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Compositionality proofs in higher-order languages are notoriously involved, and general semantic frameworks
guaranteeing compositionality are hard to come by. In particular, Turi and Plotkin’s bialgebraic abstract GSOS
framework, which has been successfully applied to obtain off-the-shelf compositionality results for first-order
languages, so far does not apply to higher-order languages. In the present work, we develop a theory of
abstract GSOS specifications for higher-order languages, in effect transferring the core principles of Turi
and Plotkin’s framework to a higher-order setting. In our theory, the operational semantics of higher-order
languages is represented by certain dinatural transformations that we term pointed higher-order GSOS laws.
We give a general compositionality result that applies to all systems specified in this way and discuss how
compositionality of the SKI calculus and the A-calculus w.r.t. a strong variant of Abramsky’s applicative |,
bisimilarity are obtained as instances.

CCS Concepts: » Theory of computation — Categorical semantics; Operational semantics. f
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Context

® Turing and Plotkin's abstract GSOS is a definite framework for
relating operational and denotational semantics

® As any very general tool, it has numerous limitations
® One such limitation is: no support for higher-order behaviour

® By contrast, reasoning about higher-order languages is complicated
and largely boilerplate. Tools involved: applicative bisimilarity,
Howe's method, environmental bisimilarity, logical relations

® \WWe make first steps in reorganizing higher-order semantics, building
on abstract GSOS, in particular, develop a (strong) colagebraic
applicative bisimilarity
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Abstract GSOS

Turi and Plotkin's abstraction of GSOS!:

® A signature endofunctor £: C — C
® A behaviour endofunctor B: C — C
® A GSOS law — natural transformation pyx: (X x BX) — BZ*X

Typically: X is a polynomial functor, representing an algebraic
signature, BX = P(L x X), p is induced by operational semantic rules,

“distributing syntax over semantics”, e.g.

p=p
plg > p'lg

'Turi and Plotkin, “Towards a Mathematical Operational Semantics”, 1997.
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Abstract GSOS: Bialgebras

® A p-bialgebra interprets operations by an algebra a: ZX — X and
provides a behaviour via a coalgebra c: X — BX such that

XX 2 X d BX
X(id, c) Ba

(X x BX) PX By*X

where a: 2*X — X is the inductive extension of a
e Operational model: initial bialgebra ZuX % uX % Bur
® Denotational model: final bialgebra £vB % vB = BvB

® Abstract behaviour: unique bialgebra morphism
-]p: (LE, v, y) — (VB, o, T)

Full abstraction: p and g are behaviourally equal iff [p], = [g],



Higher Order

Q: Why the theory of program equivalence of higher-order
languages is so different (and difficult!)?



Higher Order

Q: Why the theory of program equivalence of higher-order
languages is so different (and difficult!)?

A: Because it is a mixture of many things:

® higher-order languages typically involve variable binding and
capture-avoiding substitution. That adds a bunch of technical
issues, but does not itself make things higher-order (e.g. m-calculus)

® Behavioural equivalence is weak from the outset (contrasting
process algebra, which uses strong bisimulation as a stepping stone)

® Denotational models (e.g. domains) do not come from behaviours
= full abstraction tends to fail



(Augmented) Combinatory Logic
SKI language:

® S for Ap.Ag.Ar.(pr)(gr), K for Ap.g,p, [ for Ap.p
® plus S’, S” and K’ for partially reduced terms

Operational semantics:

s L oS S'(p) & S"(p, 1) S"(p,q) — (pt) (gt

p—p p=>p
K 5 K'(t) K'(p) - p |5t p9g—p'q  pg—op




(Augmented) Combinatory Logic
SKI language:

® S for Ap.Ag.Ar.(pr)(gr), K for Ap.g,p, [ for Ap.p
® plus S’, S” and K’ for partially reduced terms

Operational semantics:

s L oS S'(p) & S"(p, 1) S"(p,q) — (pt) (gt

p—p p=>p
K 5 K'(t) K'(p) - p |5t p9g—p'q  pg—op

® This is not GSOS

® But it makes perfect sense, e,qg.

Spqr — S'(p)gr — S"(p.q)r — (pr)(qr)



Congruence for SKI

e With X ={5,K,[,5", 5" K'}, uX is the set of SKl-terms
® Define strong applicative bisimilarity ~ on pX: ~ is the greatest
relation R < puX x uX such that whenever pRg, then

® either p —» p’, g — g’ and p’'Rq/,
® or for every teuZ, p > p’, g - g’ and p'Rq’.
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Show that =" € ~. Essentially, this is up-to-congruence
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e With X ={5,K,[,5", 5" K'}, uX is the set of SKl-terms
® Define strong applicative bisimilarity ~ on pX: ~ is the greatest
relation R < puX x uX such that whenever pRg, then

® either p —» p’, g — g’ and p’'Rq/,
® or for every teuZ, p > p’, g - g’ and p'Rq’.

Proposition: ~ is a X-congruence
Proof Idea: For any R < uX x uX, define
R = {(C[s],Clt]) € £ x uX | C a (linear) context, sRt}.

Show that =" € ~. Essentially, this is up-to-congruence

Q: Can we apply same trick to (standard) weak bisimulation

A: Yes! But, we need "up-to” Howe's closure



Dinaturality

A dinatural transformation from F: CPxC - D to G: CPxC - D is
a family (ox: F(X, X) — G(X, X)) xec, such that

F(X,X) —— G(X, X)

FV w)

F(Y, X) G(X,Y)

Fm G(f.Y)
Oy

F(Y,Y) G(Y,Y)

for every f: X =Y

Example: apply: X" xY — X



Defining HO(ly)-GSOS

Definition: A higher-order GSOS law of X over B is a family of

morphisms
pxy: L(X xB(X,Y)) = B(X,Z(X+7Y)),

dinatural in X and natural in Y

Example: For combinatory logic: X is obvious, and
B(X,Y)=YX4+Y, and p is induced by the rules

In fact, for polynomial £ and B(X,Y) =YX +VY, we have a complete

syntactic characterization of higher-order GSOS (via Yoneda lemma)

Example: For A-calculus: € =[F, Set], £ =V +8X + X?, and p must
be V-pointed?

2Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”, 1999.



Operational Model

® An operational model can be readily defined:

X L n

X (id, u%) (id, 1*)
<L-Zf5t, pu}_‘_'u}_‘_> idXB(id,u-Z*V)

L(uE x B(uL, uX)) — puZ x B(pZ, Z*(ul + uZ)) — pX x B(nL, uk)

where p: Z*X* — ¥£* is the obvious flattening

® The operational equivalence is the kernel of the map

coit(t*): uZ — vy.B(ux,vy)



Abstract Congruence for Higher-Order GSOS

Theorem: Given that

|.C is regular (roughly, € admits a good notion of image
factorization)

2. X preserves reflexive coequalizers (in particular, if X is finitary)

3. B preserves monomorphisms in both arguments (it sends epis on
the first argument to monos)

the kernel pair of the final coalgebra map
coit(t®): uX — vy. B(nZ,v)

Is a congruence



Higher-Order Bialgebras

® A p-bialgebra is a triple (A,a: ZA— A,c: A— B(A, A)) such that
the diagram

TA 2 A < B(A A)
(id,c) B(id,v*)

S(Ax B(A,A)) ° B(A, Z*(A+ A)

® p-bialgeba morphism from (A, a,c) to (A’,a’,c’) is a Z-algebra
morphism f: A — A’, such that

A c B(A A)
f Blidf)
A< BAL A — 21 BA AN




Higher-Order Bialgebras, Cont'd

® Operational model again yields an initial p-bialgebra
IWE 5 ur 5 B(uz,ur)
® The behavioural quotient also extends to a p-bialgebra
SuL. = uf. — B pLl)

® The quotienting map uX — pZ _ is a bialgebra morphism



Higher-Order Bialgebras, Cont'd

® Operational model again yields an initial p-bialgebra
IWE 5 ur 5 B(uz,ur)
® The behavioural quotient also extends to a p-bialgebra
SuL. = uf. — B pLl)

® The quotienting map uX — pZ _ is a bialgebra morphism

® However (!) a final bialgebra does not generally exist



Lambda-Calculus: Way of Combinators

® | et A(n) be A-terms with free variables from {1, ..., n} modulo
o-equivalence

¢ I X =[x Aln+ 1) x X"+ X2,

*B(X,Y)=Y4+YX
® For every te A(n) let [t] e Z*(n+ 1) be as follows:

o [i|=iifie{l,..., n}

® [st] = [s]]t]

® An.t] =t

® [(Ax.t] =tl(n+ 1)/x] if x#n

Examples: S=MAyz. (1z)(yz) e A(1), S'=1[S] =Az.(12)(2z) € A(2),
S"=1[5"1=(13)(23)e £*(3)



Lambda-Calculus via Combinators, Cont'd

® The rules

: FeAln+1))
flxi, ..., xn) — [f1x/1 ..., xp/nt/(n+ 1)] /

p—p p=>p
pPq — P'q pq — P’

then mimic the standard call-by-name semantics of untyped
A-calculus

® Hence, we obtain a congruence result for the lazy A-calculus
circumventing presheave semantics!



Call-by-Value

® Call-by-value SKI: rules for combinators like before, plus

p—p p-p gq—q php g-¢
pPq — P'q pPq — Pq’ pq — p'

® Problem: operational model must be uxX — B(puX", uX) where
ur’ — pX is a subobject of values, i.e. terms in normal form

® Solution: Two sorted sets!

® The entire framework runs in Set® = [2, Set] ~ Set/2, which provides a
crisp separation between values and non-values

® Behaviour: B,(X,Y) = (Y, +Y;)* (value part), B;(X,Y)=Y,+Y;
(non-value part)

e Signature: Z,(X) = ‘combinators over X, + X', L;.X = (X, + X;)?



Further Work

Further work program is extensive:

® Modelling weak applicative bisimulation

® Modelling other kinds of bisimilarity, e.g. environmental bisimilarity
® Modelling typed languages

® Modelling effectful languages

Already in the present context,

® \WWe do not understand well when final bi-algebras exist and what
they are like

® Relation to standard denotational semantics?

® Relation to game semantics?
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Bialgebras Form a Category

If f: A— A" and g: A’ — A" are p-bialgebra morphisms then so is
the composition g-f, for the diagram

A c B(A, A)
f| lB(Af)
Al 3 BA, A 29 Ba AN
9| B(A',g) ‘B(Arg)

B(g,A”) B(f,A”)

A c” B(A” A"

B(A', A") B(A, A"

obviously commutes.
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