REPRESENTING GUARDEDNESS IN CALL-BY-VALUE

SERGEY GONCHAROV

annun .

FAU ERLANGEN-NÜRNBERG

FSCD 2023, ROME, JULY 5, 2023

How do we know that automata

are equivalent?

$$a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1$$

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

$$a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1$$

= $a(ba)(ba)^*b + a1b + 1$

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

$$a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1$$

= $a(ba)(ba)^*b + a1b + 1$
= $(ab)a(ba)^*b + ab + 1$

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

$$a(ba)^*b + 1 = a((ba)(ba)^* + 1)b + 1$$

= $a(ba)(ba)^*b + a1b + 1$
= $(ab)a(ba)^*b + ab + 1$
= $(ab)(a(ba)^*b + 1) + 1$

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

$$\frac{a(ba)^*b+1}{a(ba)(ba)^*+1} = a((ba)(ba)^*+1)b+1$$
$$= a(ba)(ba)^*b+a1b+1$$
$$= (ab)a(ba)^*b+ab+1$$
$$= (ab)(\boxed{a(ba)^*b+1}) + 1$$

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

$$\begin{array}{r} a(ba)^*b + 1 \\ = a((ba)(ba)^* + 1)b + 1 \\ = a(ba)(ba)^*b + a1b + 1 \\ = (ab)a(ba)^*b + ab + 1 \\ = (ab)(\boxed{a(ba)^*b + 1} + 1
\end{array}$$

• This only works because $x \mapsto abx + 1$ is guarded

• $x \mapsto (a+1)x + 1$ is un-guarded and has infinitely many fixpoints

¹A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Bouncing ball is a simple Newtonian system specified by differential equation $\ddot{h} = -g (g \approx 9.8)$ whose solution is

$$h(t) = h_0 + v_0 t - \frac{gt^2}{2}$$

with initial values:

•
$$v_0 = 0$$
, $h_0 \neq 0$ (peak height)

•
$$h_0 = 0$$
, $v_0 \neq 0$ (zero height)

This system is **progressive**: every iteration consumes non-zero time (although it keeps getting smaller – Zeno behaviour)

Non-progressive (chattering) behaviour is often regarded a modelling artefact

Basic Process Algebra (BPA):

$$P, Q, \ldots \coloneqq \checkmark \mid a \in A \mid P + Q \mid P \cdot Q$$

E.g. we can specify a 2-cell FIFO, storing bits:

$$\begin{split} B_0 &= \operatorname{in}_0. \ B_1^0 + \operatorname{in}_1. \ B_1^1 \\ B_1^i &= \operatorname{in}_0. \ B_2^{0,i} + \operatorname{in}_1. \ B_2^{1,i} + \operatorname{out}_i. \ B_0 \qquad \qquad (i \in \{0,1\}) \\ B_2^{i,j} &= \operatorname{out}_j. \ B_1^i \qquad \qquad (i,j \in \{0,1\}) \end{split}$$

Solutions are unique for guarded specifications. Otherwise not: X = X has infinitely many solutions

We can model previous examples with **monads**, augmented with partially defined iteration operators

$$\frac{f: X \to T(Y+X)}{f^{\dagger}: X \to TY}$$

w.r.t. a co-Cartesian category (=category with finite coproducts)

- 1. Automata: $TX = \mathcal{P}(A^* \times X)$
- 2. Hybrid time: $TX = \mathbb{R}_{\geq 0} \times X + \overline{\mathbb{R}}_{\geq 0}$
- 3. BPA: $TX = \nu \gamma$. $\mathcal{P}_{\omega_1}(X + A \times \gamma)$ (final *F*-coalgebra)

Note that a monad carries information about computational effects, but not about guardedness

Most of time, guarded fixpoints are restrictions of unguarded ones. But the guarded ones are better behaved:

- Often unique, hence enable reasoning by coinduction
- If not unique, often computed as least fixponts
- Foundation-independent
- Simpler to define and to work with

This motivates a type discipline for propagating guardedness over structures

ITERATION AND RECURSION

ITERATION VS. RECURSION

Iteration operator:

$$\frac{f\colon X\to Y+X}{f^\dagger\colon X\to Y}$$

Dually: recursion operator:

$$\frac{f:\Gamma \times X \to X}{f_{\dagger}:\Gamma \to X}$$

equivalently: fix: $(X \to X) \to X$, e.g. in the λ -calculus

- **Guarded recursion:** fix: $(\triangleright X \to X) \to X$
 - Curry-Howard counterpart of the Löb rule
 - Familiar model: topos of trees $\mathbf{Set}^{\omega^{\mathsf{op}_2}}$
 - ▶ Notion of guardedness is representable: $f : \Gamma \times X \to Y$ is guarded (=contractive) iff f factors as

$$\begin{array}{c} \Gamma \times X & \xrightarrow{f} & X \\ \hline \Gamma \times \operatorname{next} & & \\ \Gamma \times \triangleright X \end{array}$$

²L. Birkedal et al, First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees, 2011

Problem

Sticking to iteration, can we generally define representable guardedness?

• Maybe (?) we need an endofunctor \triangleright , and then $f: X \rightarrow Y + X$ is guarded if it factors

- Example: $f: X \to (Y + X) \times \mathbb{N} \cong Y \times \mathbb{N} + X \times \mathbb{N}$ is guarded iff it factors through $(Y \times \mathbb{N} + X \times suc)$
- However, e.g. $f: X \to (Y + X)^*$ should be guarded if in every $f(x) = [e_1, \ldots, e_n]$ every $e_n \in X$ is preceded by some $e_k \in Y$

 \Rightarrow ">" may depend both on X and on Y

- An identity-on-object functor $J : \mathbf{V} \to \mathbf{C}$ has a right adjoint iff
 - ▶ C is isomorphic to Kleisli category of a monad on V³
 - ▶ all presheaves C(J, A): $V^{op} \rightarrow Set$ are representable
- Fine-grain call-by-value⁴ was interpreted over Freyd categories, which are certain identity-on-object functors $J: \mathbf{V} \to \mathbf{C}$ where
 - ► V is a category of values
 - C is a category of computations
 - All $J(-\times A) \colon \mathbf{V} \to \mathbf{C}$ have right adjoints iff
 - \blacktriangleright C is isomorphic to a Kleisli category of a strong monad T, and all Kleisli exponentials B^{TA} exist
 - ▶ all presheaves $C(J(- \times A), B) : V^{op} \rightarrow Set$ are representable
- Here: representability of guardedness in fine-grain call-by value

³D. Schumacher, Minimale und Maximale Tripelerzeugende und eine Bemerkung zur Tripelbarkeit, 1969

⁴P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002

REPRESENTING GUARDEDNESS

A guardedness predicate identifies for all objects X, Y, Z guarded morphisms $C_{\bullet}(X, Y, Z) \subseteq C(X, Y + Z)$, such that

$$(\operatorname{trv}_{+}) \quad \frac{f \colon X \to Y}{\operatorname{inl} f \colon X \to Y \wr Z} \qquad (\operatorname{par}_{+}) \quad \frac{f \colon X \to V \wr W}{[f,g] \colon X + Y \to V \wr W}$$

$$(\mathbf{cmp}_{+}) \quad \frac{f: X \to Y \wr Z \quad g: Y \to V \wr W \quad h: Z \to V + W}{[g,h] f: X \to V \wr W}$$

where $f: X \to Y \rangle Z$ means $f \in \mathbf{C}_{\bullet}(X, Y, Z)$

- A category with a guardedness predicate is called guarded
- A monad is guarded if its Kleisli category is guarded

■ $f: X \to \mathcal{P}(A^* \times (Y + Z))$ is guarded if it factors through $\mathcal{P}(A^* \times Y + A^+ \times Z) \hookrightarrow \mathcal{P}(A^* \times Y + A^* \times Z)$ $\cong \mathcal{P}(A^* \times (Y + Z))$

■ $f: X \to \mathbb{R}_{\geq 0} \times (Y + Z) + \overline{\mathbb{R}}_{\geq 0}$ is guarded if it factors through

$$\mathbb{R}_{\geq 0} \times Y + \mathbb{R}_{>0} \times Z + \bar{\mathbb{R}}_{\geq 0} \hookrightarrow \mathbb{R}_{\geq 0} \times Y + \mathbb{R}_{\geq 0} \times Z + \bar{\mathbb{R}}_{\geq 0}$$
$$\cong \mathbb{R}_{\geq 0} \times (Y + Z) + \bar{\mathbb{R}}_{\geq 0}$$

■ $f: X \to \nu\gamma$. $T((Y + Z) + H\gamma)$ is guarded if it factors through

$$T(Y + H(\nu\gamma...)) \hookrightarrow T((Y + Z) + H(\nu\gamma...))$$
$$\cong \nu\gamma.T((Y + Z) + H\gamma)$$

CALL-BY-VALUE WITH EFFECTS

VERY SIMPLE METALANGUAGE (VSML)

- **Sorts** A, B, C, \ldots
- **Signatures** Σ_v , Σ_c of pure and effectful programs $f: A \rightarrow B$
- Semantics of (Σ_v, Σ_c) w.r.t. identity-on-objects functor $J: \mathbf{V} \to \mathbf{C}$:
 - an object $\llbracket A \rrbracket \in |\mathbf{V}|$ to each sort A
 - a morphism $\llbracket f \rrbracket \in \mathbf{V}(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f \colon A \to B \in \Sigma_v$
 - a morphism $\llbracket f \rrbracket \in \mathbf{C}(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f \colon A \to B \in \Sigma_c$

Terms in single-variable (!) context:

$$\begin{array}{c} \underline{f:A \to B \in \Sigma_v \quad \Gamma \vdash_v v:A} \\ \overline{\Gamma \vdash_v f(v):B} \\ \hline \\ \underline{x:A \vdash_v x:A} \\ \end{array} \begin{array}{c} \underline{f:A \to B \in \Sigma_c \quad \Gamma \vdash_v v:A} \\ \overline{\Gamma \vdash_c f(v):B} \\ \hline \\ \hline \\ \overline{\Gamma \vdash_c p:A \quad x:A \vdash_c q:B} \\ \overline{\Gamma \vdash_c x \leftarrow p;q:B} \end{array}$$

■ [[-]] extends easily

The fine-grain call-by-value (FGCBV) is obtained by enabling multivariable contexts $\Gamma = (x_1 : A_1, \dots, x_n : A_n)$, e.g. variable term formation:

 $x_1: A_1, \ldots, x_n: A_n \vdash_{\mathsf{v}} x_i: A_i$

FGCBV can be interpreted over a Freyd category:

- V is a category with finite products
- \blacksquare action $\mathbf{V}\times\mathbf{C}\rightarrow\mathbf{C}$ of \mathbf{V} on \mathbf{C}
- \blacksquare $J: \mathbf{V} \rightarrow \mathbf{C}$ is an identity-on-objects functor, preserving the action

- Originally, Moggi⁵ interpreted call-by-value over strong monads
- $\blacksquare T is strong if it comes with strength$

$$\tau \colon X \times TY \to T(X \times Y)$$

which satisfies a number of coherence conditions

We then can interpret

$$\frac{f := \llbracket \Gamma \vdash_{\mathsf{c}} p : A \rrbracket \quad g := \llbracket \Gamma, x : A \vdash_{\mathsf{c}} q : B \rrbracket}{\llbracket \Gamma \vdash_{\mathsf{c}} x \leftarrow p; q : B \rrbracket : \llbracket \Gamma \rrbracket \xrightarrow{\langle \Gamma, f \rangle} \llbracket \Gamma \rrbracket \times T \llbracket A \rrbracket \xrightarrow{\tau} T \llbracket \Gamma \times A \rrbracket \xrightarrow{g^*} T \llbracket B \rrbracket}$$

⁵E. Moggi, Notions of Computation and Monads, 1991

If we want to implement higher order:

$$\frac{\Gamma, x: A \vdash_{\mathsf{c}} p: B}{\Gamma \vdash_{\mathsf{v}} \lambda x. p: A \to B} \qquad \qquad \frac{\Gamma \vdash_{\mathsf{v}} f: A \to B \qquad \Gamma \vdash_{\mathsf{v}} v: A}{\Gamma \vdash_{\mathsf{c}} f v: B}$$

we need to have a semantics $\llbracket A \to B \rrbracket = U(\llbracket A \rrbracket, \llbracket B \rrbracket)$, such that

$$\mathbf{C}(J(X \times A), B) \cong \mathbf{V}(X, U(A, B))$$

naturally in A

Theorem (⁶)

The following are equivalent:

- $C(J(X \times A), B) \cong V(X, U(A, B))$ for some $U: V \times C \rightarrow V$, naturally in A
- Presheaves $C(J(X \times (-)), B) : V^{op} \rightarrow Set$ are representable
- C is isomorphic to a Kleisli category of a strong monad T on V and all exponentials $(TB)^A$ exist

⁶Essentially: P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002

If we do not care about strength, we have a simpler characterization

Theorem (Schumacher)

Given id-on-objects functor $J : \mathbf{V} \to \mathbf{C}$, the following are equivalent:

- J is a left adjoint
- Presheaves C(J(-), B): $V^{op} \rightarrow Set$ are representable
- C is isomorphic to a Kleisli category of a monad

and then:

Theorem

Given a Freyd category $J \colon \mathbf{V} \to \mathbf{C}$, the following are equivalent:

- J is a left adjoint
- Presheaves C(J(-), B): $V^{op} \rightarrow Set$ are representable
- **C** is isomorphic to a Kleisli category of a strong monad

CALL-BY-VALUE MEETS GUARDEDNESS

Definition

Given $J: \mathbf{V} \to \mathbf{C}$, as before and guarded \mathbf{C} , call the guardedness predicate \mathbf{C}_{\bullet} (*J*-)representable if for all $A, B \in |\mathbf{C}|$ the presheaves

 $\mathbf{C}_{\bullet}(J(-), A, B) \colon \mathbf{V}^{\mathsf{op}} \to \mathbf{Set}$

are representable

Note that $\mathbf{C}_{\bullet}(X, A, \emptyset) \cong \mathbf{C}(X, A)$, hence

Lemma

If ${\bf C}_{\bullet}$ is representable, ${\it J}$ is a left adjoint. In this case, ${\bf C}$ is a Kleisli category of some monad on ${\bf V}$

GUARDED PARAMETRIZED MONADS

Recall that a bifunctor $\#: \mathbf{V} \times \mathbf{V} \to \mathbf{V}$ is a parametrized monad⁷ if

- Every (-) # X is a monad
- Every (-) # f is a monad morphism

Definition

A guarded parametrized monad on a symmetric monoidal $(\mathbf{V}, \otimes, I, \rho, \lambda, \alpha, \gamma)$ consists of a bifunctor #: $\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{V}$, natural transformations

$$\eta\colon A \to A \# I$$

- $\upsilon \colon \ A \# (B \otimes C) \to (A \otimes B) \# C \qquad \qquad \xi \colon \ (A \# B) \# C \to A \# (B \otimes C)$
- $\chi\colon \ A \, \# \, B \otimes C \, \# \, D \to (A \otimes C) \, \# \, (B \otimes D) \qquad \zeta \colon \ A \, \# \, (B \, \# \, C) \to A \, \# \, (B \otimes C)$

plus a bunch of commutative diagrams

- Intuition: in X # Y, Y is the guarded part, X is (possibly) unguarded part
- **Coherence property:** if $f, g: \mathcal{E}_1 \to \mathcal{E}_2 \# \mathcal{E}'_2$ and
 - *f*, *g* are made of η , ϵ , v, ξ , ζ , ρ , λ , α , γ , id, \otimes , #
 - object letters do not repeat either in \mathcal{E}_1 or in $\mathcal{E}_2 \# \mathcal{E}'_2$
 - \mathcal{E}_2 and \mathcal{E}'_2 do not contain #

then f = g

⁷T. Uustalu, Generalizing Substitution, 2003

Theorem

Given co-Cartesian V and an identity-on-object functor $J : V \to C$ strictly preserving coproducts, C is guarded and C_• is representable iff

- **C** \cong **V**_{-#0} for a guarded parametrized monad (#, $\eta, \upsilon, \chi, \xi, \zeta$)
- the compositions

$$X \# Y \cong X \# (Y + \emptyset) \xrightarrow{v_{X,Y,\emptyset}} (X + Y) \# \emptyset$$

are all monic and

 $\blacksquare f: X \to Y \wr Z \text{ iff } f \text{ factors through } Y \# (Z + 0) \xrightarrow{\upsilon} (Y + Z) \# \emptyset$

Analogously, representability of

$$\mathbf{C}_{\bullet}(J(-\times A), B, C) \colon \mathbf{V}^{\mathsf{op}} \to \mathbf{Set}$$

produces strong guarded parametrized monads

- Least guardedness: X # Y = TX
- Greatest guardedness: X # Y = T(X + Y) (exception transformer)
- Automata: $X # Y = \mathcal{P}(A^* \times X + A^+ \times Y)$
- **Hybrid systems:** $X # Y = \mathbb{R}_{\geq 0} \times X + \mathbb{R}_{>0} \times Y + \overline{\mathbb{R}}_{\geq 0}$
- Generalized processes: $X # Y = T(X + H(\nu\gamma, T((X + Y) + H\gamma)))$

- Generalize: express quantitative information by typing, e.g. how productive is the program, how much time it consumes, etc.
- Dualize: representation of guarded recursion by comonads
 - What are instances of comonadic guarded recursion?
 - Representing recursion on casual streams/course-of-value recursion
- Implement (Haskell, Agda, Coq)
- Research:
 - Can we prove more general coherence theorem?
 - Are properly monoidal guarded parametrized monads interesting?
 - ► Can we characterize guardedness by unary functors (like ▷)?

THANK YOU FOR YOUR ATTENTION!

Originally, Moggi⁸ interpreted call-by-value over strong monads

■ A functor $F: \mathbb{C} \to \mathbb{D}$ between monoidal \mathbb{C} and \mathbb{D} is strong if there is (natural in A, B) strength $\tau_{A,B}: A \otimes FB \to F(A \otimes B)$, such that

A monad (T, η, μ) on C is strong if T is strong additionally η, μ are strong:

 $\begin{array}{cccc} X\otimes Y & & & X\otimes Y & & X\otimes TTY \xrightarrow{\tau} T(X\otimes TY) \xrightarrow{T\tau} TT(X\otimes Y) \\ X\otimes \eta \downarrow & & \downarrow \eta & & X\otimes \mu \downarrow & & \downarrow \mu \\ X\otimes TY \xrightarrow{\tau} T(X\otimes Y) & & & X\otimes TY \xrightarrow{\tau} T(X\otimes Y) \end{array}$

Theorem (9)

In monoidal closed categories, strength is equivalent to enrichment

⁸E. Moggi, Notions of Computation and Monads, 1991

⁹A. Kock, Strong Functors and Monoidal Monads, 1972

If *J* is not a left adjoint, guardedeness is not representable. But this is boring. Is there other counterexamples?

Theorem

Suppose, every morphism in V factorizes as a regular epic, followed by a monic. Let T be a guarded monad on V. Then a family of monos $(\epsilon_{X,Y} \colon X \# Y \hookrightarrow T(X + Y))_{X,Y \in |\mathbf{V}|}$ extends to a guarded parametrized monad iff

- every $\epsilon_{X,Y}$ is the largest guarded subobject of T(X + Y)
- for every $f: X \to T(Y + Z)$ and a regular epic $g: X' \to X$, if fg is guarded then f is guarded

Example

In Set, let $f: X \to Y + Z$ be guarded in Z if $\{z \in Z \mid f^{-1}(\text{inr } z) \neq \emptyset\}$ is finite. This predicate is not Id-representable, as any $1 \hookrightarrow X \xrightarrow{\text{inr}} \emptyset + X$ is guarded, but inr is not if X is infinite.