Representing Guardedness in Call-By-Value

SERGEY GONCHAROV

FAU ERlangen-Nürnberc

FSCD 2023, ROMF, JULY 5, 2023

How do we know that automata

are equivalent?

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map

Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
a(b a)^{\star} b+1=a\left((b a)(b a)^{\star}+1\right) b+1
$$

${ }^{1}$ A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
\begin{aligned}
a(b a)^{\star} b+1 & =a\left((b a)(b a)^{\star}+1\right) b+1 \\
& =a(b a)(b a)^{\star} b+a 1 b+1
\end{aligned}
$$

${ }^{1}$ A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
\begin{aligned}
a(b a)^{\star} b+1 & =a\left((b a)(b a)^{\star}+1\right) b+1 \\
& =a(b a)(b a)^{\star} b+a 1 b+1 \\
& =(a b) a(b a)^{\star} b+a b+1
\end{aligned}
$$

Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
\begin{aligned}
a(b a)^{\star} b+1 & =a\left((b a)(b a)^{\star}+1\right) b+1 \\
& =a(b a)(b a)^{\star} b+a 1 b+1 \\
& =(a b) a(b a)^{\star} b+a b+1 \\
& =(a b)\left(a(b a)^{\star} b+1\right)+1
\end{aligned}
$$

Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
\begin{aligned}
\boxed{a(b a)^{\star} b+1} & =a\left((b a)(b a)^{\star}+1\right) b+1 \\
& =a(b a)(b a)^{\star} b+a 1 b+1 \\
& =(a b) a(b a)^{\star} b+a b+1 \\
& =(a b)\left(a(b a)^{\star} b+1\right)+1
\end{aligned}
$$

[^0]
Proof "by Coinduction"

Equation $(a b)^{\star}=a(b a)^{\star} b+1$ is true, because $a(b a)^{\star} b+1$ is a fixpoint of the same map ${ }^{1}$:

$$
\begin{aligned}
\boxed{a(b a)^{\star} b+1} & =a\left((b a)(b a)^{\star}+1\right) b+1 \\
& =a(b a)(b a)^{\star} b+a 1 b+1 \\
& =(a b) a(b a)^{\star} b+a b+1 \\
& =(a b)\left(a(b a)^{\star} b+1\right)+1
\end{aligned}
$$

- This only works because $x \mapsto a b x+1$ is guarded
- $x \mapsto(a+1) x+1$ is un-guarded and has infinitely many fixpoints

Scenario \# 2: Hybrid SYstems

Bouncing ball is a simple Newtonian system specified by differential equation $\ddot{h}=-g(g \approx 9.8)$ whose solution is

$$
h(t)=h_{0}+v_{0} t-\frac{g t^{2}}{2}
$$

with initial values:

- $v_{0}=0, h_{0} \neq 0 \quad$ (peak height)
- $h_{0}=0, v_{0} \neq 0$ (zero height)

This system is progressive: every iteration consumes non-zero time (although it keeps getting smaller - Zeno behaviour)

Non-progressive (chattering) behaviour is often regarded a modelling artefact

Basic Process Algebra (BPA):

$$
P, Q, \ldots:=\checkmark|a \in A| P+Q \mid P \cdot Q
$$

E.g. we can specify a 2 -cell FIFO, storing bits:

$$
\begin{aligned}
B_{0} & =\mathrm{in}_{0} \cdot B_{1}^{0}+\mathrm{in}_{1} \cdot B_{1}^{1} & & \\
B_{1}^{i} & =\mathrm{in}_{0} \cdot B_{2}^{0, i}+\mathrm{in}_{1} \cdot B_{2}^{1, i}+\text { out }_{i} \cdot B_{0} & & (i \in\{0,1\}) \\
B_{2}^{i, j} & =\operatorname{out}_{j} \cdot B_{1}^{i} & & (i, j \in\{0,1\})
\end{aligned}
$$

Solutions are unique for guarded specifications. Otherwise not: $X=X$ has infinitely many solutions

We can model previous examples with monads, augmented with partially defined iteration operators

$$
\frac{f: X \rightarrow T(Y+X)}{f^{\dagger}: X \rightarrow T Y}
$$

w.r.t. a co-Cartesian category (=category with finite coproducts)

1. Automata: $T X=\mathcal{P}\left(A^{\star} \times X\right)$
2. Hybrid time: $T X=\mathbb{R}_{\geqslant 0} \times X+\overline{\mathbb{R}}_{\geqslant 0}$
3. BPA: $T X=\nu \gamma \cdot \mathcal{P}_{\omega_{1}}(X+A \times \gamma)$ (final F-coalgebra)

Note that a monad carries information about computational effects, but not about guardedness

GUARDED v.S. UNGUARDED

Most of time, guarded fixpoints are restrictions of unguarded ones. But the guarded ones are better behaved:

- Often unique, hence enable reasoning by coinduction
- If not unique, often computed as least fixponts
- Foundation-independent

■ Simpler to define and to work with

This motivates a type discipline for propagating guardedness over structures

ITERATION AND RECURSION

■ Iteration operator:

$$
\frac{f: X \rightarrow Y+X}{f^{\dagger}: X \rightarrow Y}
$$

■ Dually: recursion operator:

$$
\frac{f: \Gamma \times X \rightarrow X}{f_{\dagger}: \Gamma \rightarrow X}
$$

equivalently: fix: $(X \rightarrow X) \rightarrow X$, e.g. in the λ-calculus
■ Guarded recursion: fix: $(\triangleright X \rightarrow X) \rightarrow X$

- Curry-Howard counterpart of the Löb rule
- Familiar model: topos of trees Set ${ }^{\omega^{\circ \rho} 2}$
- Notion of guardedness is representable: $f: \Gamma \times X \rightarrow Y$ is guarded (=contractive) iff f factors as

[^1]
Problem

Sticking to iteration, can we generally define representable guardedness?

- Maybe (?) we need an endofunctor \triangleright, and then $f: X \rightarrow Y+X$ is guarded if it factors

■ Example: $f: X \rightarrow(Y+X) \times \mathbb{N} \cong Y \times \mathbb{N}+X \times \mathbb{N}$ is guarded iff it factors through $(Y \times \mathbb{N}+X \times$ suc $)$

- However, e.g. $f: X \rightarrow(Y+X)^{\star}$ should be guarded if in every $f(x)=\left[e_{1}, \ldots, e_{n}\right]$ every $e_{n} \in X$ is preceded by some $e_{k} \in Y$
\Rightarrow " \triangleright " may depend both on X and on Y

APPROACH

■ An identity-on-object functor $J: \mathbf{V} \rightarrow \mathbf{C}$ has a right adjoint iff

- C is isomorphic to Kleisli category of a monad on \mathbf{V}^{3}
- all presheaves $\mathbf{C}(J, A): \mathbf{V}^{\mathrm{op}} \rightarrow$ Set are representable

■ Fine-grain call-by-value ${ }^{4}$ was interpreted over Freyd categories, which are certain identity-on-object functors $J: \mathbf{V} \rightarrow \mathbf{C}$ where

- V is a category of values
- \mathbf{C} is a category of computations

All $J(-\times A): \mathbf{V} \rightarrow \mathbf{C}$ have right adjoints iff

- \mathbf{C} is isomorphic to a Kleisli category of a strong monad T, and all Kleisli exponentials $B^{T A}$ exist
- all presheaves $\mathbf{C}(J(-\times A), B): \mathbf{V}^{\text {op }} \rightarrow$ Set are representable

■ Here: representability of guardedness in fine-grain call-by value

[^2]
Representing Guardedness

A guardedness predicate identifies for all objects X, Y, Z guarded morphisms C. $(X, Y, Z) \subseteq \mathbf{C}(X, Y+Z)$, such that

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left(\text { trv }_{+}\right) \frac{f: X \rightarrow Y}{\operatorname{inl} f: X \rightarrow Y>Z} \\
\qquad\left(\mathbf{p a r}_{+}\right) \frac{f: X \rightarrow V>W \quad g: Y \rightarrow V>W}{[f, g]: X+Y \rightarrow V>W} \\
\\
\left(\mathbf{c m p}_{+}\right) \frac{f: X \rightarrow Y>Z}{} \quad g: Y \rightarrow V>W \quad h: Z \rightarrow V+W \\
[g, h] f: X \rightarrow V\rangle W
\end{array} \\
& \text { where } f: X \rightarrow Y>Z \text { means } f \in \mathbf{C} \cdot(X, Y, Z)
\end{aligned}
$$

- A category with a guardedness predicate is called guarded
- A monad is guarded if its Kleisli category is guarded
- $f: X \rightarrow \mathcal{P}\left(A^{\star} \times(Y+Z)\right)$ is guarded if it factors through

$$
\begin{aligned}
\mathcal{P}\left(A^{\star} \times Y+A^{+} \times Z\right) & \hookrightarrow \mathcal{P}\left(A^{\star} \times Y+A^{\star} \times Z\right) \\
& \cong \mathcal{P}\left(A^{\star} \times(Y+Z)\right)
\end{aligned}
$$

■ $f: X \rightarrow \mathbb{R} \geqslant 0 \times(Y+Z)+\overline{\mathbb{R}} \geqslant 0$ is guarded if it factors through

$$
\begin{aligned}
\mathbb{R}_{\geqslant 0} \times Y+\mathbb{R}_{>0} \times Z+\overline{\mathbb{R}}_{\geqslant 0} & \hookrightarrow \mathbb{R} \geqslant 0 \times Y+\mathbb{R} \geqslant 0 \times Z+\overline{\mathbb{R}}_{\geqslant 0} \\
& \cong \mathbb{R} \geqslant 0 \times(Y+Z)+\overline{\mathbb{R}} \geqslant 0
\end{aligned}
$$

■ $f: X \rightarrow \nu \gamma \cdot T((Y+Z)+H \gamma)$ is guarded if it factors through

$$
\begin{aligned}
T(Y+H(\nu \gamma \ldots)) & \hookrightarrow T((Y+Z)+H(\nu \gamma \ldots)) \\
& \cong \nu \gamma \cdot T((Y+Z)+H \gamma)
\end{aligned}
$$

CALL-BY-VALUE WITH EFFECTS

- Sorts A, B, C, \ldots

■ Signatures Σ_{v}, Σ_{c} of pure and effectful programs $f: A \rightarrow B$
■ Semantics of $\left(\Sigma_{v}, \Sigma_{c}\right)$ w.r.t. identity-on-objects functor $J: \mathbf{V} \rightarrow \mathbf{C}$:

- an object $\llbracket A \rrbracket \in|\mathbf{V}|$ to each sort A
- a morphism $\llbracket f \rrbracket \in \mathbf{V}(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f: A \rightarrow B \in \Sigma_{v}$
- a morphism $\llbracket f \rrbracket \in \mathbf{C}(\llbracket A \rrbracket, \llbracket B \rrbracket)$ to each $f: A \rightarrow B \in \Sigma_{c}$
- Terms in single-variable (!) context:

$$
\begin{array}{lll}
\frac{f: A \rightarrow B \in \Sigma_{v}}{\Gamma \vdash_{v} f(v): B} & \frac{f: A \rightarrow B \in \Sigma_{c} \Gamma: \vdash_{v} v: A}{\Gamma \vdash_{c} f(v): B} \\
\frac{\Gamma \vdash_{v} v: A}{x: A \vdash_{v} x: A} \quad \frac{\Gamma \vdash_{c} \text { return } v: A}{\Gamma} & \frac{\Gamma \vdash_{c} p: A \quad x: A \vdash_{c} q: B}{\Gamma \vdash_{c} x \leftarrow p ; q: B}
\end{array}
$$

- 【-】 extends easily

The fine-grain call-by-value (FGCBV) is obtained by enabling multivariable contexts $\Gamma=\left(x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right)$, e.g. variable term formation:

$$
\overline{x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{v} x_{i}: A_{i}}
$$

FGCBV can be interpreted over a Freyd category:

- V is a category with finite products
- action $\mathbf{V} \times \mathbf{C} \rightarrow \mathbf{C}$ of \mathbf{V} on \mathbf{C}
- $J: \mathbf{V} \rightarrow \mathbf{C}$ is an identity-on-objects functor, preserving the action

■ Originally, Moggi ${ }^{5}$ interpreted call-by-value over strong monads

- T is strong if it comes with strength

$$
\tau: X \times T Y \rightarrow T(X \times Y)
$$

which satisfies a number of coherence conditions

- We then can interpret

$$
\frac{f:=\llbracket \Gamma \vdash_{c} p: A \rrbracket \quad g:=\llbracket \Gamma, x: A \vdash_{c} q: B \rrbracket}{\llbracket \Gamma \vdash_{c} x \leftarrow p ; q: B \rrbracket: \llbracket \Gamma \rrbracket \xrightarrow{\langle\Gamma, f\rangle} \llbracket \Gamma \rrbracket \times T \llbracket A \rrbracket \xrightarrow{\tau} T \llbracket \Gamma \times A \rrbracket \xrightarrow{g^{*}} T \llbracket B \rrbracket}
$$

[^3]
Higher Order

If we want to implement higher order:

$$
\frac{\Gamma, x: A \vdash_{\mathrm{c}} p: B}{\Gamma \vdash_{\mathrm{v}} \lambda x \cdot p: A \rightarrow B} \quad \frac{\Gamma \vdash_{\mathrm{v}} f: A \rightarrow B \quad \Gamma \vdash_{\mathrm{v}} v: A}{\Gamma \vdash_{\mathrm{c}} f v: B}
$$

we need to have a semantics $\llbracket A \rightarrow B \rrbracket=U(\llbracket A \rrbracket, \llbracket B \rrbracket)$, such that

$$
\mathbf{C}(J(X \times A), B) \cong \mathbf{V}(X, U(A, B))
$$

naturally in A

Theorem (${ }^{6}$)

The following are equivalent:
■ $\mathbf{C}(J(X \times A), B) \cong \mathbf{V}(X, U(A, B))$ for some $U: \mathbf{V} \times \mathbf{C} \rightarrow \mathbf{V}$, naturally in A
■ Presheaves $\mathbf{C}(J(X \times(-)), B): \mathbf{V}^{\mathrm{op}} \rightarrow$ Set are representable
$\square \mathbf{C}$ is isomorphic to a Kleisli category of a strong monad \mathbf{T} on \mathbf{V} and all exponentials $(T B)^{A}$ exist

[^4]If we do not care about strength, we have a simpler characterization

Theorem (Schumacher)

Given id-on-objects functor $J: \mathbf{V} \rightarrow \mathbf{C}$, the following are equivalent:

- J is a left adjoint
- Presheaves $\mathbf{C}(J(-), B): \mathbf{V}^{\mathrm{op}} \rightarrow$ Set are representable
- C is isomorphic to a Kleisli category of a monad
and then:

Theorem

Given a Freyd category $J: \mathbf{V} \rightarrow \mathbf{C}$, the following are equivalent:

- J is a left adjoint
- Presheaves $\mathbf{C}(J(-), B): \mathbf{V}^{\mathrm{op}} \rightarrow$ Set are representable
- C is isomorphic to a Kleisli category of a strong monad

Call-by-Value Meets Guardedness

Definition

Given $J: \mathbf{V} \rightarrow \mathbf{C}$, as before and guarded \mathbf{C}, call the guardedness predicate $\mathbf{C} .(J$-)representable if for all $A, B \in|\mathbf{C}|$ the presheaves

$$
\mathbf{C} \cdot(J(-), A, B): \mathbf{V}^{\mathrm{op}} \rightarrow \text { Set }
$$

are representable

Note that $\mathbf{C} \cdot(X, A, \emptyset) \cong \mathbf{C}(X, A)$, hence
Lemma
If \mathbf{C}. is representable, J is a left adjoint. In this case, \mathbf{C} is a Kleisli category of some monad on V

GUARDED PARAMETRIZED MONADS

Recall that a bifunctor\#: $\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{V}$ is a parametrized monad ${ }^{7}$ if

- Every (-) $\# X$ is a monad
- Every $(-) \# f$ is a monad morphism

Definition

A guarded parametrized monad on a symmetric monoidal $(\mathbf{V}, \otimes, I, \rho, \lambda, \alpha, \gamma)$ consists of a bifunctor\#: $\mathbf{V} \times \mathbf{V} \rightarrow \mathbf{V}$, natural transformations
$\eta: A \rightarrow A \# I$
$v: A \#(B \otimes C) \rightarrow(A \otimes B) \# C \quad \xi:(A \# B) \# C \rightarrow A \#(B \otimes C)$
$\chi: A \# B \otimes C \# D \rightarrow(A \otimes C) \#(B \otimes D) \quad \zeta: A \#(B \# C) \rightarrow A \#(B \otimes C)$
plus a bunch of commutative diagrams

- Intuition: in $X \# Y, Y$ is the guarded part, X is (possibly) unguarded part
- Coherence property: if $f, g: \mathcal{E}_{1} \rightarrow \mathcal{E}_{2} \# \mathcal{E}_{2}^{\prime}$ and
- f, g are made of $\eta, \epsilon, v, \xi, \zeta, \rho, \lambda, \alpha, \gamma, \mathrm{id}, \otimes, \#$
- object letters do not repeat either in \mathcal{E}_{1} or in $\mathcal{E}_{2} \# \mathcal{E}_{2}^{\prime}$
- \mathcal{E}_{2} and \mathcal{E}_{2}^{\prime} do not contain \#
then $f=g$
${ }^{7}$ T. Uustalu, Generalizing Substitution, 2003

Theorem

Given co-Cartesian V and an identity-on-object functor J: V $\rightarrow \mathrm{C}$ strictly preserving coproducts, C is guarded and C . is representable iff

■ $\mathbf{C} \cong \mathbf{V}_{\text {- \#0 }}$ for a guarded parametrized monad ($\#, \eta, v, \chi, \xi, \zeta$)

- the compositions

$$
X \# Y \cong X \#(Y+\emptyset) \xrightarrow{v_{X, Y, \emptyset}}(X+Y) \# \emptyset
$$

are all monic and

- $f: X \rightarrow Y>Z$ iff f factors through $Y \#(Z+0) \xrightarrow{v}(Y+Z) \# \emptyset$

Analogously, representability of

$$
\text { C. }(J(-\times A), B, C): \mathbf{V}^{\mathrm{op}} \rightarrow \text { Set }
$$

produces strong guarded parametrized monads

■ Least guardedness: $X \# Y=T X$
■ Greatest guardedness: $X \# Y=T(X+Y)$ (exception transformer)

- Automata: $X \# Y=\mathcal{P}\left(A^{\star} \times X+A^{+} \times Y\right)$
- Hybrid systems: $X \# Y=\mathbb{R}_{\geqslant 0} \times X+\mathbb{R}_{>0} \times Y+\overline{\mathbb{R}}_{\geqslant 0}$

■ Generalized processes: $X \# Y=T(X+H(\nu \gamma \cdot T((X+Y)+H \gamma)))$

■ Generalize: express quantitative information by typing, e.g. how productive is the program, how much time it consumes, etc.

- Dualize: representation of guarded recursion by comonads
- What are instances of comonadic guarded recursion?
- Representing recursion on casual streams/course-of-value recursion

■ Implement (Haskell, Agda, Coq)
■ Research:

- Can we prove more general coherence theorem?
- Are properly monoidal guarded parametrized monads interesting?
- Can we characterize guardedness by unary functors (like \triangleright)?

Thank you for your Attention!

Strong Monads

Originally, Moggi ${ }^{8}$ interpreted call-by-value over strong monads

- A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ between monoidal \mathbf{C} and \mathbf{D} is strong if there is (natural in A, B) strength $\tau_{A, B}: A \otimes F B \rightarrow F(A \otimes B)$, such that

$$
\begin{array}{cccc}
I \otimes F X & \cong F X & (X \otimes Y) \otimes F Z \xrightarrow{\tau} \underset{\sim}{\tau} \begin{array}{ll}
\| & \\
F(I \otimes X) & \cong F X
\end{array} & X \otimes(Y \otimes F Y) \xrightarrow{X \otimes \tau} X \otimes F(Y \otimes Z) \xrightarrow{\tau} F(X \otimes(Y \otimes Z))
\end{array}
$$

- A monad (T, η, μ) on \mathbf{C} is strong if T is strong additionally η, μ are strong:

Theorem (${ }^{9}$)

In monoidal closed categories, strength is equivalent to enrichment

[^5]
Non-Representable Guardedness

If J is not a left adjoint, guardedeness is not representable. But this is boring. Is there other counterexamples?

Theorem

Suppose, every morphism in V factorizes as a regular epic, followed by a monic. Let \mathbf{T} be a guarded monad on \mathbf{V}. Then a family of monos $\left(\epsilon_{X, Y}: X \# Y \hookrightarrow T(X+Y)\right)_{X, Y \in|\mathbf{V}|}$ extends to a guarded parametrized monad iff

- every $\epsilon_{X, Y}$ is the largest guarded subobject of $T(X+Y)$
- for every $f: X \rightarrow T(Y+Z)$ and a regular epic $g: X^{\prime} \rightarrow X$, if $f g$ is guarded then f is guarded

Example

In Set, let $f: X \rightarrow Y+Z$ be guarded in Z if $\left\{z \in Z \mid f^{-1}(\mathrm{inr} z) \neq \varnothing\right\}$ is finite.
This predicate is not Id-representable, as any $1 \hookrightarrow X \xrightarrow{\mathrm{inr}} \emptyset+X$ is guarded, but inr is not if X is infinite.

[^0]: ${ }^{1}$ A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events, 1966

[^1]: ${ }^{2}$ L. Birkedal et al, First Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees, 2011

[^2]: ${ }^{3}$ D. Schumacher, Minimale und Maximale Tripelerzeugende und eine Bemerkung zur Tripelbarkeit, 1969
 ${ }^{4}$ P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002

[^3]: ${ }^{5}$ E. Moggi, Notions of Computation and Monads, 1991

[^4]: ${ }^{6}$ Essentially: P. Levy, J. Power, H. Thielecke, Modelling Environments in Call-By-Value Programming Languages, 2002

[^5]: ${ }^{8}$ E. Moggi, Notions of Computation and Monads, 1991
 ${ }^{9}$ A. Kock, Strong Functors and Monoidal Monads, 1972

