Unifying Categorical View of Nondeterministic Iteration and Tests

Sergey Goncharov and Tarmo Uustalu

FAU Erlangen-Nürnberg Reykjavik University

Tallinn University of Technology

CONCUR 2024, 9–13 September 2024

Kleene Algebra: Definition

Kleene algebra is

idempotent semiring $(S, 0, 1, +, ;)$

- \blacktriangleright $(S, 0, +)$ is commutative and idempotent monoid
- \blacktriangleright (*S*, 1, ;) is monoid
- \blacktriangleright distributive laws:

$$
p
$$
; $(q + r) = p$; $q + p$; r p ; $0 = 0$

$$
(p+q)
$$
; $r = p$; $r + q$; r 0; $p = 0$

(thus, *S* is partially ordered: $x \le y$ iff $x + y = y$)

... plus, Kleene iteration, satisfying $p^* = 1 + p$; p^* , and

$$
\frac{p; r + q \leq r}{p^*; q \leq r} \qquad \qquad \frac{r; p + q \leq r}{q; p^* \leq r}
$$

 \Rightarrow p^* ; q and p ; q^* are least (pre-)fixpoints

Key Design Features

- Not tailored to language model complete also over relational model
- Algebraic: closed under substitution, in contrast to Salomaa's rule^{*}

$$
\frac{r = pr + q \qquad p \text{ guarded}}{r = p^*q}
$$

- All fixpoints are least (pre-)fixpoints
	- ▶ in Salomaa's system: particular fixpoints are unique fixpoints
- \blacksquare Induction rules

$$
\frac{p; r + q \leq r}{p^*; q \leq r} \qquad \qquad \frac{r; p + q \leq r}{q; p^* \leq r}
$$

encompass infinitely many identities, critical for completeness

Completeness via free model = regular languages (regular events)

[˚]A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Kleene Algebra: Use

- Regular expressions
- Algebraic language of finite state machines and beyond
- Relational semantics of programs
- Relational reasoning and verification, e.g. via dynamic logic
- Plenty of extensions: ш.
	- \triangleright modal \Rightarrow modal Kleene algebra (Struth et al.)
	- \triangleright stateful \Rightarrow KAT + B! (Grathwohl, Kozen, Mamouras)
	- \triangleright concurrent \Rightarrow concurrent Kleene algebra (Hoare et al.)
	- \triangleright nominal \Rightarrow nominal Kleene algebra (Kozen et al.)
	- \triangleright differential equations \Rightarrow differential dynamic logic (Platzer et al.)
	- \blacktriangleright network primitives \Rightarrow NetKAT (Foster et al.)
	- ▶ etc., etc., etc.

 \blacksquare decidability and completeness (most famously w.r.t. language interpretation and relational interpretation)

Tests for Control

 \blacksquare Programming view: algebra elements = programs

- \triangleright 0 divergence and/or deadlock, 1 neutral program, etc.
- Kleene algebra with tests (KAT) adds control via tests:
	- ▶ Kleene sub-algebra *B*
	- \blacktriangleright *B* is Boolean algebra under $(0, 1, \ldots, +)$
- This enables encodings:

Example:

while *b* do $p =$ if *b* then *p* else (while *b* do *p*)

Lack of Compositionality /Robustness

Assumming programs raise ${\sf exc$ ptions: raise e_i $=$ "raise exception e_i ",

 r aise e_1 = raise e_1 ; o = o = raise e_2 ; o = raise e_2

■ So, we cannot have more than one exception ... unless we discard the law

$$
p; o = o
$$

Scenario II: Branching Time

are famously non-bisimular, failing Kleene algebra law

$$
p; (q+r) = p; q+p; r
$$

Scenario III: Divergence

I Identity

$$
(p+1)^* = p^*
$$

is provable in Kleene algebra, because *p* ˚ is a least fixpoint

Alternatively:

$$
1^* = 1
$$

 \blacksquare Hence deadlock = divergence

(?) How to undo this

What is generic core of Kleene iteration?

- Core reasoning principles
- Robustness under adding features (e.g. exceptions) ш.
- Generic completeness argument
- Compliance with classical program semantics

What is generic core of Kleene iteration?

- Core reasoning principles
- Robustness under adding features (e.g. exceptions) п.
- Generic completeness argument п.

Compliance with classical program semantics

Categorifying Iteration

From Algebras to Categories

Categories \approx many-sorted monoids:

$$
1_A: A \to A \quad \text{(unit)} \qquad \qquad \frac{p: A \to B \qquad q: B \to C}{p; q: A \to C} \qquad \text{(multiplication)}
$$

 \triangleright Objects *A*, *B*, ... – sorts, Morphisms *p*: *A* \rightarrow *B* – programs ▶ **Fact:** monoid = single-object category

■ Kleene-Kozen categories – additionaly

$$
O_{A,B}: A \to B \qquad \qquad \frac{p:A \to B}{p+q:A \to B} \qquad \qquad \frac{p:A \to A}{p^*: A \to A}
$$

subject to Kleene algebra laws

- ▶ **Fact:** Kleene algebra = single-object Kleene-Kozen category
- ▶ **Example:** Category of relations = relational interpretation
- **Tests** = particular morphisms $b: A \rightarrow A$ forming Boolean algebra

Uniformity for Kleene Iteration

■ Alternative Kleene algebra axiomatization^{*}: idempotent semiring, plus **Axioms:**

$$
p^* = 1 + p; p^* \qquad (p+q)^* = p^*; (q; p^*)^* \qquad 1^* = 1
$$

Uniformity rule:

$$
u; p = q; u
$$

u; $p^* = q^*; u$

- п. Same for Kleene-Kozen categories
- Removing 1* = 1 yields "may-diverge Kleene algebras" п. \Rightarrow $(-)^{*}$ is no longer least fixpoint (!)
- Uniformity is assumed for arbitrary *u*

[˚]S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Uniformity for Kleene Iteration

■ Alternative Kleene algebra axiomatization^{*}: idempotent semiring, plus **Axioms:**

$$
p^* = 1 + p; p^* \qquad (p+q)^* = p^*; (q; p^*)^* \qquad 1^* = 1
$$

Uniformity rule:

$$
u; p = q; u
$$

u; $p^* = q^*; u$

■ Same for Kleene-Kozen categories

Removing 1* = 1 yields "may-diverge Kleene algebras" \Rightarrow $(-)^{*}$ is no longer least fixpoint (!)

Uniformity is assumed for arbitrary $u \mid \blacksquare$

[˚]S. Goncharov, Shades of Iteration: From Elgot to Kleene, 2023

Coproducts and Elgot Iteration

E Coproducts $A \oplus B$ generalize disjoint unions $A \oplus B$

Elgot iteration:

$$
\frac{p:A\to B\oplus A}{p^{\dagger}:A\to B}
$$

▶ Intuitively: keep running *p* until reached a result in *B*

- Uniform Conway iteration additionally satisfies standard equational laws and uniformity principle
- $(-)^\dagger$ is subject to rich and elaborated equational theory of iteration *
	- Very general
	- Robust under adding features (states, reading, writing, exceptions, process algebra actions)
	- \heartsuit Does not hinge on non-determinism
	- \odot Hinges on coproducts

[˚]S. Bloom, **Z. Ésik**, Iteration Theories, 1993

Restricting Uniformity

Taking *u* = raise *e* in

$$
u; p = q; u
$$

u; $p^* = q^*; u$

allows for producing

raise
$$
e = 1^*
$$
; raise e

Q Need not hold in may-diverge Kleene algebras \Rightarrow Restrict to linear *u*:

$$
u; o = 0
$$
 $u; (p + q) = u; p + u; q$

KiCT

Kleene-iteration category with tests (KiCT):

- Category with coproducts and nondeterminism
- Selected class of tests
- Selected class of linear tame morphisms
- Kleene iteration
- **Laws:**

$$
o; p = o \t (p + q); r = p; r + q; r
$$

$$
p^* = 1 + p; p^* \t (p + q)^* = p^*; (q; p^*)^*
$$

$$
\frac{u; p^* = q^*; u}{u; p = q; u}
$$

for tame *u*

- $KiCT + (1^* = 1)$ with all morphisms tame = Kleene-Kozen with tests and coproducts
- \blacksquare KiCT with expressive tests = tame-uniform Conway iteration + $\mathsf{non-determinism}$ ("expressive" = $\mathsf{A} \oplus \mathsf{B} \xrightarrow{[\mathsf{inl},\mathsf{o}]} \mathsf{A} \oplus \mathsf{B}$ are $\mathsf{included)}$
- Free KiCT = non-deterministic rational trees w.r.t. may-diverge nondeterminism

Glimpse into Completeness

- Completeness is obtained by characterising free KiCT
- **Morphisms of free KiCT are forests of infinite rational strongly** extensional associative-commutative-idempotent trees:

$$
\mathfrak{T} = \sum_{i \in I} b_i \cdot u_i \cdot \mathfrak{T}_i + \sum_{i \in J} b_i \cdot f_i(\mathfrak{T}_{i,1}, \dots, \mathfrak{T}_{i,n_i}) + \sum_{i \in K} b_i \cdot x_i
$$

- ▶ *I*, *J*, *K* are countable and disjoint
- \triangleright *b_i* range over guarded strings c_1 ?*u*₁ c_2 ? . . . *u*_n c_{n+1} ? $(c_k$? – tests, u_k – tame morphisms)
- \blacktriangleright u_i range over tame morphisms
- ▶ ^f*ⁱ* range over non-tame morphisms
- \blacktriangleright Rationality = finitely many distinct subtrees
- \triangleright Strong extensionality = bisimular subtrees are equal

What is generic core of Kleene iteration?

KiCT:

- \odot Core reasoning principles
- \odot Robustness under adding features
- \odot Generic completeness argument
- \odot Compatibility with classical program semantics

What is generic core of Kleene iteration?

KiCT:

- \odot Core reasoning principles
- \odot Robustness under adding features
- \odot Generic completeness argument
- \odot Compatibility with classical program semantics

But what is KiCT without coproducts?

- If everything is tame (Kleene algebra), this is essentially what ш. happens
- This route also works for may-diverge Kleene algebras (Conjecture)
- What if nothing is tame (Process algebra)?
- Milner^{*} realized under strong bisimilarity that "regular behaviours" are properly more general than "*-behaviours"
- Simplest example

$$
\begin{cases}\nX = 1 + a; Y \\
Y = 1 + b; X\n\end{cases}
$$

We can pass to $X = 1 + a$; $(1 + b; X)$, but not to $X = (ab)^*(1 + a)$

- This descrepancy \approx failure of Kleene theorem
- Milner's solution \approx using coproducts in the language
- He also proposed a modification of Salomaa's system for *-behaviours – proven complete only recently (Grabmayer)

[˚]R. Milner, A complete inference system for a class of regular behaviours, 1984

- KiCTs reframe Kleene algebra principles in categorical setting and succeed with various yardsticks
- KiCTs without coproducts would be a hypothetical most basic notions of Kleene iteration
- \blacksquare **Open Problem:** Can it ever be found?

Compositionality and Robustness

- Given Elgot iteration operator, fix carrier of exceptions **E**
- Exception-raising morphisms $A \rightarrow B \oplus E$ themeselves form a category
- Elgot iteration and its laws carry over
	- ▶ This fails for Kleene-Kozen categories
- Elgot iteration's laws are thus stable under exception monad transformer
- Similarly: state, reading, writing, adjoining process algebra actions

While-Iteration

- Let tests be selected morphisms $b, c, \ldots : A \rightarrow A$, forming Boolean algebra under $1, 0, \ldots$
- While-iteration:

Axioms:

while *b* do $p =$ if *b* then p ; (while *b* do p) else 1 while $(b + c)$ do $p = ($ while *b* do *p*); while *c* do $(p;$ while *b* do *p*)

Uniformity:

u; *b*; *p* = *c*; *q*; *u u*; *b* = *c*; *v* $u:$ while b do $p = ($ while c do $q)$: v

Theorem: Non-deterministic uniform Conway iteration is equivalent to while-iteration, provided tests contain all $A \oplus B \xrightarrow{[inl,0]} A \oplus B$