Towards Constructive Hybrid Semantics

Tim Lukas Diezel Sergey Goncharov

FAU Erlangen-Nürnberg

FSCD, Paris (I wish), July 2, 2020
Bouncing ball is a simple Newtonian system specified by differential equation \(\ddot{h} = -g \) \((g \approx 9.8)\) whose solution is

\[
h(t) = h_0 + v_0 t - \frac{gt^2}{2}
\]

with initial values:

- \(v_0 = 0, h_0 \neq 0 \) (peak height)
- \(h_0 = 0, v_0 \neq 0 \) (zero height)

Features:

- deterministic
- hybrid: the velocity changes discretely at the bottom \(v \leftrightarrow -cv \), but it changes continuously in the meanwhile
- progressive: every iteration consumes non-zero time
- Zeno behaviour: the state of rest is only reachable in the limit

damping factor
Bouncing ball can be formalized in idealized language HybCore:

\[
\begin{align*}
 x &:= \lceil (1, 0) \rceil \text{ while true} \\
 \{ & \quad (h, v) := (x := t. \text{ball}(x, t) \& \text{fst } x \geq 0); \\
 & \quad \lceil (h, -c \, v) \rceil \\
 \}
\end{align*}
\]

Here, \(\text{ball}(a, b, t) \) is the solution of the initial value problem
\[
\begin{align*}
 \dot{h} = v, \quad \dot{v} = -g, \quad h(0) = a, \quad v(0) = b
\end{align*}
\]

The critical element of the semantics is Elgot iteration:
\[
(f : X \rightarrow T(Y \uplus X)) \mapsto (f^\dagger : X \rightarrow TY) \text{ for a suitable monad } T
\]

\(^1\)Sergey Goncharov and Renato Neves, An adequate while-language for hybrid computation (PPDP 2019)
We investigate hybrid semantics and its generalizations from the categorical and type-theoretic perspectives.

Relevant preceding work:

- Modelling partiality in intentional type theory under countable choice: James Chapman, Tarmo Uustalu, and Niccolò Veltri. *Quotienting the delay monad by weak bisimilarity* (ICTAC 2015)

Here we generalize by rendering hybridness as partiality extended over time.
Our main construction is implemented as a quotient inductive-inductive type in cubical Agda\(^2\) and is available under:

https://github.com/sergey-goncharov/hybrid-agda

Many insights were borrowed from the preceding implementation of the partialiy monad by Danielsson (http://www.cse.chalmers.se/~nad/listings/partiality-monad)

\(^2\)Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed programming language with univalence and higher inductive types (ICFP 2019)
Outline

Hybrid semantics, non-constructively
Categorical abstraction
Characterizing classical semantics
Some details of Agda formalization
Conclusions
HYBRID SYSTEMS, NON-CONSTRUCTIVELY
Definition (Monad)

A monad T (on Set) is given by a Kleisli triple $(T, \eta, -^*)$ where:

- T sends sets to sets
- η is a family of morphisms $\eta_X : X \rightarrow TX$, forming monad unit
- $(-)^*$ assigns to each $f : X \rightarrow TY$ a morphism $f^* : TX \rightarrow TY$

satisfying the laws: $\eta^* = \text{id}$, $f^* \eta = f$, $(f^* g)^* = f^* g^*$

This entails that $f : X \rightarrow TY$ and $g : Y \rightarrow TZ$ (regarded as programs) can be Kleisli composed to $g^* f : X \rightarrow TZ$

Definition (Elgot Monad)

T with an iteration operator $(-)^\dagger : (X \rightarrow T(Y \sqcup X)) \rightarrow (X \rightarrow TY)$, satisfying axioms of iteration (omitted) is called Elgot
We distinguish

- **Duration semantics**: \(TX = \mathbb{R}_+ \times X \cup \bar{\mathbb{R}}_+ \) – a computation either converges in finite time with a value in \(X \), or diverges in possibly infinite time (\(\bar{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{\infty\} \))

- **Evolution semantics**: \(TX = S^{[0,\mathbb{R}_+)} \times X \cup S^{[0,\bar{\mathbb{R}}_+)} \) where

 - \(S^{[0,\mathbb{R}_+)} = \sum_d: \mathbb{R}_+ \to S \) is the space of finite trajectories
 - \(S^{[0,\bar{\mathbb{R}}_+)} = \sum_d: \bar{\mathbb{R}}_+ \to S \) is the space of possibly infinite trajectories over \(S \)

Idea for Abstraction: Vault to general monoids instead of concrete \(\mathbb{R}_+, S^{[0,\mathbb{R}_+)} \)
Fix a (not necessarily commutative) monoid \((\mathbb{M}, +, 0)\)

A **monoid \(\mathbb{M}\)-module** is a set \(\mathbb{E}\) equipped with a map \(\triangleright: \mathbb{M} \times \mathbb{E} \to \mathbb{E}\), subject to the laws

\[
0 \triangleright e = e \quad (m + n) \triangleright e = m \triangleright (n \triangleright e)
\]

Every monoid-module pair \((\mathbb{M}, \mathbb{E})\) induces the **generalized writer monad**: \(T = \mathbb{M} \times (0) \cup \mathbb{E}\)

For example, with \(\mathbb{M} = \mathbb{E} = 1\) we obtain the **maybe monad** \((0) \cup \{\bot\}\), which is incidentally an Elgot monad

Problem: Elgotness relies on the law of excluded middle!
CATEGORICAL CONSTRUCTION
We extend previous construction of partiality monad \((M = 1)\)

Recall the concept of free object: Given a functor \(U : C \rightarrow \text{Set}\), an object \(FX\) is free on \(X\) if there is \((\eta_X : X \rightarrow UFX)_X\) and for every \(f : X \rightarrow UY\) there is unique \(f^* : FX \rightarrow Y\) such that

\[
\begin{array}{ccc}
UFX & \xrightarrow{Uf^*} & UY \\
\eta_X & \downarrow & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
\]

Standard facts:

- All free objects \(FX\) exist iff \(F\) is a left adjoint to \(U\)
- If all free objects exist then \((UF, \eta, (-)^*)\) constitutes a monad

\(^3\)Thorsten Altenkirch, Nils Danielsson, and Nicolai Kraus. Partiality, revisited – the partiality monad as a quotient inductive-inductive type
We assume \mathbb{M} to be ordered with 0 being the bottom and right monotone $+$

Examples: 1, \mathbb{N}, \mathbb{Q}_+, \mathbb{R}_+, $S^{[0,\mathbb{R}_+)}$, S^* (for last two $+$ is neither commutative, nor left monotone)

Definition (Complete \mathbb{M}-Modules)

An ordered \mathbb{M}-module is additionally equipped with a partial order \sqsubseteq and \bot, such that

$$
\begin{align*}
\bot \sqsubseteq x & \quad x \sqsubseteq y \quad a \triangleright x \sqsubseteq a \triangleright y \quad a \leq b \\
& \quad a \triangleright \bot \sqsubseteq b \triangleright \bot
\end{align*}
$$

An ordered \mathbb{M}-module is **complete** if for any directed $(s_i)_i$ on \mathbb{E} there is a least upper bound $\bigcup_i s_i$ and

$$
\bigcup_i a \triangleright s_i \sqsubseteq a \triangleright \bigcup_i s_i
$$
Theorem

Let \mathbf{Alg}_L be the category of complete \mathbb{M}-modules and $U : \mathbf{Alg}_L \to \mathbf{Set}$ be the obvious forgetful functor

1. All free objects w.r.t. U exist, yielding a monad \tilde{L}
2. \tilde{L} is enriched over directed complete partial orders, and moreover, Kleisli composition is strict on both sides
3. \tilde{L} is an Elgot monad with the iteration operator $(f : X \to \tilde{L}(Y \oplus X))^{\dagger}$ calculated as a least fixed point of the map $[(\eta, -)]*f : (X \to \tilde{L}Y) \to (X \to \tilde{L}Y)$

This is true both classically and constructively, thanks to

quotient inductive-inductive types4

4Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg. Quotient inductive-inductive types.
L VIA DIRECTED COMPLETION
Let $\mathbb{M}_X = \mathbb{M} \times (X \cup \{\bot\})$, and define \triangleright_X, \sqsubseteq_X with rules:

\[
\begin{align*}
 a \triangleright_X (b, p) &= (a + b, p) \\
 (a, \text{inl} \ p) &\sqsubseteq_X (a, \text{inl} \ p) \\
 (a, \text{inr} \ \bot) &\sqsubseteq_X (b, p)
\end{align*}
\]

Lemma

For any set X, $(\mathbb{M}_X, \triangleright_X, (0, \text{inr} \ \bot), \sqsubseteq_X)$ is an ordered \mathbb{M}-module.

Intuitively, we are interested in limits of directed sequences over \mathbb{M}_X, e.g.

- **convergent**: $(1, \text{inr} \ \bot) \sqsubseteq_X \ldots \sqsubseteq_X (n, \text{inr} \ \bot) \sqsubseteq_X (n + 1, \text{inl} \ 0)$
- **divergent**: $(1, \text{inr} \ \bot) \sqsubseteq_X \ldots \sqsubseteq_X (1, \text{inr} \ \bot) \sqsubseteq_X \ldots$
- **Zeno**: $(1/2, \text{inr} \ \bot) \sqsubseteq_X \ldots \sqsubseteq_X (n/(n + 1), \text{inr} \ \bot) \sqsubseteq_X \ldots$
Directed Completion

- \((s_i)_i \preceq_X (t_i)_i\) if \(\forall i: \mathbb{N}. \exists j: \mathbb{N}. s_i \subseteq_X t_j\)
- \(s \sim_X t\) if \(s \preceq_X t\) and \(t \preceq_X s\)
- \(\tilde{M}_X\) is the quotient under \(\sim_X\) of the set of directed sequences over \(M_X\) and write \([s_i]_i\) instead of \([(s_i)_i]_\sim\)

Theorem (Only Classically!)

\((\tilde{M}_X, \triangleright_X, \perp_X, \preceq_X, \bigvee_X)\) is a free complete \(M\)-module on \(X\) with

- \([s]_\sim \preceq_X [t]_\sim\) if \(s \preceq_X t\)
- \(a \triangleright_X [s_i]_i = [a \triangleright_X s_i]_i\)
- \(\perp_X = [(0, \text{inr} \perp)]_i\)
- \(\bigvee_X [s_{i,j}]_j = [s_{\pi^{-1}_1(i), \pi^{-1}_2(i)}]_i\)

where \(\pi(x, y) = \frac{1}{2}(x + y)(x + y + 1) + x\)

Cantor pairing function
Let us write \tilde{M}_0 as \tilde{M}

Theorem (Only Classically!)

- $\tilde{L}X$ and \tilde{M}_X are isomorphic as complete M-modules
- $\tilde{L}X \cong M \times X \cup \tilde{M}$ – *generalized writer monad over* (M, \tilde{M})

Examples:

- For $M = 1$, $\tilde{L}X = X \cup \{\bot\}$
- For $M = \mathbb{N}$, $\tilde{L}X = \mathbb{N} \times X \cup \tilde{N}$
- **But** for $M = \mathbb{R}_+$, $\tilde{L}X = \mathbb{R}_+ \times X \cup \tilde{R}_+$ where $\tilde{R}_+ \cong \mathbb{R}_+ \cup (\mathbb{R}_+ \setminus \{0\}) \cup \{\infty\} \cong \tilde{R}_+ \cup (\mathbb{R}_+ \setminus \{0\})$, because of Zeno behaviour!
A conservatively complete \mathbb{M}-module additionally satisfies

$$\bigcup_i a_i \triangleright \bot = \left(\bigvee_i a_i \right) \triangleright \bot$$

whenever $\bigvee_i a_i$ exists

- Again, we obtain an Elgot monad \tilde{L} by the same argument
- There is $\tilde{\mathbb{M}}_X$ – an analogue of $\tilde{\mathbb{M}}_X$
- Again, $\tilde{L}X \cong \mathbb{M} \times X \cup \tilde{\mathbb{M}}$
- $\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{\infty\}$, $S^{(0,\mathbb{R}_+)} \cong S^{(0,\overline{\mathbb{R}}_+)}$, etc

Analogously, we introduce free conservatively complete \mathbb{M}-modules $\tilde{L}X$ on X, and obtain an Elgot monad \tilde{L}
MLTT and HoTT
Formulas as Types

In Martin-Löf Type Theory:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>1</td>
</tr>
<tr>
<td>⊥</td>
<td>0</td>
</tr>
<tr>
<td>$A \land B$</td>
<td>$A \times B$</td>
</tr>
<tr>
<td>$A \lor B$</td>
<td>$A \uplus B$</td>
</tr>
<tr>
<td>$\forall x \to A(x)$</td>
<td>$\prod_{x : 1} A(x)$</td>
</tr>
<tr>
<td>$\exists \left[x \right] A(x)$</td>
<td>$\sum_{x : 1} A(x)$</td>
</tr>
</tbody>
</table>

Some examples:

- A is a **(mere) proposition**: IsProp $A = \forall (x \, y : A) \to x \equiv y$
- A is a **set**: IsSet $A = \forall (x \, y : A) \to \text{IsProp} \ (x \equiv y)$
- A is **decidable**: IsDec $A = A \lor \neg A$
In HoTT and in Cubical Agda (which implements HoTT), we can express properly more, e.g. \textit{propositional truncation} as a quotient inductive type:

\begin{verbatim}
data _∥_∥ (A : Set ℓ) : Set ℓ where
|_| : A → ∥ A ∥
∥∥|-prop : IsProp ∥ A ∥
\end{verbatim}

\textbf{Axiom of Countable Choice:}

\[ACω \{ℓ\} = \forall (P : \mathbb{N} \rightarrow \text{Set} \ ℓ) \rightarrow (\forall n \rightarrow ∥ P n ∥) \rightarrow ∥ (\forall n \rightarrow P n) ∥ \]

Implementing $\tilde{\mathcal{L}}$ and $\bar{\mathcal{L}}$ requires more sophisticated quotient inductive-inductive types
Chains, intensionally and extensionally directed sequences:

- **Inc** \(\sigma = \forall (n : \mathbb{N}) \rightarrow \sigma n \leq \sigma (\text{suc } n) \)
- **Dir** \(\sigma = \forall (n m : \mathbb{N}) \rightarrow \exists [k] (\sigma n \leq \sigma k \land \sigma m \leq \sigma k) \)
- **\|Dir\|** \(\sigma = \forall (n m : \mathbb{N}) \rightarrow \| \exists [k] (\sigma n \leq \sigma k \land \sigma m \leq \sigma k) \| \)

Theorem

Let (a), (b) and (c) stand for completeness of a fixed set \(A \) w.r.t. **\|Dir\|**, **Dir** and **Inc** correspondingly. Then

- (a) \(\Rightarrow \) (b) \(\Rightarrow \) (c)
- (b) \(\Rightarrow \) (a) under countable choice
- (c) \(\Rightarrow \) (a) under the decidability of \(\leq \) on \(A \) (i.e. under \(\forall (x y : A) \rightarrow \text{IsDec } (x \leq y) \))

Our \(\tilde{L} \) and \(\bar{L} \) are based on intensional completeness
FURTHER WORK
Further Work

- Implement the concept of free objects in cubical Agda
- Is it possible to rebase \tilde{L} and \bar{L} on extensional completeness (currently based on intensional completeness)? Which approach would be the right one if both are possible?
- Implement classical characterizations of \tilde{L} and \bar{L} in cubical Agda (possible under countable choice?)
- Further flavours of hybrid semantics, e.g. non-deterministic