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Scenario # 1: Automata

How do we know that automata
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are equivalent?



Proof "by Coinduction"

Equation pabq‹ “ apbaq‹b` 1 is true, because apbaq‹b` 1 is a fixpoint of the
same map

1:

apbaq‹b` 1 “ appbaqpbaq‹ ` 1qb` 1

“ apbaqpbaq‹b` a1b` 1

“ pabqapbaq‹b` ab` 1

“ pabqpapbaq‹b` 1q ` 1

This only works because x ÞÑ abx` 1 is guarded
x ÞÑ pa` 1qx` 1 is un-guarded and has infinitely many fixpoints

1A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966
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Scenario # 2: Hybrid Systems

1 2 3 4

0.5

1

Bouncing ball is a simple Newtonian system specified by di�erential equation
ḧ “ ´g (g « 9.8) whose solution is

hptq “ h0 ` v0t´
gt2

2

with initial values:

v0 “ 0, h0 ‰ 0 (peak height)
h0 “ 0, v0 ‰ 0 (zero height)

This system is progressive: every iteration consumes non-zero time (although it
keeps getting smaller – Zeno behaviour)

Non-progressive (chattering) behaviour is often regarded a modelling artefact



Scenario # 3: Process Algebra

Basic Process Algebra (BPA):

P,Q, . . . :“ X | a P A | P `Q | P ¨Q

E.g. we can specify a 2-cell FIFO, storing bits:

B0 “ in0. B
0
1 ` in1. B

1
1

Bi1 “ in0. B
0,i
2 ` in1. B

1,i
2 ` outi. B0 pi P t0, 1uq

Bi,j2 “ outj . B
i
1 pi, j P t0, 1uq

Solutions are unique for guarded specifications. Otherwise not: X “ X has
infinitely many solutions



Monads for Denotations

We can model previous examples with monads, augmented with partially
defined iteration operators

f : X Ñ T pY `Xq

f: : X Ñ TY

w.r.t. a co-Cartesian category (=category with finite coproducts)

1. Automata: TX “ PpA‹ ˆXq
2. Hybrid time: TX “ Rě0 ˆX ` R̄ě0

3. BPA: TX “ νγ.Pω1pX `Aˆ γq (final F -coalgebra)

Note that a monad carries information about computational e�ects, but not
about guardedness



Guarded v.s. Unguarded

Most of time, guarded fixpoints are restrictions of unguarded ones. But the
guarded ones are better behaved:

Often unique, hence enable reasoning by coinduction
If not unique, often computed as least fixponts
Foundation-independent
Simpler to define and to work with

This motivates a type discipline for propagating guardedness over structures



Iteration and Recursion



Iteration vs. Recursion

Iteration operator:
f : X Ñ Y `X

f: : X Ñ Y

Dually: recursion operator:

f : ΓˆX Ñ X

f: : Γ Ñ X

equivalently: fix : pX Ñ Xq Ñ X , e.g. in the λ-calculus
Guarded recursion: fix : p.X Ñ Xq Ñ X
I Curry-Howard counterpart of the Löb rule
I Familiar model: topos of trees Setω

op 2
I Notion of guardedness is representable: f : ΓˆX Ñ Y is guarded

(=contractive) i� f factors as

ΓˆX X

Γˆ .X

f

Γ ˆ next

2L. Birkedal et al, First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of
Trees, 2011



Problem

Problem
Sticking to iteration, can we generally define representable guardedness?

Maybe (?) we need an endofunctor ., and then f : X Ñ Y `X is guarded
if it factors

X Y `X

Y ` .X

f

Y ` guard

Example: f : X Ñ pY `Xq ˆ N– Y ˆ N`X ˆ N is guarded i� it factors
through pY ˆ N`X ˆ sucq

However, e.g. f : X Ñ pY `Xq‹ should be guarded if in every
fpxq “ re1, . . . , ens every en P X is preceded by some ek P Y

ñ "." may depend both on X and on Y



Approach

An identity-on-object functor J : VÑ C has a right adjoint i�
I C is isomorphic to Kleisli category of a monad on V3
I all presheaves CpJ,Aq : Vop Ñ Set are representable

Fine-grain call-by-value4 was interpreted over Freyd categories, which are
certain identity-on-object functors J : VÑ C where
I V is a category of values
I C is a category of computations

All Jp--ˆAq : VÑ C have right adjoints i�
I C is isomorphic to a Kleisli category of a strong monad T , and all Kleisli

exponentials BTA exist
I all presheaves CpJp--ˆAq, Bq : Vop Ñ Set are representable

Here: representability of guardedness in fine-grain call-by value

3D. Schumacher, Minimale und Maximale Tripelerzeugende und eine Bemerkung zur
Tripelbarkeit, 1969

4P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming
Languages, 2002



Representing Guardedness



Abstract (coCartesian) Guardedness

A guardedness predicate identifies for all objects X,Y, Z guarded morphisms
C‚pX,Y, Zq Ď CpX,Y ` Zq, such that

(trv`)
f : X Ñ Y

inl f : X Ñ Y 〉〉Z
(par`)

f : X Ñ V 〉〉W g : Y Ñ V 〉〉W
rf, gs : X ` Y Ñ V 〉〉W

(cmp`)
f : X Ñ Y 〉〉Z g : Y Ñ V 〉〉W h : Z Ñ V `W

rg, hs f : X Ñ V 〉〉W

where f : X Ñ Y 〉〉Z means f P C‚pX,Y, Zq

A category with a guardedness predicate is called guarded
A monad is guarded if its Kleisli category is guarded



Examples

f : X Ñ PpA‹ ˆ pY ` Zqq is guarded if it factors through

PpA‹ ˆ Y `A` ˆ Zq ↪Ñ PpA‹ ˆ Y `A‹ ˆ Zq
– PpA‹ ˆ pY ` Zqq

f : X Ñ Rě0 ˆ pY ` Zq ` R̄ě0 is guarded if it factors through

Rě0 ˆ Y ` Rą0 ˆ Z ` R̄ě0 ↪Ñ Rě0 ˆ Y ` Rě0 ˆ Z ` R̄ě0

– Rě0 ˆ pY ` Zq ` R̄ě0

f : X Ñ νγ. T ppY ` Zq `Hγq is guarded if it factors through

T pY `Hpνγ. . . .qq ↪Ñ T ppY ` Zq `Hpνγ. . . .qq

– νγ. T ppY ` Zq `Hγq



Call-by-Value with Effects



Very Simple Metalanguage (VSML)

Sorts A,B,C, . . .
Signatures Σv , Σc of pure and e�ectful programs f : AÑ B

Semantics of pΣv,Σcq w.r.t. identity-on-objects functor J : VÑ C:
I an object JAK P |V| to each sort A
I a morphism JfK P VpJAK, JBKq to each f : AÑ B P Σv
I a morphism JfK P CpJAK, JBKq to each f : AÑ B P Σc

Terms in single-variable (!) context:

f : AÑ B P Σv Γ $v v : A

Γ $v fpvq : B

f : AÑ B P Σc Γ $v v : A

Γ $c fpvq : B

x : A $v x : A

Γ $v v : A

Γ $c return v : A

Γ $c p : A x : A $c q : B

Γ $c xÐ p; q : B

J´K extends easily



Multivariable Contexts

The fine-grain call-by-value (FGCBV) is obtained by enabling multivariable
contexts Γ “ px1 : A1, . . . , xn : Anq, e.g. variable term formation:

x1 : A1, . . . , xn : An $v xi : Ai

FGCBV can be interpreted over a Freyd category:

V is a category with finite products
action V ˆCÑ C of V on C

J : VÑ C is an identity-on-objects functor, preserving the action



Strong Monads

Originally, Moggi5 interpreted call-by-value over strong monads
T is strong if it comes with strength

τ : X ˆ TY Ñ T pX ˆ Y q

which satisfies a number of coherence conditions
We then can interpret

f :“ JΓ $c p : AK g :“ JΓ, x : A $c q : BK

JΓ $c xÐ p; q : BK : JΓK
〈Γ,f〉
ÝÝÝÑ JΓKˆ T JAK τ

ÝÑ T JΓˆAK g‹
ÝÑ T JBK

5E. Moggi, Notions of Computation and Monads, 1991



Higher Order

If we want to implement higher order:

Γ, x : A $c p : B

Γ $v λx. p : AÑ B

Γ $v f : AÑ B Γ $v v : A

Γ $c f v : B

we need to have a semantics JAÑ BK “ UpJAK, JBKq, such that

CpJpX ˆAq, Bq –VpX,UpA,Bqq

naturally in A

Theorem (6)
The following are equivalent:

CpJpX ˆAq, Bq –VpX,UpA,Bqq for some U : VˆCÑ V, naturally in A
Presheaves CpJpX ˆ p--qq, Bq : Vop

Ñ Set are representable
C is isomorphic to a Kleisli category of a strong monad T on V and all
exponentials pTBqA exist

6Essentially: P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming
Languages, 2002



(Non-)Strong Monads

If we do not care about strength, we have a simpler characterization

Theorem (Schumacher)
Given id-on-objects functor J : VÑ C, the following are equivalent:

J is a left adjoint
Presheaves CpJp--q, Bq : Vop

Ñ Set are representable
C is isomorphic to a Kleisli category of a monad

and then:

Theorem
Given a Freyd category J : VÑ C, the following are equivalent:

J is a left adjoint
Presheaves CpJp--q, Bq : Vop

Ñ Set are representable
C is isomorphic to a Kleisli category of a strong monad



Intermediate Summary

monads strong monads

id.-on-obj. functors Freyd categories

rep
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en
tab

ilit
y

strength



Call-by-Value Meets Guardedness



Representing Guardedness

Definition
Given J : VÑ C, as before and guarded C, call the guardedness
predicate C‚ (J-)representable if for all A,B P |C| the presheaves

C‚pJp--q, A,Bq : V
op
Ñ Set

are representable

Note that C‚pX,A, ∅q –CpX,Aq, hence

Lemma
If C‚ is representable, J is a left adjoint. In this case, C is a Kleisli category of
some monad on V



Guarded Parametrized Monads

Recall that a bifunctor#: V ˆVÑ V is a parametrized monad7 if
Every p--q#X is a monad
Every p--q#f is a monad morphism

Definition
A guarded parametrized monad on a symmetric monoidal pV,b, I, ρ, λ, α, γq
consists of a bifunctor#: V ˆVÑ V, natural transformations

η : AÑ A#I

υ : A#pB b Cq Ñ pAbBq#C ξ : pA#Bq#C Ñ A#pB b Cq

χ : A#B b C#D Ñ pAb Cq#pB bDq ζ : A#pB#Cq Ñ A#pB b Cq

plus a bunch of commutative diagrams

Intuition: in X#Y , Y is the guarded part, X is (possibly) unguarded part
Coherence property: if f, g : E1 Ñ E2#E 12 and
I f , g are made of η, ε, υ, ξ, ζ, ρ, λ, α, γ, id, b,#
I object letters do not repeat either in E1 or in E2#E 12
I E2 and E 12 do not contain#

then f “ g
7T. Uustalu, Generalizing Substitution, 2003



Main Theorem

Theorem
Given co-Cartesian V and an identity-on-object functor J : VÑ C strictly
preserving coproducts, C is guarded and C‚ is representable i�

C–V--#0 for a guarded parametrized monad p#, η, υ, χ, ξ, ζq
the compositions

X#Y –X#pY ` ∅q
υX,Y,∅
ÝÝÝÝÑ pX ` Y q#∅

are all monic and
f : X Ñ Y 〉〉Z i� f factors through Y #pZ ` 0q

υ
ÝÑ pY ` Zq#∅

Analogously, representability of

C‚pJp--ˆAq, B,Cq : V
op
Ñ Set

produces strong guarded parametrized monads



Examples

Least guardedness: X#Y “ TX

Greatest guardedness: X#Y “ T pX ` Y q (exception transformer)
Automata: X#Y “ PpA‹ ˆX `A` ˆ Y q
Hybrid systems: X#Y “ Rě0 ˆX ` Rą0 ˆ Y ` R̄ě0

Generalized processes: X#Y “ T pX `Hpνγ. T ppX ` Y q `Hγqqq



Total Summary

guarded
parametrized monads

strong guarded
parametrized monads

guarded id.-on-obj.
functors

guarded Freyd
categories

monads strong monads

id.-on-obj. functors Freyd categories

representability

gu
ar

de
dn
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s

strength



Further Work

Generalize: express quantitative information by typing, e.g. how
productive is the program, how much time it consumes, etc.
Dualize: representation of guarded recursion by comonads
I What are instances of comonadic guarded recursion?
I Representing recursion on casual streams/course-of-value recursion

Implement (Haskell, Agda, Coq)
Research:
I Can we prove more general coherence theorem?
I Are properly monoidal guarded parametrized monads interesting?
I Can we characterize guardedness by unary functors (like .)?



Thank you for your Attention!



Strong Monads

Originally, Moggi8 interpreted call-by-value over strong monads

A functor F : CÑ D between monoidal C and D is strong if there is
(natural in A, B) strength τA,B : Ab FB Ñ F pAbBq, such that

I b FX FX

F pI bXq FX

τ

–

–

pX b Y q b FZ F ppX b Y q b Zq

X b pY b FY q X b F pY b Zq F pX b pY b Zqq

–

τ

–

X b τ τ

A monad pT, η, µq on C is strong if T is strong additionally η, µ are strong:

X b Y X b Y

X b TY T pX b Y q

X b η η

τ

X b TTY T pX b TY q TT pX b Y q

X b TY T pX b Y q

X b µ

τ Tτ

µ

τ

Theorem (9)
In monoidal closed categories, strength is equivalent to enrichment

8E. Moggi, Notions of Computation and Monads, 1991
9A. Kock, Strong Functors and Monoidal Monads, 1972



Non-Representable Guardedness

If J is not a left adjoint, guardedeness is not representable. But this is boring.
Is there other counterexamples?

Theorem
Suppose, every morphism in V factorizes as a regular epic, followed by a
monic. Let T be a guarded monad on V. Then a family of monos
pεX,Y : X#Y ↪Ñ T pX ` Y qqX,Y P|V| extends to a guarded parametrized
monad i�

every εX,Y is the largest guarded subobject of T pX ` Y q
for every f : X Ñ T pY ` Zq and a regular epic g : X 1 Ñ X , if f g is
guarded then f is guarded

Example
In Set, let f : X Ñ Y ` Z be guarded in Z if tz P Z | f -1

pinr zq ‰ Hu is finite.
This predicate is not Id-representable, as any 1 ↪Ñ X

inr
ÝÑ ∅`X is guarded, but

inr is not if X is infinite.
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