified.

FL2. Let p .
= q + r. Then, by induction, there exist q1, q2 satisfying the induction in-

variant for q and r1, r2 satisfying the induction for r. It is trivially verified that
p1 := q1 + r1 and p2 := q2 + r2 satisfy the induction invariant for p.

FL3. Let p .
= (do x̄ Ð q; r). Then, by induction, there exist q1, q2 satisfying the induc-

tion invariant for q and r1, r2 satisfying the induction invariant for r. In particular,

$ME� q = q1 + do ȳ Ð q2; ret x̄,

$ME� r = r1 + do v̄ Ð r2; ret z̄.
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where Vars(ȳ) = Vars(x̄)z{v}. Since p is V-stably flat, q must be V-stably flat and
r must be (VzVars(x̄))-stably flat. Therefore, by induction hypothesis, q1, q2 are
V1-stably flat, and r1, r2 are V2-stably flat with V2 := (VzVars(x̄))Y {v}. Let us
define:

p1 := do x̄ Ð q1; r1 + do ȳ Ð q2; r1,

p2 := do x̄ Ð q1; r2 + do ȳ Ð q2; r2.

By definition, p1 is z̄-flat and p2 is v̄-flat. The proof of (4.46) runs as follows:

p = do x̄ Ð (q1 + do ȳ Ð q2; ret x̄); r [by ind.]

= do x̄ Ð q1; r + do x̄ Ð (do ȳ Ð q2; ret x̄); r [by (dist+1 )]

= do x̄ Ð q1; r + do ȳ Ð q2; x̄ Ð ret x̄; r [by Lem. 4.1]

= do x̄ Ð q1; r + do ȳ Ð q2; r [by (unit2)]

= do x̄ Ð q1; (r1 + do v̄ Ð r2; ret z̄) +

do ȳ Ð q2; (r1 + do v̄ Ð r2; ret z̄) [by ind.]

= do x̄ Ð q1; r1 + do x̄ Ð q1; (do v̄ Ð r2; ret z̄) +

do ȳ Ð q2; r1 + do ȳ Ð q2; (do v̄ Ð r2; ret z̄) [by (dist+2 )]

= p1 + do x̄ Ð q1; (do v̄ Ð r2; ret z̄) +

do ȳ Ð q2; (do v̄ Ð r2; ret z̄). [by def. of p1]

If v R Vars(z̄), then by induction r2
.
= ∅; the latter program evaluates to p1, and

thus we are done. Otherwise we proceed with the calculation

p1 + do v̄ Ð (do x̄ Ð q1; r2); ret z̄ +

do v̄ Ð (do ȳ Ð q2; r2); ret z̄ [by Lem. 4.1]

= p1 + do v̄ Ð (do x̄ Ð q1; r2 + do ȳ Ð q2; r2); ret z̄ [by (dist+2 )]

= p1 + do v̄ Ð p2; ret z̄. [by def. of p2]

Let us prove that p1 is V1-stably flat, i.e. p1 is x̄-stably flat for every x P V1. By
induction, both q1 and q2 are x-stably flat. If x R Vars(x̄) or x = v, then, by
induction, both r1 and r2 are x-stably flat, and we are done. Otherwise, x P

Vars(x̄)z{v} = Vars(ȳ) and therefore x may not occur freely in the subterms r1, r2,
i.e. p1 again must be x-free. The case of p2 is proved analogously.

FL4. Let p .
= (do z̄ Ð ret z̄; q). Since by assumption p is V-stably flat, Vars(z̄)XV = /0

and q is V-stably flat. By induction there exist V1-stably flat z̄-flat q1 and V1-stably
flat v̄-flat q2 such that

$ME� q = q1 + do v̄ Ð q2; ret z̄.
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If v R Vars(z̄), then q2
.
= ∅ and we put p1 := (init z̄ Ð ret z̄ in q�1), p2 := ∅. So

defined, p1, p2 trivially satisfy the induction invariant. In the case of v P Vars(z̄)
let us define:

p1 := init v̄ Ð ret v̄ in q�2 res v̄ Ñ (init z̄ Ð q1 in q�)

p2 := init v̄ Ð ret v̄ in q�2.

It is easily verified that p1 is z̄-flat and p2 is v̄-flat. By Lemma 4.1, we have:

$ME� do z̄ Ð ret z̄; (do v̄ Ð q2; ret z̄) = do v̄ Ð q2; ret z̄

and therefore by Corollary 4.8, the identity

init z̄ Ð ret z̄ in(do v̄ Ð q2; ret z̄)� = init v̄ Ð ret v̄ in q�2 res v̄ Ñ ret z̄ (4.47)

must provable in ME�. Now the proof of (4.46) runs as follows:

p = init z̄ Ð ret z̄ in(q1 + do v̄ Ð q2; ret z̄)�

= init z̄ Ð ret z̄ in(do v̄ Ð q2; ret z̄)� +

init z̄ Ð ret z̄ in(do v̄ Ð q2; ret z̄)�

res z̄ Ñ (init z̄ Ð q1 in q�) [by Lem. 4.4]

= init v̄ Ð ret v̄ in q�2 res v̄ Ñ ret z̄ +

init v̄ Ð ret v̄ in q�2 res v̄ Ñ (init z̄ Ð q1 in q�) [by 4.47]

= p1 + p2.

Finally, prove that both p1 and p2 are indeed V1-stably flat, i.e. p1, p2 are x-stably
flat for every x P V1 = V Y {v}. If x � v, then x R Vars(z̄) because, as it was
argued above, Vars(z̄)XV = ∅. Then we are immediately done by the induction
hypothesis. Let x = v. Recall that v R Vars(v̄). By induction hypothesis, v may
occur freely neither in q1 nor in q2. Possible occurrences of v in p1 under q are
bound. In summary, v may occur freely neither in p1 nor in p2, i.e. both p1, p2 are
v-stably flat.

Lemma 4.36. Let z̄ be a vector of distinct variables. We denote by Z the set of all vectors of
distinct variables z̄k such that Vars(z̄k) � Vars(z̄). Given a z̄-flat program p, there exists an
effectively found sequence of programs p̄, every element pk of which is stably flat, z̄k-flat and

$ME� p = ∑k do z̄k Ð pk; ret z̄. (4.48)

Proof. Let V be an arbitrary subset of Vars(p). We prove the claim by induction over
n := |V|, but replace the word ‘stability’ with ‘V-stability’. This will imply the original
claim under the assignment: V := Vars(p).
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If n = 0, then p is stably flat. We immediately have a solution: p̄ := (do � Ð ret �; p).

Suppose, n ¡ 0. Let v be some variable from V, and let V1 := Vz{v}. By induction
hypothesis, there exists a vector of V1-stably flat programs q̄ such that every qk is z̄k-flat
and $ME� p = ∑i do z̄k Ð qk; ret z̄. By Lemma 4.35, for every i there exist V-stably flat
z̄k-flat uk and V-stably flat v̄k-flat rk such that $ME� qk = uk + do v̄k Ð rk; ret z̄k where
v̄k satisfies the equality Vars(v̄k) = Vars(z̄k)z{v}. Then

p = ∑i do z̄k Ð qk; ret z̄

= ∑i do z̄k Ð (uk + do v̄k Ð rk; ret z̄k); ret z̄

= ∑i do z̄k Ð uk; ret z̄ + ∑i do z̄k Ð (do v̄k Ð rk; ret z̄k); ret z̄ [by (dist+1 )]

= ∑i do z̄k Ð uk; ret z̄ + ∑i do v̄k Ð rk; ret z̄. [by Lem. 4.1]

Note that for every k, v̄k P Z. Therefore we can regroup the latter sum so as to obtain
the presentation in question.

Definition 4.37 (Layered programs). We define layered programs by induction over the
return type by the following clauses:

every atomic program is layered;

if p and q are layered, then 〈p, q〉 is also layered;

every program of the form
(
∑i do x̄i Ð pi; ret qi

)
is layered, provided all the qi

are layered, and for every i, pi is stably x̄i-flat.

Similar to the case of flat programs, we refer to the programs which are V-stably in the
class of layered programs as V-stably layered.

Lemma 4.38. Given a layered program p, there is an effectively computable stably layered
program q such that $ME� p = q.

Proof. We prove the claim by induction over the return type of p. Let us proceed by
case distinction over the clauses of Definition 4.37. If p is atomic, evidently it is already
stably layered, and thus we can define q := p. Let p .

= 〈r, u〉, and let r1 and u1 be layered
programs provably equal to r and u correspondingly whose existence is guaranteed by
the induction hypothesis. Then the assignment q := 〈r1, u1〉 evidently provides a correct
value for q. Finally, suppose p .

=
(
∑i do x̄i Ð ui; ri

)
. Since all the ri must be layered,

by induction hypothesis, for every i there exists stably layered r1i, provably equal to ri.
By Lemma 4.36, for every i there exists a vector of programs ūi such that for every j, ui

j

is stably x̄i,j-flat, Vars(x̄i,j) � Vars(x̄i) and $ME� ui = ∑j do x̄i,j Ð ui
j; ret x̄i. By evident

calculations the equation
p = ∑i,j do x̄i,j Ð ui

j; ret ri



Chapter 4: Decidable fragments of MCE 151

must be provable in ME�. Observe that the right-hand side of it is stably layered. There-
fore we can take it as a value for q.

Lemma 4.39. Let p be a layered program, and let q be a flat program. Then (do x Ð ret p; q)
is provably equivalent under ME� to an effectively computable layered program.

Proof. By Lemma 4.28, let us assume w.l.o.g. that q is tight. By Remark 4.21, we ensure
that Kleene star occurs in q only in the form (init z̄ Ð ret z̄ in u�).

Let n be the length of the longest footprint among all the flat subterms of q and p. Let
V be a finite set of variables containing all the variables (free and bound) occurring in
q and p plus 3n fresh variables of every type A for which there exists a subterm of q
whose return type is A. Let R be the set of programs of the form tσ where t ranges
over layered subterms of p and σ ranges over all injective substitutions Vars(t) Ñ V.
Evidently, R is finite and p P R. By Lemma 4.38, all the elements of R are layered.

Let v̄ be a vector of distinct variables such that Vars(v̄) = V. Let us generalise the claim
of the lemma as follows. We prove that for every vector t̄ such that all the tj are from
RYV, there exist effectively computable v̄-flat qi and ti

j P RYV such that

$ME� do x̄ Ð ret t̄; q = ∑i do v̄ Ð qi; ret t̄i. (4.49)

Let us show how (4.49) implies the original claim. Since p P RYV, we can take t̄ := p
in (4.49) and thus we are left to show that the right-hand side of (4.49) can be trans-
formed to a layered program. By Lemma 4.36, for every qi there exists an effectively
computable vector of programs q̄i such that $ME� qi = ∑k do v̄k Ð qi

k; ret v̄, and for
every k, qi

k is stably v̄k-flat and Vars(v̄k) � Vars(v̄). By Lemma 4.1, the right-hand side
of (4.49) is provably equal to

(
∑i,k do v̄k Ð qi

k; ret t̄i) which is layered.

We proceed with the proof of (4.49). First of all, let ensure that Vars(x̄) = Vars(q) by
cutting from t̄ and x̄ the redundant components and completing both x̄ and t̄ with the
missing variables from Vars(q)zVars(x̄), if any. Let us proceed by induction over the
term complexity of q with respect to the clauses of Definition 4.13.

FL1. If q .
= ∅, then we are done by taking the sum of zero elements on the right-hand

side of (4.49).

If q .
= ret z̄, then we put q̄ := ret v̄ and p̄1 := ret z̄[t̄/x̄]. It is clear that these

programs indeed come from the declared program classes. The proof of (4.49) is
simple: $ME� do x̄ Ð ret t̄; q = ret z̄[t̄/x̄] = do v̄ Ð ret v̄; ret z̄[t̄/x̄].

Let q .
= ak�z̄. Let z0 be a fresh variable whose type is the same as the return type of

a. Now ak�z̄ is provably equal to
(
do zk Ð a; ret z̄

)
, no matter if k = 0 or not. Let

σ be the restriction of the substitution [t̄/x̄] to the set of those xj which are distinct
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from zk. In particular, if k = 0, σ coincides with [t̄/x̄]. Note that the left-hand side
of (4.49) is provably equal to

(
do zk Ð a[t̄/x̄]; ret z̄σ

)
.

W.l.o.g. we assume that a is normal. Then it must be in either of the forms:
h1(. . . (hm(v)) . . .) or h1(. . . (hm( f (w))) . . .), where f P Σ, v is a variable, and for
all l, hl P {fst, snd}. Consider these two subcases individually.

– Let a .
= h1(. . . (hm(v)) . . .). Assume that v is distinct from any of the xj.

Then a[t̄/x̄] .
= a and thus the left-hand side of (4.49) is provably equal to(

do zk Ð a; ret z̄σ
)
. Let us put q̄ := al�v̄ and p̄1 := ret z̄σ, where l is the

number of zk in v̄ if k ¡ 0 and 0 otherwise. We have thus:

$ME� do x̄ Ð ret t̄; q = do zk Ð a; ret z̄σ = do v̄ Ð al�v̄; ret z̄σ

which proves (4.49). The remainder of the claim is clearly satisfied.

If for some j, v .
= xj, then a[t̄/x̄] .

= h1(. . . (hm(tj)) . . .). By the definition
of layered programs, and for typing reasons, the latter program must be
provably equal to a program of the form

(
∑i do ȳi Ð si; ret ri

)
where all the

ri are layered subterms of pj and for every i, si is ȳi-flat. The left-hand side
of (4.49) is then provably equal to

∑i do zk Ð (do ȳi Ð si; ret ri); ret z̄σ. (4.50)

Let us argue that for every i, there exists a vector v̄i of variables from V such
that v̄i has the same return type as ȳi and

Vars(v̄i)XVars(z̄σ) = Vars(v̄i)XVars(ri) = /0 . (4.51)

Since |z̄σ| = |z̄| ¤ n and |Vars(ri)| ¤ n, |Vars(z̄σ)YVars(ri)| ¤ 2n. Therefore
for every j, V z

(
Vars(z̄σ)YVars(ri)

)
must contain at least n distinct variables

of the same type as yi
j. Hence we can find a vector of variables v̄i of appro-

priate types entirely consisting of elements of the latter set. This vector will
evidently satisfy (4.51). We can now transform (4.50) as follows:

∑i do zk Ð (do ȳi Ð si; ret ri); ret z̄σ

= ∑i do zk Ð
(
do v̄i Ð si; ret ri[v̄i/ȳi]

)
; ret z̄σ

= ∑i do v̄i Ð si; zk Ð ret ri[ȳi/v̄i]; ret z̄σ [by Lem. 4.1]

= ∑i do v̄i Ð si; ret z̄σ
[
ri[ȳi/v̄i]/zk

]
. [by (unit2)]

= ∑i do v̄ Ð (do v̄i Ð si; ret v̄);

ret z̄σ
[
ri[ȳi/v̄i]/zk

]
. [by Lem. 4.1]

Now we can complete the proof of the induction invariant by putting for
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every i: qi := (do v̄i Ð si; ret v̄) and p̄i := z̄σ
[
ri[ȳi/v̄i]/zk

]
. The only non-

trivial part of it to be shown is that every pi
j is an element of RYV. If j � k,

then pi
j

.
= zjσ is evidently an element of RYV. If j = k, then pi

j
.
= ri[ȳi/v̄i]

is also an element of RYV, because by assumption ri P RYV and by (4.51),
[ȳi/v̄i] can be trivially completed to an injective substitution over all Vars(ri).

– Let a .
= h1(. . . (hm( f (w))) . . .). By Lemma 3.22, a[t̄/x̄] must be atomic. Let us

denote it by b and let us put q̄ := bl�v̄ and p̄1 := ret z̄σ, where l is the index
of zk in v̄ if k ¡ 0 and 0 otherwise. The proof of (4.49) is as follows:

$ME� do x̄ Ð ret t̄; q = do zk Ð b; ret z̄σ = do v̄ Ð bl�v̄; ret z̄σ.

The remaining conditions that should be satisfied by the qi and the pi
j are

easily verified.

FL2. If q .
= (u+ r), then the goal trivially follows by the induction hypothesis: we only

need to merge the sums of the presentation (4.49) for q and for r.

FL3. Suppose q .
= (do ȳ Ð u; r). Let us transform the left-hand side of (4.49) equiva-

lently under ME� calling by need the induction hypothesis:

do x̄ Ð ret t̄; q
.
= do x̄ Ð ret t̄; ȳ Ð u; r

= do ȳ Ð (do x̄ Ð ret t̄; u); r [by Lem. 4.1]

= do ȳ Ð
(
∑j do v̄ Ð uj; ret s̄j

)
; r [by ind.]

= ∑j do v̄ Ð uj; ȳ Ð ret s̄j; r [by Lem. 4.1]

= ∑j do v̄ Ð uj;
(
∑k do v̄ Ð rk; ret t̄k

)
[by ind.]

= ∑j,k do v̄ Ð (do v̄ Ð uj; rk); ret t̄k. [by Lem. 4.1]

Here, the properties ensured by the induction hypothesis are as follows: for ev-
ery j, uj is v̄-flat; for every k, rk is v̄-flat; and all the elements of the s̄j and the
t̄k belong to R Y V. It is evident that the last program in the latter calculation
matches the right-hand side of (4.49). The precise assignments for the programs
in question can be derived easily.

FL4. Let q .
= (init x̄ Ð ret x̄ in u�). The set of all vectors of programs from RYV having

the same type as x̄ is evidently finite. Let n be the number of all such vectors, and
let s̄k denote the k-th one. We agree that t̄ .

= s̄1. By induction hypothesis, for every
m,

$ME� do x̄ Ð ret s̄m; q = ∑k do v̄ Ð rm,k; ret s̄k

for some effectively computable vector of v̄-flat programs r̄. It can easily be seen
that (n, λk. v̄, λm. λk. rm,k) makes a computational net. Let (n, λk. v̄, λm. λk. r̂m,k)
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be the transitive closure of it. By Lemma 4.6, whose side conditions follow triv-
ially,

$ME� do x̄ Ð ret t̄; q = ∑k do v̄ Ð r̂1,k; ret s̄k.

By induction over the definition of transitive closure, we can easily conclude that
every r̂m,k is v̄-flat. The presentation (4.49) now becomes apparent.

Lemma 4.40. Let p be an almost ret-free program such that

$ME� p = ∑i do x̄i Ð pi; ret qi (4.52)

where for every i, pi is x̄i-flat and qi is layered (i.e. the right-hand side of (4.52) is layered).
Then for every i, either tr(pi)

.
= ∅ or nf(qi) is cartesian.

Proof. By Corollary 3.35, for every i, NF(do x̄i Ð pi; ret qi) À� NF(p). By Lemma 4.11
and Corollary 4.12, for every i we have:

{nf(do x̄i Ð t; ret qi) | t P tr(pi)} À� {nf(s) | s P tr(p)}. (4.53)

It is easy to see that normalisation under�m respects almost ret-freeness. Therefore,
for every s P tr(p), nf(s) must be ret-free. By (4.53), this means that for every t P tr(pi),
nf(do x̄i Ð t; ret qi) must be almost ret-free. If tr(pi)

.
= ∅, then we are done. Otherwise,

let us fix some t P tr(pi). Since pi is flat, t is deterministic. Therefore, nf(t) must have the
form (do z̄ Ð ā; u), where all the ak are atomic and u is either atomic or administrative.
Then

nf(do x̄i Ð t; ret qi)
.
= nf(do x̄i Ð (do z̄ Ð ā; u); ret nf(qi))
.
= do z̄ Ð ā; nf(do x̄i Ð u; ret nf(qi)).

It can easily be seen from the form of the reduction rules that the latter program is
almost ret-free only if nf(qi) is cartesian.

Lemma 4.41. Every weakly iterative program p can be effectively and soundly under ME�

reduced to a layered program.

Proof. W.l.o.g. we assume that p is normal. Then we proceed by induction over the
term complexity of A, the return type of p. If A is T-free, then by Lemma 3.22, p must
be atomic. Since

$ME� p = do x Ð p; ret x

we can return as the result (do x Ð p; ret x), which is evidently layered.
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Let A = B� C. By the induction hypothesis there exist effectively computable layered
programs q, r, provably equal to fst(p) and snd(p) correspondingly. By Definition 4.37,
〈q, r〉 is layered. Obviously $ME� p = 〈u, r〉, and thus we are done.

Finally, let A = TB with some B. We proceed by further induction over the term com-
plexity of p. W.l.o.g. p is normal. By Lemma 3.22, there are the following options for p:
p is atomic, p .

= ∅, p .
= (q + r), p .

= (do x Ð q; r), and p .
= (init x Ð q in r�). Only the

two later cases do not immediately follow from the inner induction hypothesis.

Suppose p .
= (do x Ð q; r). By the inner induction and by Lemma 4.38, q can be

reduced to a stably layered program. If this layered program, say u, happens to be
atomic, we transform it further under the first unit law to (do y Ð u; ret y). The same
reasoning can be applied to r. In summary we obtain provable equalities:

$ME� q = ∑i do x̄i Ð qi; ret si,

$ME� r = ∑j do ȳj Ð rj; ret tj

where for every i, qi is stably x̄i-flat; for every j, rj is stably ȳj-flat; and all the si, rj are
stably layered. By Remark 4.34, we ensure that for every i, j, Vars(x̄i)XVars(ȳj) = ∅,
x R Vars(x̄i) and x R Vars(ȳj). Let us transform p under ME� as follows:

p .
= do x Ð q; r

= do x Ð
(
∑i do x̄i Ð qi; ret si

)
;
(
∑j do ȳj Ð rj; ret tj

)
= ∑i,j do x̄i Ð qi; ȳj Ð (do x Ð ret si; rj); ret(do x Ð ret si; tj).

By Lemma 4.39, for every i, j there exists a vector of stably z̄i,j-flat programs r̄i,j and a
vector of layered programs ūi,j such that

$ME� do x Ð ret si; rj = ∑k do z̄i,j Ð ri,j
k ; ret ui,j

k . (4.54)

By Remark 4.34, we ensure that the variables in the z̄i,j are distinct from the variables
introduced earlier. Now we continue the previous computation as follows:

∑i,j do x̄i Ð qi; ȳj Ð (do x Ð ret si; rj); ret(do x Ð ret si; tj)

= ∑i,j,k do x̄i Ð qi; ȳj Ð
(
do z̄i,j Ð ri,j

k ; ret ui,j
k

)
;

ret(do x Ð ret si; tj) [by 4.54]

= ∑i,j,k do x̄i Ð qi; z̄i,j Ð ri,j
k ; ȳj Ð ret ui,j

k ;

ret(do x Ð ret si; tj) [by Lem. 4.1]

= ∑i,j,k do x̄i Ð qi; z̄i,j Ð ri,j
k ;

ret
(
do ȳj Ð ret ui,j

k ; x Ð ret si; tj
)

[by (unit2)]

= ∑i,j,k do 〈x̄i, z̄i,j〉Ð (do x̄i Ð qi; z̄i,j Ð ri,j
k ; ret〈x̄i, z̄i,j〉);
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ret
(
do ȳj Ð ret ui,j

k ; x Ð ret si; tj
)
. [by (unit2)]

Observe that for every i, j, k the return type of
(
do ȳj Ð ret ui,j

k ; x Ð ret si; tj
)

is B, i.e.
simpler than A. Therefore the latter program can be replaced with a layered program by
the outer induction hypothesis. According to the previous calculations, this means that
the original program p can be reduced to a layered program, which proves the claim.

Finally, let us consider the remaining case: p .
= (init x Ð q in r�). Since p is weakly

iterative, by definition p and therefore q must be moreover almost ret-free. By virtue of
the provable equality

$ME� init x Ð q in r� = q + do x Ð q; (init x Ð ret x in r�)

it suffices to prove the case when q .
= x. The goal will then follow by the proved clauses

for binding and choice. We assume that q .
= x henceforth. By the inner induction

hypothesis and Lemma 4.38, we can prove in ME� the equality

r = ∑i do x̄i Ð ri; ret si

with some effectively computable stably layered program on the right-hand side. By
Remark 4.34, we ensure that all the variable names in the x̄i are new with respect to the
ones introduced earlier. By Lemma 4.40, we assume henceforth w.l.o.g. that all the si are
normal cartesian. Let x̄ be a vector of distinct variables such that Vars(x̄) =

⋃
i Vars(x̄i),

and for every i, let ui := (do x̄i Ð ri; ret x̄). After elementary calculations we have:

$ME� r = ∑i do x̄ Ð ui; ret si. (4.55)

Let R be the set of all normal cartesian programs whose return type is B and whose free
variables all come from Vars(x̄)Y

⋃
i Vars(ri)YVars(x). Then by definition, for every

i, si P R. Let us argue that R is finite. Since all the elements of R are normal cartesian,
each of them is a tree where branching is realised by the pairing operator, and every
terminal node is either � or h1(. . . (hm(v)) . . .) with v P Vars(x̄)Y

⋃
i Vars(ri)YVars(x)

and hk P {fst, snd} for all k. There are only a finite number of trees of this kind, because
the set of programs which can play the role of terminal nodes is finite, and every pairing
produces a program whose return type is more complex then the return type of the
arguments. We enumerate all the elements of R, denote the j-th one by tj and agree that
t1 = x. Then we can convert (4.55) to

$ME� r = ∑j do x̄ Ð uj; ret tj

by completing the sum in (4.55) with components of the form (do x̄ Ð ∅; ret tj) for
every j such that tj is not equal to any of the ri. Observe that for every k:

$ME� do x Ð ret tk; r = ∑j do x̄ Ð uj[tk/x]; ret nf
(
tj[tk/x]

)
.
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Since by assumption all the uj are stably x̄-flat, all the ui[tk/x] are also stably x̄-flat. By
definition, nf

(
tj[tk/x]

)
P R. Therefore we can regroup the components of the latter sum

and switch to
$ME� do x Ð ret tk; r = ∑j do x̄ Ð uk,j; ret tj.

where for every k, j, uk,j is stably x̄-flat. By Lemma 4.6, whose side conditions are triv-
ially verified, we have:

$ME� init x Ð ret x in r� = ∑j do x̄ Ð û1,j; ret tj. (4.56)

for some family of x̄-flat programs û1,j. The right-hand side of (4.56) is thus layered.
The proof is now completed.

4.5 Completeness and decidability, the ultimate

Throughout this section let E be an arbitrary data theory over the underlying signature Σ.

Definition 4.42 (Superflat programs). We call a z̄-flat program z̄-superflat if all its flat
subterms are z̄-flat. We call a program superflat if it is z̄-superflat with some z̄.

Lemma 4.43. Let p be a z̄-flat program. Then there is an effectively computable v̄-superflat pro-
gram q such that

$ME� p = do v̄ Ð q; ret z̄ (4.57)

where v̄ is a vector containing all the variables (free and bound) occurring in q.

Proof. Let us first prove the claim under the assumption that p is cut-free. By Re-
mark 4.21 we ensure that Kleene star occurs in p only in the form (init x̄ Ð ret x̄ in r�).
We take a v̄ a vector of distinct variables containing all the variables occurring in p (free
and bound). We construct q by induction over term complexity of p with respecto to
the clauses of Definition 4.13.

FL1. If p .
= ∅ then q := ∅. If p .

= ret z̄ then q := ret v̄. If p .
= a0�z̄ then q := a0�v̄. If

p .
= ai�z̄ and i ¡ 0 then q := aj�v̄ where j is the number of zi in v̄. The induction

invariant is trivially verified.

FL2. Let p .
= (u + r). By the induction hypothesis,

$ME� u = do v̄ Ð u1; ret z̄,

$ME� r = do v̄ Ð r1; ret z̄

for some appropriate u1, r1. Then we put q := u1 + r1. The induction invariant is
trivially verified.
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FL3. Let p .
= (do ȳ Ð u; r). By the induction hypothesis,

$ME� u = do v̄ Ð u1; ret ȳ,

$ME� r = do v̄ Ð r1; ret z̄

for some appropriate u1, r1. Let q := (do v̄ Ð u1; r1). Let us prove (4.57). We have

p .
= do ȳ Ð u; r

= do ȳ Ð (do v̄ Ð u1; ret ȳ); v̄ Ð r1; ret z̄

= do v̄ Ð (do ȳ Ð (do v̄ Ð u1; ret ȳ); r1); ret z̄ [by Lem. 4.1]

= do v̄ Ð (do ȳ Ð (do v̄ Ð u1; ret ȳ); v̄ Ð ret v̄; r1); ret z̄ [by (unit2)]

= do v̄ Ð (do v̄ Ð (do ȳ Ð (do v̄ Ð u1; ret ȳ);

ret v̄); r1); ret z̄ [by Lem. 4.1]

= do v̄ Ð (do v̄ Ð u1; r1); ret z̄ [by Lem. 4.26]

FL4. Let p .
= (init z̄ Ð ret z̄ in r�). By induction hypothesis, there is v̄-flat program

w all flat subterms of which have the same footprint and such that $ME� r =

(do v̄ Ð w; ret z̄). Let q := (init v̄ Ð ret v̄ in w�). Let us show (4.57). By induction
hypothesis $ME� p = init z̄ Ð ret z̄ in(do v̄ Ð w; ret z̄)�. Observe that

$ME� do z̄ Ð ret z̄; (do v̄ Ð w; ret z̄) = do v̄ Ð w; ret z̄

and Vars(v̄)XVars(ret z̄) � Vars(z̄). Therefore, by Corollary 4.8

$ME� init z̄ Ð ret z̄ in(do v̄ Ð w; ret z̄)� = init v̄ Ð ret v̄ in w� res v̄ Ñ ret z̄

i.e. $ME� p = (do v̄ Ð q; ret z̄) which completes the proof of the clause.

We have proved the claim under the assumption that p is cut-free. In general, if p
is arbitrary z̄-flat, by Lemma 4.28 we can find a cut-free x̄-flat program w such that
$ME� p = do x̄ Ð w; ret z̄ and Vars(z̄) � Vars(x̄). Let q be a v̄-superflat program such
that $ME� w = do v̄ Ð q; ret x̄ whose existence we have ensured above. Note that
Vars(x̄) � Vars(v̄). By Lemma 4.1, we have $ME� p = do v̄ Ð q; ret z̄, and thus the
proof is completed.

Let us recall the equivalence relation �E defined on page 33. We shall now intro-
duce a new equivalence relation �7E

ω over shallow-deterministic programs as the tran-
sitive closure of the union (�E Y �E

ω). Note that by definition, �7E
ω is weaker than

�E (page 60). We extend �7E
ω pointwise over SΣ under the same name. Also, we de-

note by À7E
ω the partial order induced by �7E

ω , i.e. the one defined by the equivalence
P À7E

ω Q ðñ PYQ �7E
ω Q.
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Lemma 4.44. Let p and q be two programs with the same computational return type. Then
E $MEω p = q iff NF(p) �7E

ω NF(q).

Proof. Let E $MEω p = q. Then NF(p) �7E
ω NF(q) matches the conclusion of Lemma 3.36

under the assignments: Φ := E, ū := �, r := ret y and �:=�7E
ω . We are left to verify the

premise, i.e. we need to show that for every (s = t) P E, all programs u1, . . . , un, r and
every normal a P AΣ:

NF(do x̄ Ð ū; y Ð a[s/v]; r) �7E

ω NF(do x̄ Ð ū; y Ð a[t/v]; r).

By (3.21), it suffices to prove the equivalence

γ(do x̄ Ð ūi; y Ð a[s/v]; ri) �
7E

ω γ(do x̄ Ð ūi; y Ð a[t/v]; ri) (4.58)

for every i where ūi := unf i(ū) and ri := unf i(r). Observe that for every i, by definition,
(do x̄ Ð ūi; y Ð a[s/v]; ri) �E (do x̄ Ð ūi; y Ð a[t/v]; ri) and by Theorem 2.21:

nf(do x̄ Ð ūi; y Ð a[s/v]; ri) �E nf(do x̄ Ð ūi; y Ð a[t/v]; ri).

Both sides of the latter equivalence are nondeterministic sums, which by definition of
�E are elementwise equal under �E. Application of prg to each of them returns the set
of all their summands except those which contain Kleene star not under the ret. There-
fore, prg(nf(do x̄ Ð ūi; y Ð a[s/v]; ri)) and prg(nf(do x̄ Ð ūi; y Ð a[t/v]; ri)) must
be elementwise equal under �E. Since both the latter sets belong to SΣ, elementwise
equivalence under �E can be replaced by elementwise equivalence under �E, and thus
we arrive at (4.58) (recall that, by definition, γ is precisely prg � nf).

Now, suppose NF(p) �7E
ω NF(q) and prove that E $MEω p = q. By the completeness

theorem, we will be done once we show that every strong continuous Kleene monad
validating E also validates the equality p = q. Let T be a strong continuous Kleene
monad validating E. Then the sets NF(p) and NF(q) must be elementwise equal over
it. By Lemma 3.38, p = supNF(p) = supNF(q) = q over T, and thus we are done.

Given two vectors of variables v̄ and z̄, we call z̄ a clone of v̄ if |z̄| = |v̄| and for every i,
zi and vi are of the same type.

Lemma 4.45. Let p and q be two deterministic v̄-superflat programs, and let u and r be two ar-
bitrary programs of the same return type. Let v̄1 be a clone of v̄ such that Vars(v̄)XVars(v̄1) =
/0. Then for any data theory E the equality

do v̄ Ð p; ret u = do v̄ Ð q; ret r (4.59)
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is provable in ME� modulo E iff there is a substitution σ : Vars(v̄)Ñ Vars(v̄)YVars(v̄1) such
that E $ME� u = rσ and

E $ME� q = do v̄ Ð p; ret v̄σ. (4.60)

The same equivalence holds if ME� replaced with MEω.

Proof. Suppose for some substitution σ : Vars(v̄) Ñ Vars(v̄)YVars(v̄1) we have (4.60)
and E $ME� u = rσ. Then (4.59) is provable in ME� modulo E as follows:

do v̄ Ð p; ret u

= do v̄ Ð p; ret rσ

= do v̄ Ð p; v̄ Ð v̄σ; ret r [by (unit2)]

= do v̄ Ð (do v̄ Ð p; v̄σ); ret r [by Lemma 4.1]

= do v̄ Ð q; ret r. [by 4.60]

In order to prove the converse we ensure first that p is of the form:

do v̄ Ð a1
k1�v̄; . . . ; v̄ Ð an

kn�v̄; ret v̄

by normalising (do v̄ Ð p; ret v̄), which is equivalent to p, by the associativity law and
by further cancelling from the result all the program sequences of the form v̄ Ð ret v̄.
We also bring p to the analogous form. Assume that we have

E $ME� do v̄ Ð p; ret u = do v̄ Ð qς; ret r (4.61)

where ς is some substitution Vars(v̄) Ñ Vars(v̄)YVars(v̄1) and prove the existence of
an analogous substitution σ such that E $ME� u = rσ and

E $ME� do v̄ Ð p; ret v̄σ = qς. (4.62)

This would complete the proof under the assignment ς := [ ]. We proceed by induction
over n. If n = 0 then (4.61) turns into E $ME� ret u = ret rς, which implies E $ME� u =

do z Ð ret u; z = do z Ð ret rσ; z = rσ and (4.62) under σ := ς.

Consider the case n ¡ 0. Let p .
= (do v̄ Ð ai�v̄; s). By Lemma 4.44, q must be of the

form (do v̄ Ð bj�v̄; t), where b is such that E $EQ a = bς. Let z := vjς and observe that
E $ME� qς = do z Ð bς; tς. Therefore, (4.61) results in

E $ME� do vi Ð a; v̄ Ð s; ret u = do z Ð a; v̄ Ð tς; ret r. (4.63)

First we consider the case vi R Vars(tς). This assumption allows us to soundly re-
name the bound variable z in (4.63) to vi by α-conversion. After that we obtain by
Lemma 4.44: E $ME� do v̄ Ð s; ret u = do v̄ Ð tς[vi/z]; ret r. By induction hypothesis,
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there is an appropriate substitution σ such that E $ME� do v̄ Ð s; ret v̄σ = tς[vi/z] and
E $ME� u = rσ. We can prove (4.62) with the same σ as follows:

do v̄ Ð p; ret v̄σ

= do vi Ð a; v̄ Ð s; ret v̄σ [by Lem. 4.1, (unit2)]

= do vi Ð a; tς[vi/z]

= do z Ð a; tς

= qς.

Now let us consider the case vi P Vars(tς). Since ς is a map from Vars(v̄) to Vars(v̄)Y
Vars(v̄1), by the pigeonhole principle, there is at least one variable from Vars(v̄1), say v,
of the same type as vi and such that v R Vars(tς). Hence we can switch by α-conversion
from (4.63) to:

E $ME� do v Ð a; v̄ Ð s[v/vi]; ret u = do v Ð a; v̄ Ð tς[v/z]; ret r.

By Lemma 4.44, we have E $ME� do v̄ Ð s[v/vi]; ret u = do v̄ Ð tς[v/z]; ret r. After
applying to the both sides of the latter equation a substitution θ, swapping v and vi we
obtain E $ME� do v̄ Ð s; ret u = do v̄ Ð tς[v/z]θ; ret r. By induction hypothesis there
is an appropriate substitution σ such that E $ME� u = rς[v/z]θ and E $ME� do v̄ Ð
s; ret v̄σ = tς[v/z]θ. Let us apply θ to both sides of the latter equation. We thus obtain
E $ME� do v̄ Ð s[v/vi]; ret v̄σ = tς[v/z]. Now we can prove (4.62) with the same σ as
follows:

do v̄ Ð p; ret v̄σ

= do vi Ð a; v̄ Ð s; ret v̄σ [by Lem. 4.1, (unit2)]

= do v Ð a; v̄ Ð s[v/vi]; ret v̄σ

= do v Ð a; tς[v/z]

= do z Ð a; tς

= qς.

The proof of the analogous statement about provability in MEω runs analogously.

Definition 4.46 (A-consistency). We call the data theory E A-consistent for A P TypeT
W

if for any two distinct variables x, y of type A, the equality x = y is not provable in E.

Lemma 4.47. Let p be a v̄-superflat program, and let Ā be the return type of the vector v̄.
Suppose for some k, E is not Ak-consistent. Then for any vector of distinct variables z̄ such that
Vars(z̄) = Vars(v̄)z{vk}, there exists an effectively computable z̄-flat program q such that

E $ME� p = do z̄ Ð q; ret v̄. (4.64)
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Proof. Let us define q := h(p) where h recursively transforms v̄-superflat programs to
z̄-superflat ones according to the assignments respecting the clauses of Definition 4.13:

FL1. h(∅) := ∅; h(ret v̄) := z̄; h(ai�v̄) := aj�z̄ where j is the index of vk in z̄ if k � 0, i � k
and j := 0 otherwise.

FL2. h(u + r) := h(u) + h(r).

FL3. h(do v̄ Ð u; r) := do z̄ Ð h(u); h(r).

FL4. h(init v̄ Ð u in r�) := init z̄ Ð h(u) in h(r)�.

The provable equality (4.64) easily follows by induction over the complexity of p. We
show it in the example case p .

= ak�v̄, which effectively calls for Ak-inconsistency. We
have E $ME� p = ak�v̄ = do vk Ð a; ret v̄. Since E is not Ak-consistent, the latter program
is provably equal to (do a; ret v̄). On the other hand, E $ME� do z̄ Ð q; ret v̄ = do z̄ Ð
a0�z̄; ret v̄ = do a; ret v̄ and thus we obtain (4.64).

Lemma 4.48. Let p and q be two superflat programs with the same footprint. Then the problems
E $MEω p = q and E $ME� p = q are equivalent and decidable.

Proof. Let z̄ be the common footprint of p, q, and let Ā be the return type of z̄. By
Lemma (4.47), we ensure Ak-consistency of E for every k.

We ensure that Vars(p) � Vars(z̄) and Vars(q) � Vars(z̄) by replacing all the variables
from Vars(z̄)z(Vars(p)YVars(q)). All the variables from the latter set obviously may
not occur under ret, hence flatness is maintained under this transformation.

Let z̄1 be a clone of z̄ consisting of fresh variables. Let Q be the set of all atomic programs
aσ where a ranges over all atomic programs such that for some k, ak�z̄ occurs in one of
the pi, qj and σ ranges over all variable substitutions from Vars(z̄)YVars(z̄1) to itself.
Let QE be the factor-set of Q modulo the provable equivalence in EQ with E as the set
of axioms. For every a P Q let us denote by [a]E the corresponding equivalence class
from QE. For every equivalence class C from QE we introduce a fresh signature symbol
fC with the typing Ā� Ā Ñ A where A is the common return type of programs from
C. For every a P Q let a# := f[a]E(z̄, z̄1). More generally, we define the operator #

over z̄-superflat programs as follows: for every t, t# is obtained from t by replacing
every ak�z̄ with a#k�z̄. For every z̄-superflat program t let χ(t) be the z̄-superflat program
obtained from t by replacing every fC(s̄, r̄)k�z̄ with ∑sPC(s[s̄/z̄, r̄/z̄1])k�z̄. Obviously, for
every z̄-superflat t, in particular if t P {p, q}, E $ME+ χ(t#) = t. A somewhat less
evident property can be proved by induction over term complexity of t:

tr(χ(t#)) =
⋃

sPtr(t#)
tr(χ(s)). (4.65)
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Our goal now is to prove the implication:

E $MEω p = q ùñ $MEω χ(p#) = χ(q#). (4.66)

Since by Lemma 4.31, $MEω p = q is decidable and equivalent to $ME� p = q this would
imply the claim by the circular implication:

E $MEω p = q ùñ $MEω χ(p#) = χ(q#) ùñ $ME� χ(p#) = χ(q#)

ùñ E $ME� p = q ùñ E $MEω p = q.

Assume that E $MEω p = q. Hence E $MEω p = χ(q#) and by Lemmas 4.44, 4.11, we
have:

{nf(s) | s P tr(p)} �7E

ω {nf(t) | t P tr(χ(q#))}. (4.67)

Let us fix some s P tr(p). By (4.67) and (4.65) there should exist t P tr(q#) such that
{nf(s)} À7E

ω {nf(r) | r P tr(χ(t))}. Let s1 be the program obtained from s as follows: we
normalise (do z̄ Ð s; ret z̄) under the associativity law, cancel all the program sections
of the form z̄ Ð ret z̄ and replace every program section of the form z̄ Ð ak�z̄ by zk Ð a.
Evidently nf(s) = nf(s1) and s1 has form (do x̄ Ð ā; ret z̄) where Vars(x̄) � Vars(z̄) and
all the ai are atomic. In the same fashion we obtain t1 from t.

Let V be a set of variables containing infinitely many variables of each type from TypeT
W

and such that Vars(z̄) � V, Vars(z̄1)XV = /0. Let us show by induction over n := |x̄|
that for any two injection σ1, σ2 : Vars(z̄)Ñ V:

{nf(s1σ1)} À7E

ω {nf(r) | r P tr(χ(t1σ2))} ùñ

{nf(s1σ1)} Àω {nf(r) | r P tr(χ(t1σ2))}.
(4.68)

Assume that n = 0 and {nf(s1σ1)} À7E
ω {nf(r) | r P tr(χ(t1σ2))}. By Lemma 4.44, t1

must be equal to ret z̄, and thus we have ret z̄σ1 À
7E
ω ret z̄σ2. Observe that for every k,

zkσ1 must be equal to zkσ2 — otherwise we establish an obvious contradiction with the
assumption of Ak-consistency of E. Now the right-hand side of (4.68) becomes obvious.

Assume that n ¡ 0 and {nf(s1σ1)} À7E
ω {nf(r) | r P tr(χ(t1σ2))}. Let s1 .

= (do x Ð a; u).
By Lemma 4.44, t1 must be of the form (do y Ð b#; w) where E $EQ aσ1 = bσ2 and for
some variable v P V z(Vars(u)YVars(r)),

{nf(u[v/x]σ1)} À7E

ω {nf(r) | r P tr(χ(w[v/y]σ2))}.

Note that both [v/x]σ1 and [v/y]σ2 are again injective substitutions from Vars(z̄) to V.
Therefore, by induction hypothesis, {nf(u[v/x]σ1)} Àω {nf(r) | r P tr(χ(w[v/y]σ2))},
and we will be done with the proof of (4.68) as soon as we show that$ME+ aσ1 ¤ χ(b#σ2).
We proceed as follows: from E $EQ aσ1 = bσ2, we conclude that E $EQ aσ1σ�1

2 = b. Con-
sider the substitution σ1σ�1

2 . It sends part of the variables from Vars(z̄) to Vars(z̄) and



Chapter 4: Decidable fragments of MCE 164

part of them to V. Let ς be a substitution sending every v P V such that for some k,
v = zk(σ1σ�1

2 ) to z1k. We have E $EQ a(σ1σ�1
2 ς) = b and the substitution (σ1σ�1

2 ς) acts
from Vars(z̄) to Vars(z̄)YVars(z̄1). Both a(σ1σ�1

2 ς) and b are elements of Q, hence they
are members of the same equivalence class from QE. Therefore $ME+ aσ1σ�1

2 ς ¤ χ(b#)
and thus $ME+ aσ1 ¤ χ(b#)σ2ς�1. Note that χ(b#)σ2ς�1 .

= χ(b#)ς�1σ2 and there-
fore we can rewrite the latter judgment as $ME+ aσ1 ¤ (χ(b#)ς�1)σ2. Since for every
c P [b]E, E $EQ c = b and b does not contain variables from Vars(z̄1) for every such c,
E $EQ cς�1 = b and therefore$ME+ χ(b#)ς�1 = χ(b#). Hence$ME+ aσ1 ¤ χ(b#σ2), and
the proof of (4.68) is completed.

If we now instantiate σ1 and σ2 in (4.68) by the identity substitution, the premise be-
comes true, and thus we obtain {nf(s1)} Àω {nf(r) | r P tr(χ(t1))}. By Lemma 4.11
and Corollary 3.39, we have $ME� p ¤ χ(q#). Therefore, $ME� χ(p#) ¤ χ(q#). By the
symmetric argument, $ME� χ(q#) ¤ χ(p#), and hence we are done.

Theorem 4.49. Let p and q be two weakly iterative programs with the same return type. Then
the problems E $ME� p = q and E $MEω p = q are equivalent. Moreover, if the conditional
word problem for E is decidable, then both the problems are also decidable.

Proof. We prove the claim by induction over the complexity of A. If A is T-free, then by
Lemma 3.22, nf(p) and nf(q) do not contain any control operators, and thus both NF(p)
and NF(q) are singletons containing nf(p) and nf(q) correspondingly. By Lemma 4.44,
E $MEω p = q implies nf(p) �7E

ω nf(q). Therefore we are done by the following circular
implication:

E $MEω p = q ùñ nf(p) �7E

ω nf(q) ùñ E $ME� p = q ùñ E $MEω p = q.

If A = B� C for some B, C P TypeT
W. Observe that

$ME� p = q ðñ $ME� fst(p) = fst(q) ^ $ME� snd(p) = snd(q),

$MEω p = q ðñ $MEω fst(p) = fst(q) ^ $MEω snd(p) = snd(q).

Since the return types of fst(p), fst(q), snd(p), snd(q) are simpler than A, we are easily
done by the induction hypothesis.

The remainder of the proof is devoted to the case A = TB. We shall only establish
equivalence and decidability of E $MEω p ¤ q and E $ME� p ¤ q. This would evidently
imply the goal by symmetry. By virtue of Lemmas 4.41 and 4.43, we assume w.l.o.g.
that p .

=
(
∑i do v̄ Ð pi; ret ri

)
and q .

=
(
∑j do v̄ Ð qj; ret uj

)
where all the pi, qj

are v̄-superflat, all the ri, uj are weakly iterative and v̄ encompasses all the variables
occurring in the pi, qj.
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Let v̄1 be a clone of v̄ consisting of fresh variables. For every i, j, let Ξi,j be the set of all
substitutions from Vars(v̄) to Vars(v̄)YVars(v̄1) such that E $MEω riσ = uj. Note that
by induction hypothesis E $MEω riσ = uj is equivalent to E $ME� riσ = uj (since the
return types of ri and uj are simpler than A) and is decidable.

Our plan is now as follows: first, we prove that E $MEω p ¤ q implies

@i.E $MEω pi ¤ ∑j ∑σPΞi,j
do v̄ Ð qj; ret v̄σ. (4.69)

Second, we prove that (4.69) is equivalent to

@i.E $ME� pi ¤ ∑j ∑σPΞi,j
do v̄ Ð qj; ret v̄σ (4.70)

and decidable. Finally, we show that (4.70) implies E $ME� p ¤ q. Together with
the evident implication E $ME� p ¤ q ùñ E $MEω p ¤ q all this would result in
equivalence and decidability of E $ME� p ¤ q, E $MEω p ¤ q and (4.70).

Suppose E $MEω p ¤ q. By Lemma 4.44, NF(p) À7E
ω NF(q), which can be unfolded to

⋃
i
{nf(do v̄ Ð s; ret ri) | s P tr(pi)} À7E

ω

⋃
j
{nf(do v̄ Ð t; ret uj) | t P tr(qj)}. (4.71)

Let us fix some i and some s P tr(pi). By (4.71), there exist j and t P tr(qj) such that
nf(do v̄ Ð s; ret ri) �

7E
ω nf(do v̄ Ð t; ret uj). In particular,

E $MEω do v̄ Ð s; ret ri = do v̄ Ð t; ret uj.

Observe that the conditions of Lemma 4.45 are satisfied. Therefore for some σ P Ξi,j,
E $MEω s = do v̄ Ð t; ret v̄σ. By Theorem 2.21, nf(s) �E nf(do v̄ Ð t; ret v̄σ) and
therefore nf(s) �7E

ω nf(do v̄ Ð t; ret v̄σ). We have thus proved that for every i:

NF(pi) À
7E

ω

⋃
j

⋃
σPΞi,j

NF(do v̄ Ð qj; ret v̄σ)

from which (4.69) follows by Lemma 4.44.

Let us show that (4.69) implies (4.70). Let h : Ā Ñ Ā be some fresh functional symbol
where Ā is the return type of v̄ correspondingly. Then (4.69) evidently implies

@i.E $MEω do v̄ Ð pi; h(v̄)0�v̄ ¤ ∑j ∑σPΞi,j
do v̄ Ð qj; h(v̄σ)0�v̄. (4.72)

If we treat the variables from v̄1 occurring in the latter inequality as constants, we obtain
v̄-flat programs on both sides (in fact, even v̄-superflat). Hence, by Lemma 4.48, (4.72)
is equivalent to

@i.E $ME� do v̄ Ð pi; h(v̄)0�v̄ ¤ ∑j ∑σPΞi,j
do v̄ Ð qj; h(v̄σ)0�v̄.
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and decidable. We can now obtain (4.70) by instantiating h with the ret operator.

Finally, let us show that (4.70) implies E $MEω p ¤ q. The proof of this fact is as follows:

p = ∑i do v̄ Ð pi; ret ri

¤ ∑i do v̄ Ð
(
∑j ∑σPΞi,j

do v̄ Ð qj; ret v̄σ
)

; ret ri [by 4.70]

= ∑i ∑j ∑σPΞi,j
do v̄ Ð qj; v̄ Ð ret v̄σ; ret ri [by Lem. 4.1]

= ∑i ∑j ∑σPΞi,j
do v̄ Ð qj; ret riσ [by (unit2)]

= ∑i ∑j ∑σPΞi,j
do v̄ Ð qj; ret uj

¤ q

The proof of the theorem is now completed.

4.6 Contribution and related work

This chapter was entirely dedicated to the proof of the main positive result of the the-
sis (Theorem 4.49). We started with a completeness and decidability proof for a very
limited fragment of MCE, called tight programs. We established a correspondence be-
tween tight programs and regular expression, and hence proved a completeness and
decidability theorem by reduction to Kozen’s completeness result [Koz94]. Then we
successively extended the decidable and complete class of programs until we reached
weakly-iterative programs. Comparing the definition of tight programs with the defi-
nition of weakly iterative programs provides a means to directly estimate the advance
of expressivity when switching from the language of Kleene algebras to the language
of strong Kleene monads, i.e. MCE.

A simple analysis of the presented proofs shows that the whole challenge is precisely
due to the combination of two factors: the return operator and multivariable contexts
(i.e. the syntactic counterpart of monadic strength). It can easily be seen that in the
absence of the return operator, Lemma 4.23 would close the issue altogether. On the
other hand, in the absence of strength, MCE can support only programs with precisely
one variable (cf. e.g. [Mog91]), and thus most of our proofs would simply collapse.

As we have argued, our completeness and decidability result can be viewed as a coun-
terpart of Kozen’s result regarding the completeness of Kleene algebra over the alge-
bra of regular events. It is known that Kleene algebra is also complete with respect
to so-called relational interpretation, i.e. the interpretation over an algebra of binary
relations [KS96]. In terms of monads, the analogue of relational interpretation is the
powerset monad (its Kleisli category is precisely the category of sets and relation). No-
tably, strong Kleene monads are incomplete with respect to the powerset monad, since
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in contrast to Kleene algebras one can express in MCE (actually, already in ME) spe-
cific properties of powerset monad falsified by other strong Kleene monads such as
symmetry [Koc70]:

do x Ð p; y Ð q; ret〈x, y〉 = do y Ð q; x Ð p; ret〈x, y〉.

One can expect that the calculus of a strong (continuous) Kleene monad is still complete
over some reasonably narrow class of monads. An expected candidate to this effect is
the class of state powerset monads.





Chapter 5

Conclusions

In this thesis we have addressed the problem of logical treatment of computational
effects with nondeterminism and iteration. We have chiefly followed the approach
originally developed by Moggi in his seminal works [Mog89b, Mog91]. Every partic-
ular notion of computation we consider thus as part of a package: a monad class, a
(variant of) computational metalanguage, a sound and complete calculus. Our results
regarding computational monads are commonly presented and proved in terms of an
appropriate metalanguage that greatly facilitates both the presentation and the calcu-
lations. Our method can be characterised as a combination of rewriting techniques and
(fixed-point) induction.

In Chapter 1 we justified the settings for the research that followed. We formulated
a classical result on soundness and completeness of the metalanguage of effects over
strong monads as a prototype for the similar theorems that followed. Our contribution
includes a novel strongly normalising rewriting system complete over strong monads.
We introduced a notion of plain signature and data theory as a compromise variant
of background axiomatisation and extended the decidability theorem for the provable
equality modulo data theories.

In Chapter 2 we introduced the class of strong additive monads as a lightweight device
for computational effects featuring nondeterminism as a component. Our main moti-
vation for this particular notion of nondeterminism was to capture the same laws that
are standard for propositional dynamic logic, thus enabling the use of Fischer-Ladner
encoding in order to derive a branching operator [FL79]. We outlined how new strong
additive monads can be obtained from existing ones. We introduced a confluent and
strongly normalising system of reduction completely capturing the axioms of strong
additive monads except the ACI-laws for nondeterministic choice. Based on this result,
we proved a Church-Rosser theorem stating that two nondeterministic programs are
equal if their normal forms are ACI-equal. These results were suitably extended for the
case of a background data theory.
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In Chapter 3 we introduced two important classes of monads: strong Kleene monads
and strong continuous Kleene monads, sharing the same language which we called the
metalanguage of control and effects (MCE). Compared to existing notions of monads
featuring both fixed points and nondeterminism (cf. e.g. [EG03, Jac10]), our notion of
strong Kleene monads has the strongest parallels with the concept of Kleene algebra.
In pursuing this similarity we introduced the notion of strong continuous Kleene mon-
ads as a fair analogue of the �-continuous Kleene algebra (cf. e.g. [Koz94]). Intuitively,
strong continuous Kleene monads can be considered as standard strong Kleene mon-
ads, just like �-continuous Kleene algebras are considered as standard Kleene algebras.
We started the investigation of the relationship between strong Kleene monads and
strong continuous Kleene monads by introducing an infinitary calculus for strong con-
tinuous Kleene monads and proving a number of metalogical properties of it, which
led us to a non-r.e. result. As a consequence, the calculus of strong Kleene monads
turned out to be (equationally) incomplete over strong continuous Kleene monads. Us-
ing similar ideas, we proved that the calculus of strong Kleene monads is undecidable.

In Chapter 4 we concentrated on the fragments of MCE with decidable program equal-
ity. We introduced a hierarchy of program classes (see Appendix B) and proved a com-
pleteness and decidability theorem for each of them by successive reduction from one
to the other. Our main result is that the equality of two weakly iterative programs
modulo a data theory is decidable and is completely captured by the proof calculus
for strong Kleene monads. Informally, weakly iterative programs can be described as
those where a Kleene star does not encode self-substitutions of the return operators.



Chapter 6

Further work

An evident next step to be made on top of the achieved decidability results is the in-
troduction of assertions, special programs with T1 as the return type and capable of
blocking the execution of a program in respect of a logical condition. An analogue of
this already exists in the realm of Kleene algebra under the name Kleene algebra with
tests [KS96, Koz97]. This would allow us to encode the conventional imperative pro-
gramming operators as follows:

i f (b, p, q) := do b?; p + do ( b)?; q,

while(b, p) := init x Ð ret x in(do b?; p)� res x Ñ (do ( b)?; ret x)

where ‘?’ is a special operator, returning ret � for true statements and ∅ for false ones.

Integration of our results regarding the equational logic for MCE with the research on
monad-based dynamic logics [SM03, SM04, GSM06, MSG10] appears to be a promising
perspective. We expect that many issues concerned with decidability may disappear
due to reduction of the expressive power. On the other hand, we might need to develop
some sort of hypothesis elimination procedure (cf. [Coh94, KS96, HK02a]) in order to
be able to prove logical entailment.

The class of strong (continuous) pseudo-Kleene monads rather superficially outlined
in Remark 3.43 seems to be quite interesting because, on one hand, all the important
results valid for strong (continuous) Kleene monads seem to remain valid for it, and on
the other hand, it is broad enough to include some interesting monads which fail to be
Kleene. Another motivation comes from the conceptual side: the definition of Kleene
monads ensures two independent effects — nontermination and nondeterminism —
and hence, as we have seen, is not an unbreakable unit. On the other hand, one can
take a strong (continuous) pseudo-Kleene monad as a basis and introduce an advanced
exception mechanism on top of it, e.g. like the one described in [SM04]. We leave the
detailed investigation of pseudo-Kleene monads as a subject for further research.
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Whereas Kleene monads can be used as a model for recursive computations with ef-
fects, doing effectful recursion does not necessarily imply nondeterminism. In fact, in-
troducing nondeterminism in order to obtain a (pseudo-)Kleene monad might present
considerable difficulties. Unfortunately, there is no generic robust method to empower
a monad with nondeterminism, but we hope that one can find a way to embed a monad
implementing a sufficiently general notion of recursion into a Kleene monad. This
would enable us to assume w.l.o.g. that recursive programs are always interpreted over
Kleene monads; in particular, this might help us to reuse our completeness results for
purely deterministic settings.



Appendix A: Summary
of reductions

Name Rule set

� (p : E) � eE (p � eE)

β

fst〈p, q〉 � p snd〈p, q〉 � q

do x Ð ret p; q � q[p/x]

do x Ð (do y Ð p; q); r � do y Ð p; x Ð q; r (y R FV(r))

η

〈fst(p), eE〉 � p 〈eE, snd(p)〉 � p

do x Ð p; ret eE � p do x Ð p; ret x � p

〈fst(p), snd(p)〉 � p

σ

p +∅ � p

∅+ p � p

do x Ð p;∅ � ∅

do x Ð ∅; p � ∅

do x Ð (p + q); r � do x Ð p; r + do x Ð q; r

do x Ð p; (q + r) � do x Ð p; q + do x Ð p; r

k init x Ð p in q� � p + init x Ð (do x Ð p; q) in q�
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Appendix B: Relations between
several important program classes

Unrestricted

��

Weakly-iterative (Def. 4.32)

��ttjjjjjjjjjjjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTTTTTTTTTTTT

Non-iterative Almost ret-free (Def. 4.10)

zzuuuuuuuuuuuuuuu

$$IIIIIIIIIIIIIII
Layered (Def. 4.37)

ret-free Flat (Def. 4.13)dd

ssffffffffffffffffffffffffffffffffffffff

zzuuuuuuuuuuuuuuu

$$IIIIIIIIIIIIIII

Cut-free (Def. 4.25)

��

(V-)stably flat (Def. 4.33) Tight (Def. 4.14)

��

Superflat (Def. 4.42) Λ-normal (Def. 4.17)

The arrows are directed from the larger class to the smaller one.
The only dotted arrow means ‘larger modulo the first unit law’.
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[LG02] Christoph Lüth and Neil Ghani. Composing monads using coproducts.
SIGPLAN Not., 37(9):133–144, 2002.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformersand mod-
ular interpreters. In In Proceedings of the 22nd ACM Symposium on Principles
of Programming Languages. ACMPress, 1995.

[LS86] Joachim Lambek and Philip J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge, 1986.

[LS05] Sam Lindley and Ian Stark. Reducibility and JJ-lifting for computation
types. In Typed Lambda Calculi and Applications: Proceedings of the Seventh
International Conference TLCA 2005, number 3461 in Lecture Notes in Com-
puter Science, pages 262–277. Springer-Verlag, 2005.

[Man76] Ernest G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathe-
matics. Springer-Verlag, 1976.

[Mat67] Juri V. Matijasevič. Simple examples of undecidable associative calculi. So-
viet Mathematics (Dokladi), 8(2):555–557, 1967.



Chapter : BIBLIOGRAPHY 181

[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192(192), 1998.

[Mog89a] Eugenio Moggi. An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Edinburgh Univ., Dept. of Comp. Sci., June 1989.
Lecture Notes for course CS 359, Stanford Univ.

[Mog89b] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings 4th Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific
Grove, CA, USA, 5–8 June 1989, pages 14–23. IEEE Computer Society Press,
Washington, DC, 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–
92, 1991.

[Mog95] Eugenio Moggi. A semantics for evaluation logic. Fund. Inform., 22:117–152,
1995.
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[SM04] Lutz Schröder and Till Mossakowski. Generic exception handling and the
Java monad. In Charles Rattray, Savitri Maharaj, and Carron Shankland, ed-
itors, Algebraic Methodology and Software Technology, volume 3116 of Lecture
Notes in Computer Science, pages 443–459. Springer Berlin, 2004.

[SP00] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-
point operators. In In Proceedings of 15th Annual Symposium on Logic in Com-
puter Science, pages 30–41, 2000.

[Str72] Ross Street. The formal theory of monads. Journal of Pure and Applied Algebra,
2:149–168, 1972.

[Str06] Georg Struth. Abstract abstract reduction. J. Log. Algebr. Program., 66(2):239–
270, 2006.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings of the
19th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 1–14. ACM Press, 1992.

[Wad94] Philip Wadler. Monads and composable continuations. Lisp and Symbolic
Computation, 7(1):39–56, 1994.

[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, volume 925 of Lecture
Notes in Computer Science, pages 24–52. Springer, 1995.


	Abstract
	0 Introduction
	1 Monads for computations
	1.1 General qualifications and conventions
	1.2 Equational many-sorted logic
	1.3 Monads and the metalanguage of effects
	1.4 Underlying theory for data
	1.5 Computational monads collectively
	1.6 Contribution and related work

	2 Additive monads
	2.1 Introduction
	2.2 Soundness, completeness and decidability
	2.3 Contribution and related work

	3 Kleene monads
	3.1 Introduction
	3.2 Soundness and completeness
	3.3 Confluence of Kleene star unfolding
	3.4 Free strong (continuous) Kleene monads
	3.5 Undecidability and incompleteness
	3.6 Contribution and related work

	4 Decidable fragments of MCE
	4.1 Computational networks and the commutation lemma
	4.2 Reduction to Kleene algebra
	4.3 Completeness and decidability for flat programs
	4.4 Weakly-iterative programs as a decidability candidate
	4.5 Completeness and decidability, the ultimate
	4.6 Contribution and related work

	5 Conclusions
	6 Further work

