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Recap (from previous talk)

Kleene iteration is iteration of regular expressions, e.g.

p0` 1q˚ ; 0 ; p0` 1q˚

Kleene algebra is a lightweight equational theory of (Kleene) iteration,
complete over formal languages
Extremely popular, has lots of extensions: hybrid, concurrent, stateful, etc
Kleene monads is a simple categorification of Kleene algebras
Elgot monads: deterministic, very general, highly compositional
I But not quite that popular �

So, can we combine structure (Elgot) and power (Kleene)?

Previously: Unifying Elgot iteration and while-loops

Here: Categorical notion of iteration with nondeterminism
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Axioms of Kleene Algebra

A Kleene algebra is a structure pS, 0, 1,`, ; , p--q˚q, where

pS, 0, 1,`, ; q is an idempotent semiring:
I pS, 0,`q is a commutative (x` y “ y` x) and idempotent (x` x “ x) monoid
I pS, 1, ; q is a monoid
I distributive laws:

x ; py ` zq “ x ; y ` x ; z x ; 0 “ 0

px` yq ; z “ x ; z ` y ; z 0 ; x “ 0

(thus, S is partially ordered: x ď y i� x` y “ y)
Kleene iteration satisfies x˚ “ 1` x ; x˚, and

x ; y ` z ď y

x˚ ; z ď y

x` z ; y ď z

x ; y˚ ď z

Equivalently: x˚ ; z is a least fixpoint of x ; p--q ` z and z ; y˚ is a least
fixpoint of p--q ; y ` z

Intuition: 0 is a deadlock, 1 is a neutral program, ; is sequential composition, `
is non-deterministic choice
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Use

Regular expressions
Algebraic language of finite state machines and beyond
Relational semantics of programs
Relational reasoning and verification, e.g. via dynamic logic
Plenty of extensions:
I modalñ modal Kleene algebra (Struth et al.)
I statefulñ KAT + B! (Grathwohl, Kozen, Mamouras)
I concurrentñ concurrent Kleene algebra (Hoare et al.)
I nominalñ nominal Kleene algebra (Kozen et al.)
I with di�erential equationsñ di�erential dynamic logic (Platzer et al.)
I etc., etc., etc.

decidability and completeness properties (most famously w.r.t. formal
languages and relational interpretations)
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Kleene Algebra with Tests

A minimalist extension is Kleene algebra with tests (KAT), which adds
another Kleene algebra B of tests
an operation-preserving inclusion B ↪Ñ S

complementation operator p--q : B Ñ B, such that

a` a “ J a “ a a` b “ a ; b 0 “ 1

(this makes B into a Boolean algebra)

This enables encodings
Branching pif b then p else qq as b ; p` b ; q

Looping pwhile b do pq as pb ; pq˚ ; b

Hoare triples tau p tbu as a ; p ; b “ a ; p

In particular, we can embed deterministic semantics to non-deterministic
semantics
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Kleene-Kozen Categories

A category is a Kleene-Kozen category if it has operations
0: HompA,Bq

` : HompA,Bq ˆ HompA,Bq Ñ HompA,Bq

p--q˚ : HompA,Aq Ñ HompA,Aq

that together with identity (1) and composition ( ; ) satisfy Kleene algebra laws

Fact 1
Kleene algebra is Kleene-Kozen category on one object

Fact 21

Alternative axiomatization: laws of idempotent semirings, plus

1˚ “ 1 f˚ “ 1` f ; f˚ pf ` gq˚ “ f˚ ; pg ; f˚q˚
h ; f “ g ; h

h ; f˚ “ g˚ ; h

1Goncharov, “Shades of Iteration: From Elgot to Kleene”, 2023.
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Kleene Monads

A Kleene monad is a monad T, whose Kleisli category is a Kleene-Kozen
category

Example (Powerset)
Powerset: T “ P , Kleisli morphisms X Ñ PY = relations

Example (State Transformer)
If T is a Kleene monad, pT p--ˆSqqS yields a Kleene monad

Example (Writer Transformer)
If T is a (strong) Kleene monad and M is a monoid, T pM ˆ Idq yields a Kleene
monad. E.g. PpA‹ ˆ Idq, "formal language monad" is Kleene

� This is pretty much it
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Elgot Monads

Definition (Elgot monad)
A (complete) Elgot monad2 in a category with binary coproducts (!) is a
monad T equipped with an Elgot iteration operator

p--q: : HompX,T pY ‘Xqq Ñ HompX,TY q,

satisfying four laws: fixpoint, uniformily, naturality and codiagonal

Elgotness is robust and stable under many monad transformers
I T ÞÑ T pM ˆ --q (writer)
I T ÞÑ T p--‘Eq (exception)
I T ÞÑ pT p--ˆSqqS (state)
I T ÞÑ νγ. T p--‘Hγq (resumption)

Laws go back to Elgot3, except for uniformity

2Adámek, Milius, and Velebil, “Equational properties of iterative monads”, 2010.
3Elgot, “Monadic Computation And Iterative Algebraic Theories”, 1975.
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Fixpoint and Uniformity

Fixpoint (f : X Ñ T pY ‘Xq):

f
Y

X
X

= f
fX

Y

X Y

X

Uniformity (f : X Ñ T pZ ‘Xq, g : Y Ñ T pZ ‘ Y q, h : X Ñ Y ):

ηh gZX
Z

Y

= f
ηh

Y

X

X

Z

⇓

ηh gZX

Y

Z

= f
Y

X
X
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Naturality and Codiagonal

Naturality (f : X Ñ T pY ‘Xq, g : Y Ñ TZ):

f
g

Y

X

Z

X

= f
g

Y

X

Z

X

Codiagonal (f : X Ñ T pY ‘ pX ‘Xqq):

f
Y

X
X = f

Y

X
X

Naturality and Codiagonal are basically coherence laws
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Kleene Iteration as Elgot Iteration

Theorem
A category C is a Kleene-Kozen category if

1. C is enriched over bounded join-semilattices and strict join-preserving
morphisms

2. C supports Elgot iteration that satisfies fixpoint, naturality, codiagonal
and strong uniformity:

h gYX
Y

Z

= f
h

Z

X

X

Y

⇓
h gYX

Z

Y

= f
Z

X
X

where h is strict: h ; 0 “ 0

3. T satisfies the law pinl` inrq: “ 1, equivalently 1˚ “ 1
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Towards Generic Kleene Iteration

What we want:
Single-category notion of iteration
Robustness under monad transformers
Nondeterminism
0 ; f “ 0

pf ` gq ; h “ f ; h` g ; h

What we do not want:
f ; 0 “ 0 (because of raise e1 “ raise e1 ; 0 “ raise e2 ; 0 “ raise e2)

f ; pg ` hq “ f ; g ` f ; h (because of process algebra semantics)
Coincidence of deadlock and divergence (think of PpId`1q)
1˚ “ 1 (again PpId`1q, but there are others)
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Problems

Problem with coproducts
I Can we make do without coproducts, sticking the the principle:

“kleene-iteration-algebra” is a single-object “kleene-iteration-category”?
Problem with tests
I Instead of coproducts, Kleene algebra models control with tests. What are

tests in our case?
Problem with uniformity
I Uniform w.r.t. what we need?
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Picture of Cat
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Problem with uniformity

Call maps w.r.t. which we want to be uniform tight

Smallest candidate (Elgot monads): maps that factor through monad unit
Largest candidate (Kleene monads): all maps
Unless we demand tight maps to be strict (f ; 0 “ 0), we can easily show
that non-trivial exception monads fail uniformity

So, tight maps must be somewhere between
The class generated from coproduct injections by copairing
The class of all strict maps

Fact
There is an Elgot monad T, uniform w.r.t. strict morphisms, such that its
exception monad transform is not
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Linear Maps

Call a category non-deterministic if the hom-sets are semi-lattices
under p0,`q, and

0 ; f “ 0, pg ` hq ; f “ g ; f ` h ; f

In such a category, call f linear if for all g, h

f ; 0 “ 0, f ; pg ` hq “ f ; g ` f ; h

If there are binary coproducts, require coproduct injections to be linear

Theorem
Let T be an Elgot monad with non-deterministic Kleisli category, and uniform
w.r.t. linear maps.

Every exception monad transform of T is uniform w.r.t. linear maps
If T has the property f ; T ! “ 0 ùñ f “ 0 then νγ. T p--‘Hγq is uniform
w.r.t. linear maps
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Problem with Tests

To model control with coproducts, it su�ces to use decisions, i.e. morphisms of
type X Ñ X ‘X , e.g.

d P CpX,X ‘Xq f, g P CpX,Y q

if d then f else g “ d ; rg, f s P CpX,Y q

Theorem
Let C be a non-deterministic category with binary coproducts; for every X , let
C5pXq Ď CpX,Xq be a Boolean algebra under ; and `

1. Maps ♦ : C5pXq Ñ CpX,X ‘Xq, ?: CpX,X ‘Xq Ñ C5pXq:

♦b “ b̄ ; inl`b ; inr d? “ d ; r0, 1s

form a retraction
2. Every d in the image of ♦ is linear
3. pif e then inr else dq? “ d?` e?, pif e then d else inlq? “ e? ; d?

4. For every d in the image of ♦, pif d then inl else inrq? “ d?
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Problem with Coproducts

Proposition
Let

C be a non-deterministic category
D be a wide subcategory of C with coproducts preserved by inclusion
C5pXq Ď DpX,Xq for all X
I form Boolean algebras under ; and `
I contain rinl, 0s and r0, inrs whenever X “ X1 ‘X2.

Then C supports uniform w.r.t. D Elgot iteration i� it supports

b P C5pXq f P CpX,Xq

while b do f P CpX,Xqsuch that

while b do f “ if b then f ; pwhile b do fq else 1

while pb_ cq do f “ pwhile b do fq ; while c do pf ; while b do fq

u ; b̄ “ c̄ ; v u ; b ; f “ c ; g ; u

u ; while b do f “ pwhile c do gq ; v
pu, v P Dq
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Kleene-iteration Categories with Tests

A triple pC,C`,C5q is Kleene-iteration category with tests (KiCT) if

C is a non-deterministic category
C` is a wide subcategory of tight morphisms, which are all linear
C5 is a family pC5pXq Ď C`

pX,XqqXP|C| of tests where every C5pXq is a
Boolean algebra under ; and `
for every X P |C| there is p--q˚ : CpX,Xq Ñ CpX,Xq such that

p˚-Fixq f˚ “ 1` f ; f˚ p˚-Orq pf ` gq˚ “ f˚ ; pg ; f˚q˚

p˚-Uniq
u ; f “ g ; u

u ; f˚ “ g˚ ; u
pu P C`

q

PLUS (!) an unidentified set of principles like (˚-Uni)
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Sanity Checks

Fact 1
A Kleene algebra with tests is precisely a single-object Kleene-iteration
category with tests, such that all morphisms are linear and 1˚ “ 1

Fact 2
Let C, C` and C5 be as follows:

C is a non-deterministic category with binary coproducts (!)
C` is a wide subcategory of C with binary coporoducts, consisting of
linear morphisms only, such that the inclusion preserves coproducts
For every X P |C|, C5pXq Ď C`

pX,Xq
I forms a Boolean algebra under ; and `
I contains rinl, 0s and r0, inrs whenever X “ X1 ‘X2

Then pC,C`,C5q is a KiCT i� C supports Elgot iteration uniform w.r.t. C`
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Coproduct Problem, Revisited

Unfortunately, the coproduct problem is deeper
For example, we seem to require coproducts to prove identities like

h˚ “ ph ; ph` 1qq˚

Basically, because we can go 2d and instantiate f and g in
pf ` gq˚ “ f˚ ; pg ; f˚q˚ with

h
and

h

An ultimate yardstick for a correct axiomatization could be a
completeness result
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Towards Completeness



Kozen’s Completeness

Kozen4 showed completeness of Kleene algebra w.r.t. regular events
(=regular languages)
In fact, he did more: he showed that for a fixed signature Σ, regular
languages RegpΣq is a free Kleene algebra on Σ, hence

JpK “ JqK ùñ $ p “ q

where JpK is the language, generated by p
Idea of the proof: given JpK “ JqK, arrange a series of equivalent
non-deterministic automata A1, . . . , An, such that

A1 A2 A3 An

p “ p1 p2 p3 pn “ q

„

„ „

„

¨ ¨ ¨

¨ ¨ ¨

Key technical step: for any Kleene algebra A, matrices MtxnpAq of size
nˆ n over A again form a Kleene algebra

4Kozen, “A completeness theorem for Kleene algebras and the algebra of regular events”, 1994.
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Matrix Construction

Given a Kleene-Kozen category C, let MtxpCq be as follows:
Objects are non-empty lists 〈A1, . . . , An〉 of objects of C
a morphism f : 〈A1, . . . , An〉Ñ 〈B1, . . . , Bm〉 in MtxpCq is given by a
family 〈fi,j : Ai Ñ Bj〉iďn,jďm of morphisms in C

the identity morphism over 〈A1, . . . , An〉 is the family 〈δi,j〉i,jďn where
δi,i “ 1 and δi,j “ 0 if i ‰ j

morphism composition as for matrices: given
f : 〈A1, . . . , An〉Ñ 〈B1, . . . , Bm〉 and g : 〈B1, . . . , Bm〉Ñ 〈C1, . . . , Ck〉,

pf ; gqi,j “ fi,1 ; g1,j ` . . .` fi,m ; gm,j

Fact
MtxpCq is a Kleene-Kozen category with strict binary coproducts, and C fully
embeds to it
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Free Kleene-Kozen category with Coproducts

Fix
I Set of sorts S , and
I Signature Σ of symbols, together with types of the form AÑ B

These can be interpreted in any Kleene-Kozen category D: JAK P |D|,
Jf : AÑ BK P DpJAK, JBKq
Free Kleene-Kozen category with coproducts Free‘pS,Σq over pS,Σq is
characterized by the universal properly:

Free‘pS,Σq D

pS,Σq

J--K7
D

J--K
J--KD

23 27



Constructing Free‘pS,Σq

Objects of Free‘pS,Σq are lists of sorts 〈A1, . . . , An〉 from S
A morphism from 〈A1, . . . , An〉 to 〈B1, . . . , Bm〉 is a tuple 〈tAi,B1,...,Bm

i 〉iďn

of rational trees, specified with the grammar:

tA,B1,...,Bm ::“
〈
o Ď ti P N | A “ Biu, 〈tC,B1,...,Bm〉f : AÑCPS

〉
where “rational” means:
I infinite
I number of subtrees are finite

Intuitively, a rational tree tA,B1,...,Bm represents the behaviour of a
deterministic automaton with m kinds of acceptance, with states
classified by sorts, such that an action from q1 of sort A to q2 of sort B
must be some f : AÑ B P Σ
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Constructing Free‘pS,Σq

tA,B1,...,Bm ::“
〈
o Ď ti P N | A “ Biu, 〈tC,B1,...,Bm〉f : AÑCPS

〉
Sum of rational trees is computed (co-)recursively, by joining the o’s
0 is the tree with all the o’s empty
; is a bit tricky: it is like substitution, combined with `
p--q: is defined as a least fixpoint (iteration laws follow)
To define J--K7D : Free7pS,Σq Ñ D we need to fold trees into finite
expressions and use uniformity to show that J--K7D is structure preserving
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Solving Coproduct Problem

Define FreepS,Σq ↪Ñ Free‘pS,Σq as a full subcategory on S
Let D be any Kleene-Kozen category, which interprets pS,Σq by J--KD
The composition of J--K7MtxpDq with FreepS,Σq ↪Ñ Free‘pS,Σq factors
though the inclusion of D to MtxpDq, yielding J--K7D : FreepS,Σq Ñ D:

Free‘pS,Σq MtxpDq

FreepS,Σq D

pS,Σq

J--K7
MtxpDq

J--K7
D

J--K
J--KD
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Intermediate Total

The general problem of organizing the totality of valid laws of iteration is
solved by one of few known feats:

by assuming linearity globaly (Kozen)
by relying on coproducts (Bloom and Ésik)
“coalgebraic” approach5, relying on uniqueness of (some) fixpoints

The case of general Kleene-iteration categories with tests is open

5Salomaa, “Two Complete Axiom Systems for the Algebra of Regular Events”, 1966.
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Questions?
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Monads

Definition (Monad)
A monad T (on a category C) is given by a Kleisli triple pT, 1, --‹q where

T : |C| Ñ |C|

1 is a family of morphisms 1X : X Ñ TX , forming monad unit
p--q‹ assigns to each f : X Ñ TY a morphism f‹ : TX Ñ TY

satisfying the laws: 1‹ “ 1, f‹ 1 “ f , pf‹ gq‹ “ f‹ g‹

This entails that
T is a functor, 1 is a natural transformation
f : X Ñ TY and g : Y Ñ TZ (regarded as programs) can be Kleisli
composed to f ; g “ g ¨ f “ g‹f : X Ñ TZ

By varying T we obtain various ‘generalized programs’ f : X Ñ TY while
programs of the form 1f can be seen as ‘pure programs’

Example: T “ powersetñ generalized programs = non-deterministic
programs, pure programs = deterministic programs = functions
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