Introduction to Higher-Order Mathematical Operational Semantics

Sergey Goncharov

In(tro)duction to Higher-Order Mathematical Operational Semantics

Sergey Goncharov

HO Mathematical Operational Semantics Project

- Goncharov, Milius, Schröder, Tsampas, and Urbat, "Towards a Higher-Order Mathematical Operational Semantics", POPL 2023
- Urbat, Tsampas, Goncharov, Milius, and Schröder, "Weak Similarity in Higher-Order Mathematical Operational Semantics", LICS 2023
- Goncharov, Santamaria, Schröder, Tsampas, and Urbat, "Logical Predicates in Higher-Order Mathematical Operational Semantics", FoSSaCS 2024
- Goncharov, Milius, Tsampas, and Urbat, "Bialgebraic Reasoning on Higher-Order Program Equivalence", LICS 2024
- Goncharov, Tsampas, and Urbat, "Abstract Operational Methods for Call-by-Push-Value", POPL 2025

.. and rolling

Context: Applied Category Theory

- ► Somewhat like
 https://en.wikipedia.org/wiki/Applied_category_theory
- More specifically: using category theory as an organization device
- Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic

- ▶ Parameters: functor F (for transitions), predicate liftings $\heartsuit: 2^X \to 2^{FX}$ (for modalities), axioms
- ► **Results:** soundness, completeness, Hennessy–Milner property, complexity bounds, etc.

Context: Applied Category Theory

- ► Somewhat like
 https://en.wikipedia.org/wiki/Applied_category_theory
- More specifically: using category theory as an organization device
- Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic

- ▶ Parameters: functor F (for transitions), predicate liftings $\heartsuit: 2^X \to 2^{FX}$ (for modalities), axioms
- Results: soundness, completeness, Hennessy-Milner property, complexity bounds, etc.

Our **Grand Objective**: develop a similar approach to operational semantics

Semantics: Operational v.s. Denotational

Operational Semantics (how programs behave?)

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0)))$$

 $\rightarrow s(s(0 + s(s(0)))) \rightarrow s(s(s(s(0))))$

Denotational Semantics (what programs denote?)

$$[s(s(0)) + s(s(0))] = [s(s(0))] + [s(s(0))] = 2 + 2 = 4$$

Semantics in Use

Denotational:

© Compositional by design:

$$[\![p]\!] = [\![q]\!] \Rightarrow [\![C[p]\!]] = [\![C[q]\!]]$$

for any program context C

- Mathematically rigorous and precise
- Ease to define: from hard to impossible

Operational:

- © Lightweight and easy to define even for complex languages
- Nonuniform and fraggile
- Hard to reason about (because of lack of compositionality)

Overall: not (sufficiently) mathematical

Semantics in Use

Denotational:

© Compositional by design:

$$[\![p]\!] = [\![q]\!] \Rightarrow [\![C[p]\!]] = [\![C[q]\!]]$$

for any program context C

- Mathematically rigorous and precise
- Ease to define: from hard to impossible

Operational:

- Lightweight and easy to define even for complex languages
- Nonuniform and fraggile
- Hard to reason about (because of lack of compositionality)

Overall: not (sufficiently) mathematical

Turi and Plotkin's abstraction of GSOS rule format¹:

- ightharpoonup Signature endo-functor Σ
- ► Behaviour endo-functor B
- ▶ GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

- ▶ $\Sigma = \{ \text{ par } /2, \emptyset /0 \} \cup \{ a. (-)/1 \mid a \in A \}$
- \triangleright $BX = \mathcal{P}(A \times X)$
- GSOS law encodes rules like:

$$\frac{p \xrightarrow{a} p'}{p \text{ par } q \xrightarrow{a} p' \text{ par } q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

Turi and Plotkin's abstraction of GSOS rule format¹:

- ightharpoonup Signature endo-functor Σ
- ► Behaviour endo-functor B
- ▶ GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

▶
$$\Sigma = \{ \text{ par } /2, \emptyset /0 \} \cup \{ a. (-)/1 \mid a \in A \}$$

$$\triangleright$$
 $BX = \mathcal{P}(A \times X)$

GSOS law encodes rules like:

behaviour from B

operation from
$$\Sigma$$

$$\frac{p \xrightarrow{a} p'}{p \text{ par } q \xrightarrow{a} p' \text{ par } q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

Turi and Plotkin's abstraction of GSOS rule format¹:

- ightharpoonup Signature endo-functor Σ
- ► Behaviour endo-functor B
- ► GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

- ▶ $\Sigma = \{ \text{ par } /2, \emptyset /0 \} \cup \{ a. (-)/1 \mid a \in A \}$
- \triangleright $BX = \mathcal{P}(A \times X)$
- GSOS law encodes rules like:

$$\frac{p \xrightarrow{a} p'}{p \text{ par } q \xrightarrow{a} p' \text{ par } q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

First-Orded GSOS

Theory of first-order GSOS takes Σ , B, ρ as input parameters, and produces

- \bigcirc operational semantics $\gamma \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset)$ (operational model)
- \bigcirc notion of program equivalence $\sim \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ (strong bisimilarity)
- \bigcirc generic compositionality: $p \sim q \Rightarrow C[p] \sim C[q]$ for any context

But

- \odot ~ is too fine-grained for programming languages
- \bigcirc first-order \subsetneq higher-order \rightsquigarrow no λ -calculus

First-Orded GSOS

Theory of first-order GSOS takes Σ , B, ρ as input parameters, and produces

- \bigcirc operational semantics $\gamma \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset)$ (operational model)
- \bigcirc notion of program equivalence $\sim \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ (strong bisimilarity)
- \bigcirc generic compositionality: $p \sim q \Rightarrow C[p] \sim C[q]$ for any context

But

Higher-Order Abstract GSOS

(Call-by-Name, Extended) Combinatory Logic

- \blacktriangleright $I (=\lambda p. p)$
- \blacktriangleright $K (= \lambda p. \lambda q. p)$
- \triangleright S (= $\lambda p.\lambda q.\lambda r.(p \cdot r) \cdot (q \cdot r)$)
- ightharpoonup plus S', S'' and K' for partially reduced terms

$$I \xrightarrow{p} p \qquad K \xrightarrow{p} K'(p) \qquad K'(p) \xrightarrow{q} p \qquad S \xrightarrow{p} S'(p)$$

$$S'(p) \xrightarrow{q} S''(p,q) \qquad S''(p,q) \xrightarrow{r} (p \cdot r) \cdot (q \cdot r)$$

$$\frac{p \to p'}{p \cdot q \to p' \cdot q} \qquad \frac{p \xrightarrow{q} p'}{p \cdot q \to p'}$$

Example:
$$S \cdot p \cdot q \cdot r \rightarrow S'(p) \cdot q \cdot r \rightarrow S''(p,q) \cdot r \rightarrow (p \cdot r) \cdot (q \cdot r)$$

This is very similar to original GSOS, but it is not

(Call-by-Name, Extended) Combinatory Logic

- \blacktriangleright $I (=\lambda p. p)$
- \blacktriangleright $K (= \lambda p. \lambda q. p)$
- \triangleright S (= $\lambda p.\lambda q.\lambda r.(p \cdot r) \cdot (q \cdot r)$)
- \triangleright plus S', S'' and K' for partially reduced terms

$$I \xrightarrow{p} p \qquad K \xrightarrow{p} K'(p) \qquad K'(p) \xrightarrow{q} p \qquad S \xrightarrow{p} S'(p)$$

$$S'(p) \xrightarrow{q} S''(p,q) \qquad S''(p,q) \xrightarrow{r} (p \cdot r) \cdot (q \cdot r)$$

$$\frac{p \to p'}{p \cdot q \to p' \cdot q} \qquad \frac{p \xrightarrow{q} p'}{p \cdot q \to p'} \qquad \blacksquare$$

Example:
$$S \cdot p \cdot q \cdot r \rightarrow S'(p) \cdot q \cdot r \rightarrow S''(p,q) \cdot r \rightarrow (p \cdot r) \cdot (q \cdot r)$$

This is very similar to original GSOS, but it is not

Higher-Order Abstract GSOS

A higher-order GSOS law consists of

- Signature Σ
- ► Mixed variance (!) behaviour functor B
- ► Family of maps $\rho_{X,Y}$: $\Sigma(X \times B(X,Y)) \to B(X,\Sigma^*(X+Y))$ natural in Y and dinatural in X

Example: For combinatory logic: $B(X, Y) = Y^X + Y$, ρ is induced by rules of operational semantics

- Most (but not all!) of Turi and Plotkin's theory caries over
- \bigcirc In particular: strong applicative bisimilarity \sim is implied and is a congruence

Strong Applicative Bisimilarity

Strong applicative bisimilarity is the largest symmetric relation ~
 on programs, such that

1.
$$p \rightarrow p' \wedge p \sim q \implies \exists q'. q \rightarrow q' \wedge p' \sim q'$$

2.
$$p \xrightarrow{t} p' \wedge p \sim q \Rightarrow \exists q'. q \xrightarrow{t} q' \wedge p' \sim q'$$

- ▶ Key expected property congruence: $p \sim q$ implies $C[p] \sim C[q]$
- Then it is sound method for proving contextual equivalence of p and q (for every C, C[p] and C[q] are "behaviorally equivalent")

Strong Applicative Bisimilarity: Examples

Bisimilar Terms:

- $\qquad \qquad \bullet \quad \Omega_0 = (\mathit{SII})(\mathit{SII}), \, \Omega_1 = (\mathit{I}(\mathit{SII}))(\mathit{I}(\mathit{SII})), \, \Omega_2 = (\mathit{II}(\mathit{SII}))(\mathit{I}(\mathit{SII})), \, \text{etc.}$
- ► Then $\Omega_0 = (SII)(SII) \rightarrow (S'(I)I)(SII) \rightarrow (S''(I,I))(SII) \rightarrow \Omega_1$
- ▶ Analogously, $\Omega_n \to^* \Omega_{n+1}$
- ▶ Proof that $\Omega_n \sim \Omega_{n+1}$:
 - Arr $\mathcal{R} = \{(P, Q) \mid \Omega_0 \to^* P, \Omega_0 \to^* Q\}$ is bisimulation,
 - ▶ hence $(\Omega_n, \Omega_m) \in \mathcal{R} \subseteq \sim$

Non-Bisimilar Terms: Generally, for $P \rightarrow Q$, $P \not\sim Q$

E.g.
$$K'(I)I \rightarrow I$$
, but $I \rightarrow$

Proving Congruence

- Structural induction won't do: given $p \sim q$, $S'(p) \sim S'(q)$ would require $S''(q, t) \sim S''(p, t)$
- Proving that

$$\widehat{\sim} = \{ (C[p], C[q]) \mid p \sim q \}$$

is bisimulation won't do, for $S''(s, t)p \rightarrow (sp)(tp)$

- Proving that $\{(C[\overline{p}], C[\overline{q}]) \mid p_i \sim q_i\}$ is bisimulation won't do: $p_1p_2 \sim q_1q_2$ may require $p' \sim q'$ where $p_1 \xrightarrow{p_2} p'$ and $q_1 \xrightarrow{q_2} q'$
- \bigcirc Worked approach: bisimulation up-to congruence \iff $\widehat{\sim}^*$ is a bisimulation. Hence $\widehat{\sim} \subseteq \widehat{\sim}^* \subseteq \widehat{\sim}$

Proving Congruence

- Structural induction won't do: given $p \sim q$, $S'(p) \sim S'(q)$ would require $S''(q, t) \sim S''(p, t)$
- Proving that

$$\widehat{\sim} = \{ (C[p], C[q]) \mid p \sim q \}$$

is bisimulation won't do, for $S''(s, t)p \rightarrow (sp)(tp)$

- Proving that $\{(C[\overline{p}], C[\overline{q}]) \mid p_i \sim q_i\}$ is bisimulation won't do: $p_1p_2 \sim q_1q_2$ may require $p' \sim q'$ where $p_1 \stackrel{p_2}{\longrightarrow} p'$ and $q_1 \stackrel{q_2}{\longrightarrow} q'$
- Worked approach: bisimulation up-to congruence $\iff \hat{\sim}^*$ is a bisimulation. Hence $\hat{\sim} \subseteq \hat{\sim}^* \subseteq \sim$

Key insight of HO-MOS: This generalizes to: regular categories, mono-preserving B and "finitary" Σ

Lambda-Calculus

Standard rules

$$\frac{s \to s'}{s \ t \to s' \ t} \qquad \qquad \frac{(\lambda x. \, s) \ t \to s[t/x]}{(\lambda x. \, s) \ t \to s[t/x]}$$

▶ We take: $C = Set^{\mathbb{F}}$ (\mathbb{F} – category of finite cardinals)

$$\Sigma: \mathsf{C} \to \mathsf{C} \qquad \qquad \Sigma X = V + \delta X + X \times X$$

$$B: \mathsf{C}^{\mathsf{op}} \times \mathsf{C} \to \mathsf{C} \qquad B(X,Y) = \langle\!\langle X,Y \rangle\!\rangle \times (Y + Y^X + 1)$$

$$V(n) = \{n\}$$
 (variables), $(\delta X)(n) = X(n+1)$, $\langle\!\langle X, Y \rangle\!\rangle(n) = C(X^n, Y)$

 \triangleright $(\Sigma^*\emptyset)(n) \cong \lambda$ -terms over *n* free variables²

²Fiore, Plotkin, and Turi, "Abstract Syntax and Variable Binding".

Lambda-Calculus

Standard rules

"substitution" behavior

"reduction" behavior

$$\frac{s \to s'}{s \ t \to s' \ t}$$

$$\overline{(\lambda x.\,s)\,\,t\to s[t/x]}$$

▶ We take: $C = Set^{\mathbb{F}} (\mathbb{F} - category of finite cardinals)$

$$\Sigma: C \to C$$

$$\Sigma X = V + \delta X + X \times X$$

$$B: C^{op} \times C \to C$$

$$B(X, Y) = \langle\!\langle X, Y \rangle\!\rangle \times (Y + Y^X + 1)$$

$$V(n) = \{n\}$$
 (variables), $(\delta X)(n) = X(n+1)$, $\langle\!\langle X, Y \rangle\!\rangle(n) = C(X^n, Y)$

▶ $(\Sigma^*\emptyset)(n) \cong \lambda$ -terms over *n* free variables²

²Fiore, Plotkin, and Turi, "Abstract Syntax and Variable Binding".

Further Advances

First-Orded GSOS [Recall]

Theory of first-order GSOS takes Σ , B, ρ as input parameters, and produces

- \bigcirc operational semantics $\gamma \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset)$ (operational model)
- \bigcirc notion of program equivalence $\sim \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ (strong bisimilarity)
- \bigcirc generic compositionality: $p \sim q \Rightarrow C[p] \sim C[q]$ for any context

But

- $> \sim$ is too fine-grained for programming languages \leftarrow

 \forall first-order \subseteq higher-order \rightsquigarrow no λ -calculus

Weak Bisimilarity

Weak Applicative (Bi)similarity

- ▶ Weak transitions: let \Rightarrow be \rightarrow^* , $\stackrel{t}{\Rightarrow}$ be $(\Rightarrow \cdot \stackrel{t}{\rightarrow})$
- ► Weak applicative similarity largest such ≤ that
 - 1. $t \to t'$ implies $s \Rightarrow s'$ and $t' \lesssim s'$ for some s'
 - 2. $t \stackrel{r}{\rightarrow} t'$ implies $s \stackrel{r}{\Rightarrow} s'$ and $t' \lesssim s'$ for some s'
- ▶ Weak applicative bisimilarity \approx = \lesssim \cap \gtrsim

Example: $f \lesssim S \cdot (K \cdot I) \cdot f$ (analogue of $f \lesssim \lambda x. fx$), but

$$S \cdot (K \cdot I) \cdot \Omega \lesssim \Omega$$
, because

$$S \cdot (K \cdot I) \cdot \Omega \xrightarrow{t} (K \cdot I \cdot t)(\Omega \cdot t)$$
 but $\Omega \to \Omega \to \dots$

Key Property: pre-congruence of ≤

Proof Idea: Bisimulation up-to Howe's closure (Howe's method)

Howe's Method

For a relation $\mathcal{R} \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$, Howe's closure \mathcal{R}^H is generated by

$$\frac{t_1 \, \mathcal{R}^H \, t_1' \quad \dots \quad t_n \, \mathcal{R}^H \, t_n' \quad f(t_1', \dots, t_n') \, \mathcal{R} \, s}{f(t_1, \dots, t_n) \, \mathcal{R}^H \, s}$$

① This is crucially weaker than saying that \mathbb{R}^H is closure of \mathbb{R} under contexts and transitivity

Key property: \approx^H is a bisimulation

- \implies $\hat{\approx} \subseteq \approx^H \subseteq \approx$
- \rightarrow \approx is congruence

Analogously: ≤ is pre-congruence

Howe's Method Abstractly

► Together with $\gamma \colon \Sigma^{\star} \emptyset \to B(\Sigma^{\star} \emptyset, \Sigma^{\star} \emptyset)$ for strong transitions "→", we require new parameter

$$\widetilde{\gamma} \colon \Sigma^{\star} \emptyset \to B(\Sigma^{\star} \emptyset, \Sigma^{\star} \emptyset)$$

for weak transitions "⇒"

▶ We need liftings to the category of relations:

.. and some other assumptions

Result: \lesssim (i.e. largest relation R, such that $R \leqslant (\gamma \times \widetilde{\gamma})^{-1}[\overline{B}(\Delta, R)]$) is a congruence (i.e. $\overline{\Sigma}(\lesssim) \leqslant (\iota \times \iota)^{-1}[\lesssim]$)

Step-Indexing Logical Relations

Step-Indexing, Concretely

The step-indexed logical relation \mathcal{L} for combinatory logic is the inductively defined family $(\mathcal{L}^{\alpha} \subseteq \Sigma^{\star}\emptyset \times \Sigma^{\star}\emptyset)_{\alpha \leqslant \omega}$:

$$\mathcal{L}^0 = \top, \qquad \mathcal{L}^{n+1} = \mathcal{L}^n \cap \mathcal{E}(\mathcal{L}^n) \cap \mathcal{V}(\mathcal{L}^n, \mathcal{L}^n), \qquad \mathcal{L}^\omega = \bigcap_{n < \omega} \mathcal{L}^n$$

where \mathcal{E} and \mathcal{V} are relation transformers:

$$\mathcal{E}(R) = \{(t,s) \mid \text{if } t \to t' \text{ then } \exists s'. \, s \Rightarrow s' \land R(t',s')\}$$

$$\mathcal{V}(Q,R) = \{(t,s) \mid \text{for all } r_1, r_2, \ Q(r_1,r_2),$$

$$\text{if } t \xrightarrow{r_1} t' \text{ then } \exists s'. \, s \xrightarrow{r_2} s' \land R(t',s')\}$$

As a slogan: "related programs applied to related arguments produce related results"

Step-Indexing: Properties

- \mathcal{L}^{ω} is a fixpoint $\mathcal{L}^{\omega} = \mathcal{L}^{\omega} \cap \mathcal{E}(\mathcal{L}^{\omega}) \cap \mathcal{V}(\mathcal{L}^{\omega}, \mathcal{L}^{\omega})$
- ► In first-order case we would reduce to the familiar fixpoint theory and Kleene/Knaster-Tarski theorems, but because of higher-order, we generally do not (!)
- ightharpoonup Every \mathcal{L}^{α} is a congruence
- $\triangleright \mathcal{L}^{\omega}$ is sound for contextual preorder

Bottom Line: Step-indexing is another sound method for proving contextual equivalence

Step-Indexing, Abstractly

Under similar (but weaker) assumptions, as for weak applicative bisimilarity,

- 1. There is an abstract (ordinal-indexed) logical relation $(\mathcal{L}^{\alpha})_{\alpha}$
- 2. The limit $\mathcal{L}^{\nu} = \bigcap_{\alpha} \mathcal{L}^{\alpha}$ exists
- 3. Every \mathcal{L}^{α} is a congruence
- 4. \mathcal{L}^{ν} is sound for contextual equivalence

Conclusions

- We broke the barrier between (co-)algebraic methods and higher-order semantics
- ? A lot to be done:
 - Call-by-value
 - Big-step semantics (and equivalence thereof)
 - Other behavioral equivalence (e.g. trace equivalence)
 - ▶ Metric, probabilistic, quantialic, fibrational generalizations
 - Modelling polymorphic languages
 - ► Modelling effectful languages
 - \blacktriangleright \mathcal{L}^{ν} is included in applicative bisimilarity. When they are equal?

Thank You for Your Attention!

Bialgebras Form a Category

If $f: A \to A'$ and $g: A' \to A''$ are ρ -bialgebra morphisms then so is the composition $g \cdot f$, for the diagram

obviously commutes.

Lambda-Calculus

Operational semantics rules

$$\frac{s \to s'}{s \ t \to s' \ t} \qquad \qquad \overline{(\lambda x.s) \ t \to s[t/x]}$$

 $ightharpoonup C = \mathsf{Set}^{\mathbb{F}}$, where \mathbb{F} is the category of finite cardinals

$$\begin{split} \Sigma\colon\mathsf{C}\to\mathsf{C}, & \Sigma X=V+\delta X+X\times X,\\ B\colon\mathsf{C}^\mathsf{op}\times\mathsf{C}\to\mathsf{C}, & B(X,Y)=\langle\!\langle X,Y\rangle\!\rangle\times(Y+Y^X+1) \end{split}$$

where Y^X is exponent in $\mathsf{Set}^\mathbb{F}$, V is the presheaf of variables $\mathsf{Set}^\mathbb{F}(n) = n$, $(\delta X)(n) = X(n+1)$, $\langle\!\langle X, Y \rangle\!\rangle(n) = \mathsf{Set}^\mathbb{F}(X^n, Y)$

- ▶ $\mu\Sigma$ is the presheaf $\Lambda \in Set^{\mathbb{F}}$ of λ -terms over n free variables
- ► H/O GSOS law is pointed:

$$\rho_{X,Y} \colon \Sigma(jX \times B(jX,Y)) \to B(jX, \Sigma^{\star}(jX+Y))^{3}$$

³Fiore, Plotkin, and Turi, "Abstract Syntax and Variable Binding".

Dinaturality

A dinatural transformation from $F: C^{op} \times C \to D$ to $G: C^{op} \times C \to D$ is a family $(\sigma_X: F(X,X) \to G(X,X))_{X \in C}$, such that

$$F(Y,X) \xrightarrow{\sigma_X} G(X,X)$$

$$F(Y,X) \xrightarrow{G(X,F)} G(X,Y)$$

$$F(Y,Y) \xrightarrow{\sigma_Y} G(Y,Y)$$

for every $f: X \to Y$

Example: apply: $X^Y \times Y \to X$

Proving the "η-Law"

Recall:

$$t \stackrel{r}{\Rightarrow} s = (\exists t'. t \Rightarrow t' \land t' \stackrel{r}{\Rightarrow} s) \lor (\exists t'. t \Rightarrow t' \land s = t' r)$$

$$\mathcal{L}^{n+1} = \mathcal{L}^n \cap \mathcal{E}(\mathcal{L}^n) \cap \mathcal{V}(\mathcal{L}^n, \mathcal{L}^n)$$

$$\mathcal{E}(\mathcal{L}^n) = \{(t, s) \mid \text{if } t \to t' \text{ then } \exists s'. s \Rightarrow s' \land \mathcal{L}^n(t', s')\}$$

$$\mathcal{V}(\mathcal{L}^n, \mathcal{L}^n) = \{(t, s) \mid \text{for all } r_1, r_2, \mathcal{L}^n(r_1, r_2),$$

$$\text{if } t \stackrel{r_1}{\Rightarrow} t' \text{ then } \exists s'. s \stackrel{r_2}{\Rightarrow} s' \land \mathcal{L}^n(t', s')\}$$

▶ Proof of $\mathcal{L}^n(S \cdot (K \cdot I) \cdot f, f)$ by induction on n, in particular:

References I

- Fiore, Marcelo P., Gordon D. Plotkin, and Daniele Turi. "Abstract Syntax and Variable Binding". In: 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 1999, pp. 193–202. URL: https://doi.org/10.1109/LICS.1999.782615.
- Goncharov, Sergey, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat. "Towards a Higher-Order Mathematical Operational Semantics". In: Proc. ACM Program. Lang. 7 (2023), pp. 632–658. DOI: 10.1145/3571215.
- Goncharov, Sergey, Stefan Milius, Stelios Tsampas, and Henning Urbat. "Bialgebraic Reasoning on Higher-Order Program Equivalence". In: LICS. 2024, pp. 1–13.

References II

Goncharov, Sergey, Alessio Santamaria, Lutz Schröder, Stelios Tsampas, and Henning Urbat. "Logical Predicates in Higher-Order Mathematical Operational Semantics". In: Foundations of Software Science and Computation Structures - 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024. Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part II. Ed. by Naoki Kobayashi and James Worrell. Vol. 14575. Lecture Notes in Computer Science. Springer, 2024, pp. 47–69. DOI: 10.1007/978-3-031-57231-9\ 3. URL: https://doi.org/10.1007/978-3-031-57231-9_3.

References III

- Goncharov, Sergey, Stelios Tsampas, and Henning Urbat. "Abstract Operational Methods for Call-by-Push-Value". In: Proc. ACM Program. Lang. (2025). accepted.
- Turi, D. and G. Plotkin. "Towards a Mathematical Operational Semantics". In: Logic in Computer Science. IEEE. 1997, pp. 280–291.
- Urbat, Henning, Stelios Tsampas, Sergey Goncharov, Stefan Milius, and Lutz Schröder. "Weak Similarity in Higher-Order Mathematical Operational Semantics". In: *LICS*. 2023, pp. 1–13. DOI:

10.1109/LICS56636.2023.10175706. URL:

https://doi.org/10.1109/LICS56636.2023.10175706.