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SCENARIO # 1: AUTOMATA

How do we know that automata

are equivalent?



PROOF "BY COINDUCTION"

Equation (ab)* = a(ba)*b + 1 is true, because a(ba)*b + 1 is a fixpoint of the
same map
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Equation (ab)* = a(ba)*b + 1 is true, because a(ba)*b + 1 is a fixpoint of the
same map’:
a(ba)*b+ 1 = a((ba)(ba)* + 1)b + 1
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PROOF "BY COINDUCTION"

Equation (ab)* = a(ba)*b + 1 is true, because a(ba)*b + 1 is a fixpoint of the
same map’:

a(ba)*b+ 1| = a((ba)(ba)* + 1)b + 1

ba)(ba)*b + alb + 1
ab)a(ba)*b + ab + 1

b)(|a(ba)*b+ 1)) + 1

m This only works because z — abz + 1 is guarded
®m 7 — (a+ 1)z + 1 is un-guarded and has infinitely many fixpoints

'A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966



SCENARIO # 2: HYBRID SYSTEMS

Bouncing ball is a simple Newtonian system specified by differential equation
h = —g (g ~ 9.8) whose solution is

1

h(t) = ho + vot — %
with initial values:

By =0 ho#0 (peakheight)
mho=0,u #0 (zero height)

1 2 3 4

This system is progressive: every iteration consumes non-zero time (although it
keeps getting smaller - Zeno behaviour)

Non-progressive (chattering) behaviour is often regarded a modelling artefact



SCENARIO # 3: PROCESS ALGEBRA

Basic Process Algebra (BPA):
P,Q,....=v |acA|P+Q|P-Q

E.g. we can specify a 2-cell FIFO, storing bits:

Bg = ing. BY +iny. B}
Bi = ing. Bg’i +in1. Bé’i + out;. Bo (7 € {07 1})
B;’j — Out]‘. Bi (Z,7 € {07 1})

Solutions are unique for guarded specifications. Otherwise not: X = X has
infinitely many solutions



MONADS FOR DENOTATIONS

We can model previous examples with monads, augmented with partially
defined iteration operators
f: X > T +X)
ff: X 5> TY

w.rt. a co-Cartesian category (=category with finite coproducts)

1. Automata: 7X = P(A* x X)
2. Hybrid time: TX = R>o x X + R>o
3. BPA: TX = v7. P, (X + A x v) (final F-coalgebra)

Note that a monad carries information about computational effects, but not
about guardedness



GUARDED V.S. UNGUARDED

Most of time, guarded fixpoints are restrictions of unguarded ones. But the
guarded ones are better behaved:

m Often unique, hence enable reasoning by coinduction
m If not unique, often computed as least fixponts

m Foundation-independent

m Simpler to define and to work with

This motivates a type discipline for propagating guardedness over structures



ITERATION AND RECURSION




ITERATION VS. RECURSION

m Iteration operator:
fiX>Y+X

x>y
m Dually: recursion operator:

[TxX—>X
fi:I' - X

equivalently: fix: (X — X) — X, e.g. in the \-calculus
m Guarded recursion: fix: (>X — X) > X
» Curry-Howard counterpart of the Lob rule
> Familiar model: topos of trees Set* ™2

> Notion of guardedness is representable: f: T" x X — Y is guarded
(=contractive) iff f factors as

FxX—f;X

I x nexti /,/’/

I'xp>X

2L. Birkedal et al, First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of
Trees, 2011



PROBLEM

Sticking to iteration, can we generally define representable guardedness?

m Maybe (?) we need an endofunctor >, and then f: X — Y + X is guarded

if it factors

! Y+ X

S~ TYJrguard
S

Y +p X

m Example: f: X - (Y + X) x N> Y x N+ X x N is guarded iff it factors
through (Y x N + X x suc)

m However, e.g. f: X — (Y + X)* should be guarded if in every
f(z) =[e1,...,en] every e, € X is preceded by some e, € Y/

= "p" may depend both on X and on Y



m An identity-on-object functor J: V — C has a right adjoint iff
» Cisisomorphic to Kleisli category of a monad on V3
» all presheaves C(.J, A): V°P — Set are representable
m Fine-grain call-by-value* was interpreted over Freyd categories, which are
certain identity-on-object functors J: V — C where
> Vs a category of values
» Cis a category of computations
All J(- xA): V — C have right adjoints iff
» Cisisomorphic to a Kleisli category of a strong monad 7, and all Kleisli
exponentials BT4 exist
» all presheaves C(J(- xA), B): V°P — Set are representable

m Here: representability of guardedness in fine-grain call-by value

3D. Schumacher, Minimale und Maximale Tripelerzeugende und eine Bemerkung zur
Tripelbarkeit, 1969

“P. Levy, ). Power, H. Thielecke, Modelling Environments in Call-By-Value Programming
Languages, 2002



REPRESENTING GUARDEDNESS




ABSTRACT (COCARTESIAN) GUARDEDNESS

A guardedness predicate identifies for all objects X, Y, Z guarded morphisms
C.(X,Y,Z) < C(X,Y + Z), such that

X->VOIW g:Y->VIW
[f,9]: X+Y > VOIW

(trv.) - f: X->Y

s
I X >Y)Z (par.)

) f: X—>Y)YZ g Y > VIW h: Z->V+W

A [0 R X > VoW

where f: X > Y )Z means f € C.(X,Y, 2)

m A category with a guardedness predicate is called guarded
m A monad is guarded if its Kleisli category is guarded



EXAMPLES

B f: X > P(A" x (Y + Z)) is guarded if it factors through

PA* XY + AT x Z) > P(A" xY + A" x 2)
~ P(A* x (Y + 2))

B f: X > R0 x (Y + Z) + Rxo is guarded if it factors through

R;o><Y+R>0XZ—FRZO;)R;QXY—FRgoXZ-FRgo
ER;0><(Y+Z)+R>0

mf: X —>vy.T(Y + Z)+ Hr) is guarded if it factors through

TY +Hwy....) >T(Y +2)+ H(vy. ...))
=vy.T((Y + Z) + Hy)



CALL-BY-VALUE WITH EFFECTS




VERY SIMPLE METALANGUAGE (VSML)

m Sorts A, B, C, ...
m Signatures X, 3. of pure and effectful programs f: A — B

m Semantics of (3,, =.) w.r.t. identity-on-objects functor J: V — C:

> an object [A] € | V| to each sort A
» amorphism [f] € V([A],[B]) to each f: A - Be X,
» a morphism [f] € C([A], [B])toeach f: A— Be X,

m Terms in single-variable (!) context:

fiA—>BeXx, ThHyv: A f:A—>BeX¥. Thyv:A
'ty f(v): B I'tc f(v): B
', v: A F'tep: A x: Abcq: B
T: Avz: A I} returnv: A I'cx<—p;q: B

m [—] extends easily



MULTIVARIABLE CONTEXTS

The fine-grain call-by-value (FGCBV) is obtained by enabling multivariable
contextsT" = (z1: A1,...,xn: A,), €.8. variable term formation:

T1: A1, ..., Tn: An by Tt A

FGCBV can be interpreted over a Freyd category:

m V is a category with finite products
m actionV x C - Cof Von C
m J: V — Cis an identity-on-objects functor, preserving the action



STRONG MONADS

m Originally, Moggi® interpreted call-by-value over strong monads
m 7T is strong if it comes with strength

Tt X xTY 5> T(X xY)

which satisfies a number of coherence conditions
m We then can interpret
f::[[FFCp:Aﬂ g::[[r,$:A}—CQIBH
IC ez < p; q: B]: [O] 22 0] x T]A] & T[T x A] <> T[B]

SE. Moggi, Notions of Computation and Monads, 1991



HIGHER ORDER

If we want to implement higher order:

Ix: Abcp: B ' f:A—>B ', v: A
' Az.p: A—> B ' fv: B

we need to have a semantics [A — B] = U([A], [B]), such that

C(J(X x A),B)=V(X,U(A, B))
naturally in A

Theorem (5)

The following are equivalent:
B C(J(X xA),B)~V(X,U(A,B)) forsomeU: V x C — V, naturally in A
m Presheaves C(J(X x (-)), B): V°» — Set are representable

m C is isomorphic to a Kleisli category of a strong monad T on V and all
exponentials (TB)* exist

bEssentially: P. Levy, ). Power, H. Thielecke, Modelling Environments in Call-By-Value Programming
Languages, 2002



(NON-)STRONG MONADS

If we do not care about strength, we have a simpler characterization

Theorem (Schumacher)

Given id-on-objects functor J: V — C, the following are equivalent:
m J is a left adjoint
m Presheaves C(J(-), B): V°* — Set are representable
m C is isomorphic to a Kleisli category of a monad

and then:

Theorem

Given a Freyd category J: V — C, the following are equivalent:
m J is a left adjoint
m Presheaves C(J(-), B): V°* — Set are representable
m C is isomorphic to a Kleisli category of a strong monad



INTERMEDIATE SUMMARY

monads strong monads

strength

id.-on-obj. functors Freyd categories



CALL-BY-VALUE MEETS GUARDEDNESS




REPRESENTING GUARDEDNESS

Definition

Given J: V — C, as before and guarded C, call the guardedness
predicate C. (J-)representable if for all A, B € |C| the presheaves

C.(J(-), A, B): V® - Set

are representable

Note that C. (X, A,0) =~ C(X, A), hence

Lemma

If C. is representable, J is a left adjoint. In this case, C is a Kleisli category of
some monad on V



GUARDED PARAMETRIZED MONADS

Recall that a bifunctor4: V x V — V is a parametrized monad’ if
m Every (-)# X is a monad
m Every (-)4# f is a monad morphism

Definition

A guarded parametrized monad on a symmetric monoidal (V,®, I, p, A\, i, y)
consists of a bifunctor4: V x V — V, natural transformations

n: A— A#I
v: A#(B®R®C) > (A® B)#C & (A#B)#C - A#(BR®C)
X: A#B®C#D —» (AQC)#(BRD) (: A#(B#C) > A#(B®C()

plus a bunch of commutative diagrams

m Intuition: in X Y, Y is the guarded part, X is (possibly) unguarded part
m Coherence property: if f,g: &1 — E4E5 and
> f,gare madeofn, v, ¢ p A o, 7, id, ®,%
> object letters do not repeat either in £ orin E24&)
> & and &) do not contain4
then f =g
’T. Uustalu, Generalizing Substitution, 2003




MAIN THEOREM

Given co-Cartesian V and an identity-on-object functor J: V — C strictly
preserving coproducts, C is guarded and C., is representable iff

m C >~ V_y for a guarded parametrized monad (3, 7, v, x, &, ¢)
m the compositions

X4Y = X4V +0) =% (X +Y)#0

are all monic and
B f: X — Y) ZIiff f factors through Y #(Z + 0) = (Y + 2)#0

Analogously, representability of
C.(J(- xA),B,C): V® - Set

produces strong guarded parametrized monads



EXAMPLES

Least guardedness: X #Y = TX

Greatest guardedness: X #Y = T(X + Y) (exception transformer)
Automata: X #Y = P(A* x X + A* xY)

Hybrid systems: X#Y = R=o x X + R-o x Y + Rx>g

Generalized processes: XY =T(X + Hwvy. T((X +Y) + H7)))



TOTAL SUMMARY

guarded __, strong guarded
parametrized monads parametrized monads
guarded id.-on-obj. guarded Freyd
functors categorles
monads strong monads

guardedness

3‘0\\\ 3 /
@&
e®

id.-on-obj. functors streneth Freyd categories



FURTHER WORK

B Generalize: express quantitative information by typing, e.g. how
productive is the program, how much time it consumes, etc.
m Dualize: representation of guarded recursion by comonads
» What are instances of comonadic guarded recursion?
> Representing recursion on casual streams/course-of-value recursion
m Implement (Haskell, Agda, Coq)
m Research:

» Can we prove more general coherence theorem?
» Are properly monoidal guarded parametrized monads interesting?
> Can we characterize guardedness by unary functors (like >)?



THANK YOU FOR YOUR ATTENTION!



STRONG MONADS

Originally, Moggi® interpreted call-by-value over strong monads

m Afunctor F: C — D between monoidal C and D is strong if there is
(natural in A, B) strength 74 5: A® FB — F(A® B), such that

IQFX =~ FX
|

FI®X)

(XQY)®FZ - F(X®Y)®2)
| Il Il
FX XY QFY) & X@FY®2z) 5> FIX® Y ®2))

m A monad (7,7, ) on C is strong if T' is strong additionally n, . are strong:

¢

X®Y — XQ®Y X®TTY > T(XQTY) =5 TT(X®Y)
X®"~L in X®;Li i,l,
XQTY > T(XQY) XQTY z T(X®Y)
Theorem (°)

In monoidal closed categories, strength is equivalent to enrichment

8E. Moggi, Notions of Computation and Monads, 1991
A. Kock, Strong Functors and Monoidal Monads, 1972



NON-REPRESENTABLE GUARDEDNESS

If J is not a left adjoint, guardedeness is not representable. But this is boring.
Is there other counterexamples?

Theorem

Suppose, every morphism in 'V factorizes as a regular epic, followed by a
monic. Let T be a guarded monad on V. Then a family of monos

(ex,v: X#Y — T(X +Y))x,velv| extends to a guarded parametrized
monad iff

B every ex,y Is the largest guarded subobject of T'(X +Y)

m forevery f: X — T(Y + Z) and a regular epic g: X' — X, if fgis
guarded then f is guarded

Example
In Set, let f: X — Y + Z be guarded in Z if {z € Z | f*(inr2) # &} is finite.

inr

This predicate is not Id-representable, as any 1 — X — () + X is guarded, but
inr is not if X is infinite.
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