Unifying Categorical View of Nondeterministic Iteration and Tests

Sergey Goncharov and

FAU Erlangen-Nürnberg

Tarmo Uustalu

Reykjavik University Tallinn University of Technology

CONCUR 2024, 9-13 September 2024

Kleene Algebra: Definition

Kleene algebra is

■ idempotent semiring (S, O, 1, +, ;)

- ► (S, O, +) is commutative and idempotent monoid
- (S, 1, ;) is monoid
- distributive laws:

$$p; (q+r) = p; q+p; r$$
 $p; o = o$

$$(p+q); r = p; r + q; r$$
 O; $p = 0$

(thus, S is partially ordered: $x \leq y$ iff x + y = y)

• ... plus, Kleene iteration, satisfying $p^* = 1 + p$; p^* , and

$$\frac{p; r+q \leqslant r}{p^*; q \leqslant r} \qquad \qquad \frac{r; p+q \leqslant r}{q; p^* \leqslant r}$$

 $\Rightarrow p^*$; q and p; q* are least (pre-)fixpoints

Key Design Features

- Not tailored to language model complete also over relational model
- Algebraic: closed under substitution, in contrast to Salomaa's rule*

$$\frac{r = pr + q \qquad p \ \text{guarded}}{r = p^* q}$$

- All fixpoints are least (pre-)fixpoints
 - ▶ in Salomaa's system: particular fixpoints are unique fixpoints
- Induction rules

$$\frac{p; r+q \leqslant r}{p^*; q \leqslant r} \qquad \qquad \frac{r; p+q \leqslant r}{q; p^* \leqslant r}$$

encompass infinitely many identities, critical for completeness

Completeness via free model = regular languages (regular events)

^{*}A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Kleene Algebra: Use

- Regular expressions
- Algebraic language of finite state machines and beyond
- Relational semantics of programs
- Relational reasoning and verification, e.g. via dynamic logic
- Plenty of extensions:
 - ▶ modal ⇒ modal Kleene algebra (Struth et al.)
 - ► stateful ⇒ KAT + B! (Grathwohl, Kozen, Mamouras)
 - ► concurrent ⇒ concurrent Kleene algebra (Hoare et al.)
 - ▶ nominal ⇒ nominal Kleene algebra (Kozen et al.)
 - ► differential equations ⇒ differential dynamic logic (Platzer et al.)

 - etc., etc., etc.

 decidability and completeness (most famously w.r.t. language interpretation and relational interpretation)

20

Tests for Control

Programming view: algebra elements = programs

- ▶ 0 divergence and/or deadlock, 1 neutral program, etc.
- Kleene algebra with tests (KAT) adds control via tests:
 - Kleene sub-algebra B
 - ▶ *B* is Boolean algebra under (0, 1, ; , +)
- This enables encodings:

Branching	(if b then p else q)	as	b; $p+\overline{b}$; q
Looping	(while b do p)	as	(b ; p)*; b
Hoare triples	{a} p {b}	as	a; p; b = a; p

Example:

while b do p = if b then p else (while b do p)

Lack of Compositionality /Robustness

Assumming programs raise exceptions: raise $e_i =$ "raise exception e_i ",

raise e_1 = raise e_1 ; o = o = raise e_2 ; o = raise e_2

So, we cannot have more than one exception ... unless we discard the law

$$p; o = o$$

Scenario II: Branching Time

are famously non-bisimular, failing Kleene algebra law

$$p; (q + r) = p; q + p; r$$

Scenario III: Divergence

Identity

$$(p + 1)^* = p^*$$

is provable in Kleene algebra, because p^* is a least fixpoint

Alternatively:

$$1^* = 1$$

Hence deadlock = divergence

What is generic core of Kleene iteration?

- Core reasoning principles
- Robustness under adding features (e.g. exceptions)
- Generic completeness argument
- Compliance with classical program semantics

What is generic core of Kleene iteration?

- Core reasoning principles
- Robustness under adding features (e.g. exceptions)
- Generic completeness argument
- Compliance with classical program semantics

Categorifying Iteration

From Algebras to Categories

■ Categories ≈ many-sorted monoids:

$$n_A: A \to A$$
 (unit) $\frac{p: A \to B \quad q: B \to C}{p; q: A \to C}$ (multiplication)

Objects A, B, ... - sorts, Morphisms p: A → B - programs
 Fact: monoid = single-object category

Kleene-Kozen categories – additionaly

$$O_{A,B}: A \to B$$
 $\frac{p: A \to B}{p+q: A \to B}$ $\frac{p: A \to A}{p^*: A \to A}$

subject to Kleene algebra laws

- Fact: Kleene algebra = single-object Kleene-Kozen category
- **Example:** Category of relations = relational interpretation

Tests = particular morphisms $b: A \rightarrow A$ forming Boolean algebra

Uniformity for Kleene Iteration

Alternative Kleene algebra axiomatization*: idempotent semiring, plus
 Axioms:

$$p^* = 1 + p; p^*$$
 $(p + q)^* = p^*; (q; p^*)^*$ $1^* = 1$

Uniformity rule:

$$\frac{u; p = q; u}{u; p^* = q^*; u}$$

- Same for Kleene-Kozen categories
- Removing 1* = 1 yields "may-diverge Kleene algebras" ⇒ (-)* is no longer least fixpoint (!)
- Uniformity is assumed for arbitrary u

^{*}S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Uniformity for Kleene Iteration

Alternative Kleene algebra axiomatization*: idempotent semiring, plus
 Axioms:

$$p^* = 1 + p; p^*$$
 $(p + q)^* = p^*; (q; p^*)^*$ $1^* = 1$

Uniformity rule:

$$\frac{u; p = q; u}{u; p^* = q^*; u}$$

- Same for Kleene-Kozen categories
- Removing 1* = 1 yields "may-diverge Kleene algebras" ⇒ (-)* is no longer least fixpoint (!)

Uniformity is assumed for arbitrary u

^{*}S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Coproducts and Elgot Iteration

• Coproducts $A \oplus B$ generalize disjoint unions $A \oplus B$

Elgot iteration:

$$\frac{p\colon A\to B\oplus A}{p^{\dagger}\colon A\to B}$$

▶ Intuitively: keep running *p* until reached a result in *B*

- Uniform Conway iteration additionally satisfies standard equational laws and uniformity principle
- $(-)^{\dagger}$ is subject to rich and elaborated equational theory of iteration*
 - Very general
 - © Robust under adding features (states, reading, writing, exceptions, process algebra actions)
 - Does not hinge on non-determinism
 - Hinges on coproducts

^{*}S. Bloom, Z. Ésik, Iteration Theories, 1993

Restricting Uniformity

Taking u =raise e in

$$\frac{u; p = q; u}{u; p^* = q^*; u}$$

allows for producing

raise
$$e = 1^*$$
; raise e

Need not hold in may-diverge Kleene algebras
 ⇒ Restrict to linear u:

$$u; o = o$$
 $u; (p + q) = u; p + u; q$

KiCT

Kleene-iteration category with tests (KiCT):

- Category with coproducts and nondeterminism
- Selected class of tests
- Selected class of linear tame morphisms
- Kleene iteration
- Laws:

O;
$$p = 0$$
 $(p+q)$; $r = p$; $r + q$; r
 $p^* = 1 + p$; p^* $(p+q)^* = p^*$; $(q; p^*)^*$
 $\frac{u; p^* = q^*; u}{u; p = q; u}$

for tame u

- KiCT + (1* = 1) with all morphisms tame = Kleene-Kozen with tests and coproducts
- KiCT with expressive tests = tame-uniform Conway iteration + non-determinism ("expressive" = $A \oplus B \xrightarrow{[inl,o]} A \oplus B$ are included)
- Free KiCT = non-deterministic rational trees w.r.t. may-diverge nondeterminism

Glimpse into Completeness

- Completeness is obtained by characterising free KiCT
- Morphisms of free KiCT are forests of infinite rational strongly extensional associative-commutative-idempotent trees:

$$\mathfrak{T} = \sum_{i \in I} b_i. \, u_i. \, \mathfrak{T}_i + \sum_{i \in J} b_i. \, f_i(\mathfrak{T}_{i,1}, \dots, \mathfrak{T}_{i,n_i}) + \sum_{i \in K} b_i. \, x_i$$

- ► I, J, K are countable and disjoint
- b_i range over guarded strings c₁?u₁c₂?...u_nc_{n+1}? (c_k? - tests, u_k - tame morphisms)
- u_i range over tame morphisms
- f_i range over non-tame morphisms
- Rationality = finitely many distinct subtrees
- Strong extensionality = bisimular subtrees are equal

What is generic core of Kleene iteration?

KiCT:

- Core reasoning principles
- Robustness under adding features
- Generic completeness argument
- Ocompatibility with classical program semantics

What is generic core of Kleene iteration?

KiCT:

- Core reasoning principles
- Robustness under adding features
- Generic completeness argument
- Ocompatibility with classical program semantics

But what is KiCT without coproducts?

- If everything is tame (Kleene algebra), this is essentially what happens
- This route also works for may-diverge Kleene algebras (Conjecture)
- What if nothing is tame (Process algebra)?

- Milner* realized under strong bisimilarity that "regular behaviours" are properly more general than "*-behaviours"
- Simplest example

$$\begin{cases} X = 1 + a; Y \\ Y = 1 + b; X \end{cases}$$

We can pass to X = 1 + a; (1 + b; X), but not to $X = (ab)^*(1 + a)$

- This descrepancy \approx failure of Kleene theorem
- Milner's solution \approx using coproducts in the language
- He also proposed a modification of Salomaa's system for *-behaviours – proven complete only recently (Grabmayer)

19

^{*}R. Milner, A complete inference system for a class of regular behaviours, 1984

- KiCTs reframe Kleene algebra principles in categorical setting and succeed with various yardsticks
- KiCTs without coproducts would be a hypothetical most basic notions of Kleene iteration
- Open Problem: Can it ever be found?

Compositionality and Robustness

- Given Elgot iteration operator, fix carrier of exceptions E
- Exception-raising morphisms $A \rightarrow B \oplus E$ themeselves form a category
- Elgot iteration and its laws carry over
 - This fails for Kleene-Kozen categories
- Elgot iteration's laws are thus stable under exception monad transformer
- Similarly: state, reading, writing, adjoining process algebra actions

While-Iteration

- Let tests be selected morphisms $b, c, ... : A \rightarrow A$, forming Boolean algebra under 1, 0, ; , +
- While-iteration:

Axioms:

while $b \operatorname{do} p = \operatorname{if} b \operatorname{then} p$; (while $b \operatorname{do} p$) else 1

while (b + c) do p = (while b do p); while c do (p; while b do p)

Uniformity:

 $\frac{u; b; p = c; q; u}{u; \text{while } b \text{ do } p = (\text{while } c \text{ do } q); v}$

Theorem: Non-deterministic uniform Conway iteration is equivalent to while-iteration, provided tests contain all $A \oplus B \xrightarrow{[inl,o]} A \oplus B$