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Compositionality proofs in higher-order languages are notoriously involved, and general semantic frameworks
guaranteeing compositionality are hard to come by. In particular, Turi and Plotkin’s bialgebraic abstract GSOS
framework, which has been successfully applied to obtain off-the-shelf compositionality results for first-order
languages, so far does not apply to higher-order languages. In the present work, we develop a theory of
abstract GSOS specifications for higher-order languages, in effect transferring the core principles of Turi
and Plotkin’s framework to a higher-order setting. In our theory, the operational semantics of higher-order
languages is represented by certain dinatural transformations that we term pointed higher-order GSOS laws.
We give a general compositionality result that applies to all systems specified in this way and discuss how
compositionality of the SKI calculus and the 𝜆-calculus w.r.t. a strong variant of Abramsky’s applicative
bisimilarity are obtained as instances.
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1 INTRODUCTION
Turi and Plotkin’s framework of mathematical operational semantics [Turi and Plotkin 1997]
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Context

‚ Turi and Plotkin’s abstract GSOS is a definite framework for relating operational
and denotational semantics

‚ As any very general tool, it has numerous limitations
‚ One such limitation: no support for higher-order behaviour
‚ By contrast, reasoning about higher-order languages is complicated and largely

boilerplate. Tools involved: applicative bisimilarity, Howe’s method, environmental
bisimilarity, logical relations

‚ We make first steps in reorganizing higher-order semantics, building on abstract
GSOS, in particular, develop a (strong) colagebraic applicative bisimilarity
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Abstract GSOS

Turi and Plotkin’s abstraction of GSOS1:

‚ A signature endofunctor Σ : C Ñ C
‚ A behaviour endofunctor B : C Ñ C
‚ A GSOS law – natural transformation ρX : Σ(Xˆ BX)Ñ BΣ‹X

Typically: Σ is a polynomial functor, representing an algebraic signature,
BX = P(Lˆ X), ρ is induced by operational semantic rules, “distributing syntax
over semantics”, e.g.

p
a−Ñ p 1

p | q
a−Ñ p 1 | q

1Turi and Plotkin, “Towards a Mathematical Operational Semantics”, 1997.
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Abstract GSOS: Bialgebras

‚ A ρ-bialgebra interprets operations by an algebra a : ΣXÑ X and provides a
behaviour via a coalgebra c : XÑ BX such that

ΣX X BX

Σ(Xˆ BX) BΣ‹X

a

Σ〈id, c〉

c

ρX

Bâ

where â : Σ‹XÑ X is the inductive extension of a
‚ Operational model: initial bialgebra ΣµΣ ι−−Ñ µΣ

γ−−Ñ BµΣ

‚ Denotational model: final bialgebra ΣνB α−−Ñ νB
τ−−Ñ BνB

‚ Abstract behaviour: unique bialgebra morphism J--Kρ : (µΣ, ι,γ)Ñ (νB,α, τ)
‚ Full abstraction: p and q are behaviourally equal iff JpKρ = JqKρ
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Higher Order

Q: Why the theory of program equivalence of higher-order languages is so different
(and difficult!)?

A: Because it is a mixture of many things:

‚ higher-order languages typically involve variable binding and capture-avoiding
substitution. That adds a bunch of technical issues, but does not itself make
things higher-order (e.g. π-calculus)

‚ behavioural equivalence is weak from the outset (contrasting process algebra,
which uses strong bisimulation as a stepping stone)

‚ denotational models (e.g. domains) do not come from behaviours

ñ full abstraction tends to fail
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(Extended) Combinatory Logic

‚ SKI language: S for λp.λq.λr. (pr)(qr), K for λp.q,p, I for λp.p
˝ plus S 1, S2 and K 1 for partially reduced terms

‚ Operational semantics:

S
t−Ñ S 1(t) S 1(p)

t−Ñ S2(p, t) S2(p,q) t−Ñ (p t) (q t)

K
t−Ñ K 1(t) K 1(p)

t−Ñ p I
t−Ñ t

pÑ p 1

p qÑ p 1 q

p
q−Ñ p 1

p qÑ p 1

‚ This is not GSOS
‚ But it makes perfect sense, e,g.: SpqrÑ S 1(p)qrÑ S2(p,q)rÑ (pr)(qr)
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Congruence for SKI

‚ With Σ = {S,K, I,S 1,S2,K 1}, µΣ is the set of SKI-terms
‚ Define strong applicative bisimilarity „ on µΣ: „ is the greatest relation
R Ď µΣˆ µΣ such that whenever pRq, then

˝ either pÑ p 1, qÑ q 1 and p 1Rq 1,
˝ or for every t P µΣ, p t−Ñ p 1, q t−Ñ q 1 and p 1Rq 1

Proposition: „ is a Σ-congruence
Proof Idea: For any R Ď µΣˆ µΣ, define

R̂ = {(C[s],C[t]) P µΣˆ µΣ | C a (linear) context, sRt}
Show that „̂‹ Ď „. Essentially, this is up-to-congruence

Q: Can we apply same trick to (standard) weak bisimulation?
A: Yes! But, we need “up-to” Howe’s closure
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Dinaturality

A dinatural transformation from F : Cop ˆ C Ñ D to G : Cop ˆ C Ñ D is a family
(σX : F(X,X)Ñ G(X,X))XPC, such that

F(X,X) G(X,X)

F(Y,X) G(X, Y)

F(Y, Y) G(Y, Y)

σX

G(X,f)F(f,X)

F(X,f) σY G(f,Y)

for every f : XÑ Y

Example: apply : XY ˆ Y Ñ X

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 10/21



Defining HO(ly)-GSOS

Definition: A higher-order GSOS law of Σ over B is a family of morphisms

ρX,Y : Σ(Xˆ B(X, Y))Ñ B(X,Σ‹(X+ Y)),

dinatural in X and natural in Y

Example: For combinatory logic: Σ is obvious, and B(X, Y) = YX + Y, and ρ is
induced by the rules

In fact, for polynomial Σ and B(X, Y) = YX + Y, we have a complete syntactic
characterization of higher-order GSOS (via Yoneda lemma)

Example: For λ-calculus: C = [F, Set], Σ = V + δX+ X2, and ρ must be
V-pointed2

2Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”, 1999.
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Operational Model

‚ An operational model can be readily defined:

ΣµΣ µΣ

Σ(µΣˆ B(µΣ,µΣ)) µΣˆ B(µΣ,Σ‹(µΣ+ µΣ)) µΣˆ B(µΣ,µΣ)

Σ〈id, ι♣〉

ι

〈id, ι♣〉
〈ι¨Σ fst, ρµΣ,µΣ〉 idˆB(id,µ¨Σ‹∇)

where µ : Σ‹Σ‹ Ñ Σ‹ is the obvious flattening

‚ The operational equivalence is the kernel of the map

coit(ι♣) : µΣÑ νγ.B(µΣ,γ)

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 12/21



Abstract Congruence for H/O GSOS

Theorem: Given that

1. C is regular (roughly, C admits a good notion of image factorization)

2. Σ preserves reflexive coequalizers (in particular, if Σ is finitary)

3. B preserves monomorphisms in both arguments (it sends epis on the first
argument to monos)

the kernel pair of the final coalgebra map

coit(ι♣) : µΣÑ νγ.B(µΣ,γ)
is a congruence

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 13/21



Higher-Order Bialgebras

A ρ-bialgebra is a triple (A,a : ΣAÑ A, c : AÑ B(A,A)) such that the diagram

ΣA A B(A,A)

Σ(Aˆ B(A,A)) B(A,Σ‹(A+A))

a

Σ〈id,c〉

c

ρ

B(id,∇7)

commutes

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 14/21



Higher-Order Bialgebras Morphisms

A ρ-bialgeba morphism from (A,a, c) to (A 1,a 1, c 1) is a Σ-algebra morphism
f : AÑ A 1, such that the diagram

A B(A,A)

A 1 B(A 1,A 1) B(A,A 1)

c

f B(id,f)

c 1 B(f,id)

commutes

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 15/21



Higher-Order Bialgebras, Cont’d

‚ Operational model again yields an initial ρ-bialgebra

ΣµΣ
ι−−Ñ µΣ

ι♣−−−Ñ B(µΣ,µΣ)

‚ The behavioural quotient also extends to a ρ-bialgebra

ΣµΣ„
ι„−−−Ñ µΣ„ −Ñ B(µΣ„,µΣ„)

‚ The quotienting map µΣÑ µΣ„ is a bialgebra morphism

‚ However (!) a final bialgebra does not generally exist
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Lambda-Calculus: Way of Combinators

‚ Let Λ(n) be λ-terms with free variables from {1, . . . ,n} modulo α-equivalence
‚ ΣX =

∐
nPN Λ(n+ 1)ˆ Xn + X2, so

(f, t1, . . . , tn) represents λ(n+ 1). f[t1/1, . . . , tn/n]

‚ B(X, Y) = Y + YX

‚ For every f P Λ(n+ 1) let dfe P Σ‹(n+ 2) be obtained from f by recursively
replacing topmost λx. t with t[(n+ 2)/x] P Λ(n+ 2)

Examples: S = λyz. (1z)(yz) P Λ(1), S 1 = dSe = λz. (1z)(2z) P Λ(2),
S2 = dS 1e = (13)(23) P Σ‹(3)

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 17/21



Way of Combinators, Cont’d

‚ The rules

f(x1, . . . , xn)
t−Ñ dfe[x1/1 . . . , xn/n, t/(n+ 1)]

(f P Λ(n+ 1))

pÑ p 1

pqÑ p 1q

p
q−Ñ p 1

pqÑ p 1

then mimic the standard call-by-name semantics of untyped λ-calculus

‚ Hence, we obtain a congruence result for the lazy λ-calculus circumventing
presheave semantics!
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Call-by-Value

‚ Call-by-value SKI: rules for combinators like before, plus

pÑ p 1

pqÑ p 1q

p
t−Ñ p 1 qÑ q 1

pqÑ pq 1
p

q−Ñ p 1 q
t−Ñ q 1

pqÑ p 1

‚ Problem: operational model must be µΣÑ B(µΣv,µΣ) where µΣv ↪Ñ µΣ is a
subobject of values, i.e. terms in normal form

‚ Solution: Two sorted sets!
˝ The entire framework runs in Set2 = [2, Set]– Set/2, which provides a crisp

separation between values and non-values
˝ Behaviour: Bv(X, Y) = (Yv+ Yv)

Xv (value part), Bv(X, Y) = Yv+ Yv (non-value
part)

˝ Signature: Σv(X) = ‘combinators over Xv + Xv’, ΣvX = (Xv + Xv)
2
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Further Work

Further work program is extensive:

‚ Modelling weak applicative bisimulation (arXive draft “Weak Similarity in
Higher-Order Mathematical Operational Semantics” is comming next days)
˝ Metric, quantialic, fibrational generalizations
ñ other variants of the framework needed, to bypass regularity

‚ Modelling other kinds of bisimilarity, e.g. environmental bisimilarity
‚ Modelling typed languages
‚ Modelling effectful languages
‚ . . .
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1. Thank You for Your Attention!

Sergey Goncharov Towards a Higher-Order Mathematical Operational Semantics 21/21



Bialgebras Form a Category

If f : AÑ A 1 and g : A 1 Ñ A2 are ρ-bialgebra morphisms then so is the
composition g ¨ f, for the diagram

A B(A,A)

A 1 B(A 1,A 1) B(A,A 1)

A2 B(A2,A2) B(A 1,A2) B(A,A2)

c

f B(A,f)

c 1

g

B(f,A 1)

B(A 1,g) B(A,g)

c2 B(g,A2) B(f,A2)

obviously commutes.
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Lambda-Calculus

‚ Operational semantics rules
sÑ s 1

s tÑ s 1 t (λx.s) tÑ s[t/x]

‚ C = SetF, where F is the category of finite cardinals

Σ : C Ñ C, ΣX = V + δX+ Xˆ X,

B : Cop
ˆ C Ñ C, B(X, Y) = 〈〈X, Y〉〉ˆ (Y + YX + 1)

where YX is exponent in SetF, V is the presheaf of variables SetF(n) = n,
(δX)(n) = X(n+ 1), 〈〈X, Y〉〉(n) = SetF(Xn, Y)

‚ µΣ is the presheaf Λ P SetF of λ-terms over n free variables
‚ H/O GSOS law is pointed: ρX,Y : Σ(jXˆ B(jX, Y))Ñ B(jX,Σ‹(jX+ Y))3
3Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”, 1999.
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