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Context: Applied Category Theory

» Somewhat like
https://en.wikipedia.org/wiki/Applied_category_theory

» More specifically: using category theory as an organization device

» Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic

» Parameters: functor F (for transitions), predicate liftings

Q: 2X — 2FX (for modalities), axioms

» Results: soundness, completeness, Hennessy-Milner property,

complexity bounds, etc.
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» More specifically: using category theory as an organization device

» Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic
» Parameters: functor F (for transitions), predicate liftings
Q: 2X — 2FX (for modalities), axioms
» Results: soundness, completeness, Hennessy-Milner property,
complexity bounds, etc.
Our Grand Obijective: develop a similar approach to operational

semantics
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Semantics: Operational v.s. Denotational

» Operational Semantics (how programs behave?)

s(s(0)) + s(s(0)) — s(s(0) + s(s(0)))
— s(s(0+s(s(0)))) — s(s(s(s(0))))

» Denotational Semantics (what programs denote?)

[s(s(0)) 4 s(s(0))] = [s(s(0))] + [s(s(0))] =2+2=4
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Semantics in Use

Denotational:
@ Compositional by design:

[p] = [a] = [Clpl] = [Clq]]

for any program context C
@ Mathematically rigorous and precise

® Ease to define: from hard to impossible
Operational:

@ Lightweight and easy to define even for complex languages
® Nonuniform and fraggile

@ Hard to reason about (because of lack of compositionality)

Overall: not (sufficiently) mathematical
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First-Order Abstract GSOS
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First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

» Signature endo-functor X
» Behaviour endo-functor B

» GSOS law - natural transformation px: (X x BX) — B(Z*X)

Example (Process Algebra):
> L ={par/2,0/0} u{a.(-)/1] a€ A}
> BX = P(Ax X)
» GSOS law encodes rules like:
p>p
ppar g > p’ par g

Turi and Plotkin, “Towards a Mathematical Operational Semantics”.
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Turi and Plotkin’s abstraction of GSOS rule format?:

» Signature endo-functor
» Behaviour endo-functor B

» GSOS law - natural transformation px: X( X x B/ X ) —» B(Z*X)

Example (Process Algebra):
> ¥ ={par/2,0/0}u{a. (-)/1]ac A}
> BX = P(A x X)
» GSOS law encodes rules like:
p > p
ppar g = p’ par q

Turi and Plotkin, “Towards a Mathematical Operational Semantics”.
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First-Orded GSOS

Theory of first-order GSOS takes L, B, p as input parameters, and
produces

© operational semantics y: £*() — B(Z*)) (operational model)
@ notion of program equivalence ~ < Z*() x £*() (strong bisimilarity)

© generic compositionality: p ~ g = C[p] ~ Clgq] for any context

But

® ~ is too fine-grained for programming languages

@ first-order < higher-order ~» no A-calculus
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Higher-Order Abstract GSOS
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(Call-by-Name, Extended) Combinatory Logic

> | (=Ap.p)
> K (=Ap.Aq. p)

> S(=ApAgAr.(p-r)-(q-r))
» plus S/, S” and K’ for partially reduced terms

15 p K 5 K'(p) K'(p) & p S5 S'(p)
S'(p) % S"(p,q) S"(p,q) & (p-r)-(q-r)
p—p p 5 p
p-q—p'-q p-q—p

Example:S-p-q-r— S'(p)-q-r—S"(p.q)-r—(p-r)-(q-r)

» This is very similar to original GSOS, but it is not
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Higher-Order Abstract GSOS

A higher-order GSOS law consists of

» Signature =
» Mixed variance (!) behaviour functor B
» Family of maps px y: Z(X x B(X, Y)) — B(X, Z*(X + Y)) natural

in Y and dinatural in X

Example: For combinatory logic: B(X, Y) = YX + Y, pis induced by

rules of operational semantics

© Most (but not all') of Turi and Plotkin’s theory caries over

@ In particular: strong applicative bisimilarity ~ is implied and is
a congruence
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Strong Applicative Bisimilarity

» Strong applicative bisimilarity is the largest symmetric relation ~
on programs, such that

lLp—=p'Ap~q = 3q.qg—q rp' ~q

2.p5pap~q = 3¢9 5 q rp ~q
» Key expected property - congruence: p ~ g implies Clp] ~ Clql
» Then it is sound method for proving contextual equivalence of p

and q (for every C, C[p] and Clq] are “behaviorally equivalent”)
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Strong Applicative Bisimilarity: Examples

Bisimilar Terms:
> Qo = (SIS, Q1 = (I(SIN)(I(SI)), Qa = (H(SIN)(I1(SI)), etc.
» Then Qo = (SI)(SII) — (S'(ND(SI) — (S"(1, 1) (SI) — Q4
» Analogously, Q, —* Q,,1
» Proof that Q, ~ Q,,1:

> R={(P,Q)| Qo —* P,Qo —* Q} is bisimulation,
» hence (Q,, Q,)eRc ~

Non-Bisimilar Terms: Generally, for P — Q, P » Q
E.g. K'(I)] — I,but | +
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Proving Congruence

@ Structural induction won'’t do: given p ~ g, S’(p) ~ S’(q) would
require S”(q,t) ~ S"(p, t)
@ Proving that
= ={(Clpl, Clg)) | p ~ g}

is bisimulation won't do, for S”(s, t)p — (sp)(tp)

® Proving that {(C[pl], C[ql) | pi ~ g;} is bisimulation won't do:

p1p2 ~ q1q2 May require p’ ~ ¢’ where p; % p’and g1 % ¢’

@ Worked approach: bisimulation up-to congruence «— <*isa

bisimulation. Hence < < <* c~
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p1p2 ~ q1q2 May require p’ ~ ¢’ where p; % p’and g1 % ¢’

@ Worked approach: bisimulation up-to congruence «— <*isa

bisimulation. Hence < < <* c~

Key insight of HO-MOS: This generalizes to:

regular categories, mono-preserving B and “finitary”
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Lambda-Calculus

» Standard rules

s — s’
st—s't (Ax.s) t — s[t/x]

> We take: C = Set” (F - category of finite cardinals)

I:C—C IX=V4+3X+XxX
B:CPxC—-C BX,Y)=(X,Y)x(Y+Y*+1)

V(n) = {n} (variables), (5X)(n) = X(n + 1), (X, Y)(n) = C(X", Y)

> (Z*()(n) =~ A-terms over n free variables?

2Fjore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”.
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Lambda-Calculus

“substitution” behavior . .
» Standard rules reduction” behavior
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Further Advances
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First-Orded GSOS [Recall]

Theory of first-order GSOS takes L, B, p as input parameters, and
produces

© operational semantics y: £*() — B(Z*)) (operational model)
@ notion of program equivalence ~ < Z*() x £*() (strong bisimilarity)

© generic compositionality: p ~ g = C[p] ~ Clgq] for any context

But

® ~ is too fine-grained for programming languages ('

@ first-order < higher-order ~» no A-calculus
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Weak Bisimilarity

13/21



Weak Applicative (Bi)similarity

> Weak transitions: let = be —*, = be (= - 5)
» Weak applicative similarity - largest such < that

1. t — t’ implies s = s’ and t’ < s’ for some s’

. . r
2. t 5 t impliess = s’ and t’ < s’ for some s’

» Weak applicative bisimilarity x = < n 2

Example: f < S- (K -1) - f (analogue of f < Ax. x), but
S-(K-1)-Q £ Q, because

S (K-1)-Q5 (K- 1-8)(Q-t) but Q—>Q— ...

Key Property: pre-congruence of <

Proof Idea: Bisimulation up-to Howe’s closure (Howe's method)
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Howe's Method

For a relation R < £*0) x £*(), Howe’s closure R is generated by

R e, RPE f(t],.. t)Rs
t RH ¢ flte,....tn) RF s

0 This is crucially weaker than saying that R" is closure of R under

contexts and transitivity

Key property: ~" is a bisimulation

=) I caHca

= x is congruence

Analogously: < is pre-congruence

15/21



Howe’s Method Abstractly

» Together with y: Z*() — B(Z*(), Z*() for strong transitions “—”,

we require new parameter
Y: 0 — B(Z*0, Z*0)

for weak transitions “="

» We need liftings to the category of relations:

Relc —=> Relc Rel? x Relc —2> Relc
\—\l ll—l |f|°'=x\f\l lH
cC—*.¢C crxC—B ¢

» .. and some other assumptions

Result: < (i.e. largest relation R, such that R < (v x ¥)[B(A, R)])

is a congruence (i.e. Z(<) < (v x U]
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Step-Indexing Logical Relations
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Step-Indexing, Concretely

The step-indexed logical relation £ for combinatory logic is the

inductively defined family (£* € Z*0 x £*0) y<w:

£0=T, LT =LMAEL") AV(L" L"), L= () L"

n<w

where € and V are relation transformers:
E(R) ={(t,s) |ift > t' thenIs’.s =s" A R(t',s")}
V(Q,R) ={(t,s) | forall i, rn, Q(r, r2),

ift & t'then3ds’.s 2 s A R(t',s")}

As a slogan: "related programs applied to related arguments produce

related results"
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Step-Indexing: Properties

> L®isafixpoint LL =LP N E(LP) N V(LP, LP)

» In first-order case we would reduce to the familiar fixpoint theory
and Kleene/Knaster-Tarski theorems, but because of

higher-order, we generally do not (!)
» Every £ is a congruence

> L% is sound for contextual preorder

Bottom Line: Step-indexing is another sound method for proving
contextual equivalence
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Step-Indexing, Abstractly

Under similar (but weaker) assumptions, as for weak applicative
bisimilarity,
1. There is an abstract (ordinal-indexed) logical relation (£%)
2. The limit £Y =, £ exists
3. Every L% is a congruence

4. LY is sound for contextual equivalence
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Conclusions

©

We broke the barrier between (co-)algebraic methods and

higher-order semantics

(2]

>
>
>
>
>
>
>

A lot to be done:

Call-by-value

Big-step semantics (and equivalence thereof)

Other behavioral equivalence (e.g. trace equivalence)
Metric, probabilistic, quantialic, fibrational generalizations
Modelling polymorphic languages

Modelling effectful languages

LY is included in applicative bisimilarity. When they are equal?
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Thank You for Your Attention!

Higher-Order Abstract GSOS
Categorical Framework for Higher-Order Operational Semantics
Language

Behaviour HO GSOS Specification
Signature =~ Endofunctor £: C—Con Behaviour = Mixed-variance functor
category C, e.g.:

B:C®xC—C, eg:
*C=Set, Z=1{0/0,a;/0,+/2,-/2}
*C="nominal sets”, XX = A +[A]X + X x X

\w\ [ 5
I ts=rls’ |
* B(X,Y) = YX + Y (deterministic) -

*B(X,Y) = 2,(YX+Y) (non-deterministic)

p—— |
= iG L}
7| o=

— Distributivity p of = over B

HO Bialgebraic Semantics

Generic Strong HO Bisimulation
Transition semantics is a unique solution y: uX — B(uZ, uX):
y Coalgebraic notion of strong 0
Zpi2. (22 B(uz, px) applicative bisimilarity ~ on lm
M,w{ BidD initial x-algebra px (=algebra of - i
B(id,£*V) rograms) as pullback HE —— vy.B(uZ,y)
S(Z % BUZ,pE) - BuS, T (T + ) O Bz, 5tps) prog P
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Bialgebras Form a Category

If f: A— A’and g: A’ — A” are p-bialgebra morphisms then so is the

composition g - f, for the diagram

A c B(A, A)
fl lB(A,f)
A/ < B(A", A —2UA) ., Bra AN
gl B(A/,g)l lB(A,g)

A7 o B(A”, A") B(g,A") B(f,A”")

B(A'" A"y ———— B(A, A")

obviously commutes.
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Lambda-Calculus

» Operational semantics rules

s—s’
st—s't (Ax.s) t — s[t/x]

> C = Set®, where Fis the category of finite cardinals

I:C—C IX=V+8X+Xx X,
B:CPxC—C,  BX,Y)=(X,Y)x(Y+YX+1)

where YX is exponent in Set”, V is the presheaf of variables

Set™(n) = n, (6X)(n) = X(n+1), {X, Y)(n) = Set™ (X", Y)
» uX is the presheaf A e Set™ of A-terms over n free variables
» H/O GSOS law is pointed:

px.y: Z(X x B(jX,Y)) — B(X, Z*(jX + Y))?
3Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”.
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Dinaturality

A dinatural transformation from F: C°? x C - Dto G: C°? x C - D is

a family (ox: F(X, X) — G(X, X))xec, such that

F(X,X) —=> G(X,X)

F(f,X) G(X,f)
/
F(Y,X) G(X,Y)
Foon ™ — Sy

foreveryf: X - Y

Example: apply: XY x Y — X
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Proving the “n-Law”

» Recall:
tos=0t t=t'rt' S s vt t=t As=t'r)

LML =LA E(L") A V(L™ L")
(L") ={(t,s) |ift > t'thenIs'.s =" A L"(t', s')}
V(L", L") ={(t,s) | forall r, ra, L"(r1, 12),
ift 2 t'then3s’.s 2 s' A L"(t',s")}
» Proof of L"(S- (K - 1) - f,f) byinduction on n, in particular:

S (K-I)-f>S'(K-1)-f>S"(K-1,f) 5> (K-1-t)-(f-t) > f-t
[ | | |
L‘" on—1 £n—2 £n—3 gnrﬁ
| | |

f f f S fot = f-t
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