Introduction to Higher-Order Mathematical

Operational Semantics

Sergey Goncharov

In(tro)duction to Higher-Order Mathematical

Operational Semantics

Sergey Goncharov

HO Mathematical Operational Semantics Project

@ Goncharov, Milius, Schréder, Tsampas, and Urbat, “Towards a
Higher-Order Mathematical Operational Semantics”, POPL 2023

@ Urbat, Tsampas, Goncharov, Milius, and Schroder, “Weak Similarity in
Higher-Order Mathematical Operational Semantics”, LICS 2023

@ Goncharov, Santamaria, Schréder, Tsampas, and Urbat, “Logical
Predicates in Higher-Order Mathematical Operational Semantics”,
FoSSaCSs 2024

@ Goncharov, Milius, Tsampas, and Urbat, “Bialgebraic Reasoning on
Higher-Order Program Equivalence”, LICS 2024

@ Goncharov, Tsampas, and Urbat, “Abstract Operational Methods for
Call-by-Push-Value”, POPL 2025

.. and rolling

1/21

Context: Applied Category Theory

» Somewhat like
https://en.wikipedia.org/wiki/Applied_category_theory

» More specifically: using category theory as an organization device

» Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic

» Parameters: functor F (for transitions), predicate liftings

Q: 2X — 2FX (for modalities), axioms

» Results: soundness, completeness, Hennessy-Milner property,

complexity bounds, etc.

2/21

https://en.wikipedia.org/wiki/Applied_category_theory

Context: Applied Category Theory

» Somewhat like
https://en.wikipedia.org/wiki/Applied_category_theory

» More specifically: using category theory as an organization device

» Yet more specially: proving classes of statements at once

Example: Coalgebraic Modal Logic
» Parameters: functor F (for transitions), predicate liftings
Q: 2X — 2FX (for modalities), axioms
» Results: soundness, completeness, Hennessy-Milner property,
complexity bounds, etc.
Our Grand Obijective: develop a similar approach to operational

semantics
2/21

https://en.wikipedia.org/wiki/Applied_category_theory

Semantics: Operational v.s. Denotational

» Operational Semantics (how programs behave?)

s(s(0)) + s(s(0)) — s(s(0) + s(s(0)))
— s(s(0+s(s(0)))) — s(s(s(s(0))))

» Denotational Semantics (what programs denote?)

[s(s(0)) 4 s(s(0))] = [s(s(0))] + [s(s(0))] =2+2=4

3/21

Semantics in Use

Denotational:
@ Compositional by design:

[p] = [a] = [Clpl] = [Clq]]

for any program context C
@ Mathematically rigorous and precise

® Ease to define: from hard to impossible
Operational:

@ Lightweight and easy to define even for complex languages
® Nonuniform and fraggile

@ Hard to reason about (because of lack of compositionality)

Overall: not (sufficiently) mathematical
4/21

Semantics in Use

Denotational:
@ Compositional by design:

[p] = [q] = [Clpl] = [Clq]]

for any program context C
@ Mathematically rigorous and precise
@ Ease to define: from hard to impossible

Operational:

@ ’ Lightweight and easy to define even for complex languages

® Nonuniform and fraggile

@ Hard to reason about (because of lack of compositionality)

Overall: not (sufficiently) mathematical
4/21

First-Order Abstract GSOS

4/21

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

» Signature endo-functor X
» Behaviour endo-functor B

» GSOS law - natural transformation px: (X x BX) — B(Z*X)

Example (Process Algebra):
> L ={par/2,0/0} u{a.(-)/1] a€ A}
> BX = P(Ax X)
» GSOS law encodes rules like:
p>p
ppar g > p’ par g

Turi and Plotkin, “Towards a Mathematical Operational Semantics”.

5/21

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

» Signature endo-functor X
» Behaviour endo-functor B

» GSOS law - natural transformation px: (X x BX) — B(Z*X)

Example (Process Algebra):
> > ={par/2,0/0}uia (-)/1]ac A}
> BX =P(Ax X)

» GSOS law encodes rules like: bichiou - fron

operation from £ p > p
ppar g > p’ par g

Turi and Plotkin, “Towards a Mathematical Operational Semantics”.

5/21

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

» Signature endo-functor
» Behaviour endo-functor B

» GSOS law - natural transformation px: X(X x B/ X) —» B(Z*X)

Example (Process Algebra):
> ¥ ={par/2,0/0}u{a. (-)/1]ac A}
> BX = P(A x X)
» GSOS law encodes rules like:
p > p
ppar g = p’ par q

Turi and Plotkin, “Towards a Mathematical Operational Semantics”.

5/21

First-Orded GSOS

Theory of first-order GSOS takes L, B, p as input parameters, and
produces

© operational semantics y: £*() — B(Z*)) (operational model)
@ notion of program equivalence ~ < Z*() x £*() (strong bisimilarity)

© generic compositionality: p ~ g = C[p] ~ Clgq] for any context

But

® ~ is too fine-grained for programming languages

@ first-order < higher-order ~» no A-calculus

6/21

First-Orded GSOS

Theory of first-order GSOS takes L, B, p as input parameters, and
produces

© operational semantics y: £*() — B(Z*)) (operational model)
@ notion of program equivalence ~ < Z*() x £*() (strong bisimilarity)

© generic compositionality: p ~ g = C[p] ~ Clgq] for any context

But

® ~ is too fine-grained for programming languages

@ first-order < higher-order ~» no A-calculus (-

6/21

Higher-Order Abstract GSOS

6/21

(Call-by-Name, Extended) Combinatory Logic

> | (=Ap.p)
> K (=Ap.Aq. p)

> S(=ApAgAr.(p-r)-(q-r))
» plus S/, S” and K’ for partially reduced terms

15 p K 5 K'(p) K'(p) & p S5 S'(p)
S'(p) % S"(p,q) S"(p,q) & (p-r)-(q-r)
p—p p 5 p
p-q—p'-q p-q—p

Example:S-p-q-r— S'(p)-q-r—S"(p.q)-r—(p-r)-(q-r)

» This is very similar to original GSOS, but it is not

7/21

(Call-by-Name, Extended) Combinatory Logic

> | (=Ap.p)
> K (=Ap.Ag.p)
> S(=ApAgAr.(p-r)-(g-r))

» plus S/, S” and K’ for partially reduced terms

15 p K 5 K'(p) K'(p) & p S5 S'(p)
S'(p) % S"(p,q) S"(p,q) & (p-r)-(q-r)
p—p p>p 0

p-q—p'-q p-q—p

Example:S-p-q-r— S'(p)-q-r—S"(p.q)-r—(p-r)-(q-r)

» This is very similar to original GSOS, but it is not

7/21

Higher-Order Abstract GSOS

A higher-order GSOS law consists of

» Signature =
» Mixed variance (!) behaviour functor B
» Family of maps px y: Z(X x B(X, Y)) — B(X, Z*(X + Y)) natural

in Y and dinatural in X

Example: For combinatory logic: B(X, Y) = YX + Y, pis induced by

rules of operational semantics

© Most (but not all') of Turi and Plotkin’s theory caries over

@ In particular: strong applicative bisimilarity ~ is implied and is
a congruence

8/21

Strong Applicative Bisimilarity

» Strong applicative bisimilarity is the largest symmetric relation ~
on programs, such that

lLp—=p'Ap~q = 3q.qg—q rp' ~q

2.p5pap~q = 3¢9 5 q rp ~q
» Key expected property - congruence: p ~ g implies Clp] ~ Clql
» Then it is sound method for proving contextual equivalence of p

and q (for every C, C[p] and Clq] are “behaviorally equivalent”)

9/21

Strong Applicative Bisimilarity: Examples

Bisimilar Terms:
> Qo = (SIS, Q1 = (I(SIN)(I(SI)), Qa = (H(SIN)(I1(SI)), etc.
» Then Qo = (SI)(SII) — (S'(ND(SI) — (S"(1, 1) (SI) — Q4
» Analogously, Q, —* Q,,1
» Proof that Q, ~ Q,,1:

> R={(P,Q)| Qo —* P,Qo —* Q} is bisimulation,
» hence (Q,, Q,)eRc ~

Non-Bisimilar Terms: Generally, for P — Q, P » Q
E.g. K'(I)] — I,but | +

10/21

Proving Congruence

@ Structural induction won'’t do: given p ~ g, S’(p) ~ S’(q) would
require S”(q,t) ~ S"(p, t)
@ Proving that
= ={(Clpl, Clg)) | p ~ g}

is bisimulation won't do, for S”(s, t)p — (sp)(tp)

® Proving that {(C[pl], C[ql) | pi ~ g;} is bisimulation won't do:

p1p2 ~ q1q2 May require p’ ~ ¢’ where p; % p’and g1 % ¢’

@ Worked approach: bisimulation up-to congruence «— <*isa

bisimulation. Hence < < <* c~

11/21

Proving Congruence

@ Structural induction won'’t do: given p ~ g, S’(p) ~ S’(q) would
require S”(q,t) ~ S"(p, t)
@ Proving that
= ={(Clpl, Clg)) | p ~ g}

is bisimulation won't do, for S”(s, t)p — (sp)(tp)

® Proving that {(C[pl], C[ql) | pi ~ g;} is bisimulation won't do:
p1p2 ~ q1q2 May require p’ ~ ¢’ where p; % p’and g1 % ¢’

@ Worked approach: bisimulation up-to congruence «— <*isa

bisimulation. Hence < < <* c~

Key insight of HO-MOS: This generalizes to:

regular categories, mono-preserving B and “finitary”

11/21

Lambda-Calculus

» Standard rules

s — s’
st—s't (Ax.s) t — s[t/x]

> We take: C = Set” (F - category of finite cardinals)

I:C—C IX=V4+3X+XxX
B:CPxC—-C BX,Y)=(X,Y)x(Y+Y*+1)

V(n) = {n} (variables), (5X)(n) = X(n + 1), (X, Y)(n) = C(X", Y)

> (Z*()(n) =~ A-terms over n free variables?

2Fjore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”.
12/21

Lambda-Calculus

“substitution” behavior . .
» Standard rules reduction” behavior

s — s’
st—s't (Ax.s) t — s[t/x]

> We take: C = Set” (F - category of finite cardinals)

I:C—C IX=V 43X+ XxX
B:CPxC—C BX,Y)=(X,Y)x(Y+Y*+1)

V(n) = {n} (variables), (5X)(n) = X(n + 1), (X, Y)(n) = C(X", Y)

> (Z*()(n) =~ A-terms over n free variables?

2Fjore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”.
12/21

Further Advances

12/21

First-Orded GSOS [Recall]

Theory of first-order GSOS takes L, B, p as input parameters, and
produces

© operational semantics y: £*() — B(Z*)) (operational model)
@ notion of program equivalence ~ < Z*() x £*() (strong bisimilarity)

© generic compositionality: p ~ g = C[p] ~ Clgq] for any context

But

® ~ is too fine-grained for programming languages ('

@ first-order < higher-order ~» no A-calculus

13/21

Weak Bisimilarity

13/21

Weak Applicative (Bi)similarity

> Weak transitions: let = be —*, = be (= - 5)
» Weak applicative similarity - largest such < that

1. t — t’ implies s = s’ and t’ < s’ for some s’

. . r
2. t 5 t impliess = s’ and t’ < s’ for some s’

» Weak applicative bisimilarity x = < n 2

Example: f < S- (K -1) - f (analogue of f < Ax. x), but
S-(K-1)-Q £ Q, because

S (K-1)-Q5 (K- 1-8)(Q-t) but Q—>Q— ...

Key Property: pre-congruence of <

Proof Idea: Bisimulation up-to Howe’s closure (Howe's method)

14/21

Howe's Method

For a relation R < £*0) x £*(), Howe’s closure R is generated by

R e, RPE f(t],.. t)Rs
t RH ¢ flte,....tn) RF s

0 This is crucially weaker than saying that R" is closure of R under

contexts and transitivity

Key property: ~" is a bisimulation

=) I caHca

= x is congruence

Analogously: < is pre-congruence

15/21

Howe’s Method Abstractly

» Together with y: Z*() — B(Z*(), Z*() for strong transitions “—”,

we require new parameter
Y: 0 — B(Z*0, Z*0)

for weak transitions “="

» We need liftings to the category of relations:

Relc —=> Relc Rel? x Relc —2> Relc
\—\l ll—l |f|°'=x\f\l lH
cC—*.¢C crxC—B ¢

» .. and some other assumptions

Result: < (i.e. largest relation R, such that R < (v x ¥)[B(A, R)])

is a congruence (i.e. Z(<) < (v x U]

16/21

Step-Indexing Logical Relations

16/21

Step-Indexing, Concretely

The step-indexed logical relation £ for combinatory logic is the

inductively defined family (£* € Z*0 x £*0) y<w:

£0=T, LT =LMAEL") AV(L" L"), L= () L"

n<w

where € and V are relation transformers:
E(R) ={(t,s) |ift > t' thenIs’.s =s" A R(t',s")}
V(Q,R) ={(t,s) | forall i, rn, Q(r, r2),

ift & t'then3ds’.s 2 s A R(t',s")}

As a slogan: "related programs applied to related arguments produce

related results"

17/21

Step-Indexing: Properties

> L®isafixpoint LL =LP N E(LP) N V(LP, LP)

» In first-order case we would reduce to the familiar fixpoint theory
and Kleene/Knaster-Tarski theorems, but because of

higher-order, we generally do not (!)
» Every £ is a congruence

> L% is sound for contextual preorder

Bottom Line: Step-indexing is another sound method for proving
contextual equivalence

18/21

Step-Indexing, Abstractly

Under similar (but weaker) assumptions, as for weak applicative
bisimilarity,
1. There is an abstract (ordinal-indexed) logical relation (£%)
2. The limit £Y =, £ exists
3. Every L% is a congruence

4. LY is sound for contextual equivalence

19/21

Conclusions

©

We broke the barrier between (co-)algebraic methods and

higher-order semantics

(2]

>
>
>
>
>
>
>

A lot to be done:

Call-by-value

Big-step semantics (and equivalence thereof)

Other behavioral equivalence (e.g. trace equivalence)
Metric, probabilistic, quantialic, fibrational generalizations
Modelling polymorphic languages

Modelling effectful languages

LY is included in applicative bisimilarity. When they are equal?

20/21

Thank You for Your Attention!

Higher-Order Abstract GSOS
Categorical Framework for Higher-Order Operational Semantics
Language

Behaviour HO GSOS Specification
Signature =~ Endofunctor £: C—Con Behaviour = Mixed-variance functor
category C, e.g.:

B:C®xC—C, eg:
*C=Set, Z=1{0/0,a;/0,+/2,-/2}
*C="nominal sets”, XX = A +[A]X + X x X

\w\ [5
I ts=rls’ |
* B(X,Y) = YX + Y (deterministic) -

*B(X,Y) = 2,(YX+Y) (non-deterministic)

p—— |
= iG L}
7| o=

— Distributivity p of = over B

HO Bialgebraic Semantics

Generic Strong HO Bisimulation
Transition semantics is a unique solution y: uX — B(uZ, uX):
y Coalgebraic notion of strong 0
Zpi2. (22 B(uz, px) applicative bisimilarity ~ on lm
M,w{ BidD initial x-algebra px (=algebra of - i
B(id,£*V) rograms) as pullback HE —— vy.B(uZ,y)
S(Z % BUZ,pE) - BuS, T (T +) O Bz, 5tps) prog P

21/21

Bialgebras Form a Category

If f: A— A’and g: A’ — A” are p-bialgebra morphisms then so is the

composition g - f, for the diagram

A c B(A, A)
fl lB(A,f)
A/ < B(A", A —2UA) ., Bra AN
gl B(A/,g)l lB(A,g)

A7 o B(A”, A") B(g,A") B(f,A”")

B(A'" A"y ———— B(A, A")

obviously commutes.

1/4

Lambda-Calculus

» Operational semantics rules

s—s’
st—s't (Ax.s) t — s[t/x]

> C = Set®, where Fis the category of finite cardinals

I:C—C IX=V+8X+Xx X,
B:CPxC—C, BX,Y)=(X,Y)x(Y+YX+1)

where YX is exponent in Set”, V is the presheaf of variables

Set™(n) = n, (6X)(n) = X(n+1), {X, Y)(n) = Set™ (X", Y)
» uX is the presheaf A e Set™ of A-terms over n free variables
» H/O GSOS law is pointed:

px.y: Z(X x B(jX,Y)) — B(X, Z*(jX + Y))?
3Fiore, Plotkin, and Turi, “Abstract Syntax and Variable Binding”.

2/4

Dinaturality

A dinatural transformation from F: C°? x C - Dto G: C°? x C - D is

a family (ox: F(X, X) — G(X, X))xec, such that

F(X,X) —=> G(X,X)

F(f,X) G(X,f)
/
F(Y,X) G(X,Y)
Foon ™ — Sy

foreveryf: X - Y

Example: apply: XY x Y — X

3/4

Proving the “n-Law”

» Recall:
tos=0t t=t'rt' S s vt t=t As=t'r)

LML =LA E(L") A V(L™ L")
(L") ={(t,s) |ift > t'thenIs'.s =" A L"(t', s')}
V(L", L") ={(t,s) | forall r, ra, L"(r1, 12),
ift 2 t'then3s’.s 2 s' A L"(t',s")}
» Proof of L"(S- (K - 1) - f,f) byinduction on n, in particular:

S (K-I)-f>S'(K-1)-f>S"(K-1,f) 5> (K-1-t)-(f-t) > f-t
[| | |
L‘" on—1 £n—2 £n—3 gnrﬁ
| | |

f f f S fot = f-t

4/4

References |

ﬁ Fiore, Marcelo P., Gordon D. Plotkin, and Daniele Turi. “Abstract
Syntax and Variable Binding”. In: 14th Annual IEEE Symposium on
Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE
Computer Society, 1999, pp. 193-202. URL:
https://doi.org/10.1109/LICS.1999.782615.

ﬁ Goncharov, Sergey, Stefan Milius, Lutz Schroder, Stelios Tsampas,
and Henning Urbat. “Towards a Higher-Order Mathematical
Operational Semantics”. In: Proc. ACM Program. Lang. 7 (2023),
pp. 632-658. DOI: 10.1145/3571215.

ﬁ Goncharov, Sergey, Stefan Milius, Stelios Tsampas, and
Henning Urbat. “Bialgebraic Reasoning on Higher-Order Program
Equivalence”. In: LICS. 2024, pp. 1-13.

a4/4

https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1145/3571215

References Il

@ Goncharov, Sergey, Alessio Santamaria, Lutz Schréder,
Stelios Tsampas, and Henning Urbat. “Logical Predicates in
Higher-Order Mathematical Operational Semantics”. In:
Foundations of Software Science and Computation Structures - 27th
International Conference, FoSSaCS 2024, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2024,
Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part Il.
Ed. by Naoki Kobayashi and James Worrell. Vol. 14575. Lecture
Notes in Computer Science. Springer, 2024, pp. 47-69. DOI:
10.1007/978-3-031-57231-9_3. URL:
https://doi.org/10.1007/978-3-031-57231-9_3.

a4/4

https://doi.org/10.1007/978-3-031-57231-9_3
https://doi.org/10.1007/978-3-031-57231-9_3

References llI

ﬁ Goncharov, Sergey, Stelios Tsampas, and Henning Urbat. “Abstract
Operational Methods for Call-by-Push-Value”. In: Proc. ACM
Program. Lang. (2025). accepted.

[4 Turi, D. and G. Plotkin. “Towards a Mathematical Operational
Semantics”. In: Logic in Computer Science. IEEE. 1997, pp. 280-291.

@ Urbat, Henning, Stelios Tsampas, Sergey Goncharov, Stefan Milius,
and Lutz Schroder. “Weak Similarity in Higher-Order Mathematical
Operational Semantics”. In: LICS. 2023, pp. 1-13. DOI:
10.1109/LICS56636.2023.10175706. URL:
https://doi.org/10.1109/LICS56636.2023.10175706.

4/4

https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706

	First-Order Abstract GSOS
	Higher-Order Abstract GSOS
	Further Advances
	Weak Bisimilarity
	Step-Indexing Logical Relations
	Appendix

