

YEIN νυυ XAN

KLEENE MONADS IN A LONG WHILE

SERGEY GONCHAROV

FAU ERLANGEN-NÜRNBERG

FEBRUARY 14, 2023, OBERSEMINAR THEORETISCHE INFORMATIK

- Kleene iteration is iteration of regular expressions, e.g. $(0 \lor 1)^* \cdot 0 \cdot (0 \lor 1)^*$ – all binary strings that contain 0 at least once
- **Kleene algebra** is a lightweight equational theory of (Kleene) iteration. complete over formal languages
- It is extremely popular and has lots of extensions: hybrid, concurrent, stateful, etc
- Kleene monads is a simple categorification of Kleene algebras
- Elgot monads provide a vastly more general notion of iteration, and are highly compositional
 - But not guite that popular

- What is precisely the delta between Kleene and Elgot?
- Can we bridge mathematical (mental, social, psychological, ...) gap between them?

We approach by formalising a theory of while-loops

KLEENE ALGEBRA FOR (KLEENE) ITERATION

A Kleene algebra is a structure $(S, \bot, \eta, \lor, ;, (-)^*)$, where

- $(S, \bot, \eta, \lor, ;)$ is an idempotent semiring:
 - (S, \bot, \lor) is a commutative $(x \lor y = y \lor x)$ and idempotent $(x \lor x = x)$ monoid
 - ($S, \eta, ;$) is a monoid
 - distributive laws:

 $\begin{array}{ll} x; (y \lor z) = x; y \lor x; z & x; \bot = \bot \\ (x \lor y); z = x; z \lor y; z & \bot; x = \bot \end{array}$

(thus, S is partially ordered: $x \leq y$ iff $x \lor y = y$)

Kleene iteration satisfies $x^* = \eta \lor x; x^*$, and

$x; y \lor z \leqslant y$	$x \lor z; y \leqslant z$
$x^*; z \leqslant y$	$x; y^* \leqslant z$

Equivalently: x^* ; z is a least fixpoint of x; (–) $\lor z$ and z; y^* is a least fixpoint of (–); $y \lor z$

Intuition: \bot is a deadlock, η is a neutral program, ; is sequential composition, \lor is non-deterministic choice

- Regular expressions
- Algebraic language of finite state machines and beyond
- Relational semantics of programs
- Relational reasoning and verification, e.g. via dynamic logic
- Plenty of extensions:
 - ▶ modal ⇒ modal Kleene algebra (Struth et al.)
 - ► stateful ⇒ KAT + B! (Grathwohl, Kozen, Mamouras)
 - ► concurrent ⇒ concurrent Kleene algebra (Hoare et al.)
 - ▶ nominal ⇒ nominal Kleene algebra (Kozen et al.)
 - ▶ with differential equations ⇒ differential dynamic logic (Platzer et al.)
 - etc., etc., etc.
- decidability and completeness properties (most famously w.r.t. formal languages and relational interpretations)

A minimalist extension is Kleene algebra with tests (KAT), which adds

- another Kleene algebra *B* of tests
- an operation-preserving inclusion $?: B \hookrightarrow S$
- complementation operator $\overline{(-)}: B \to B$, such that

 $\overline{a} \lor a = \top \qquad \quad \overline{\overline{a}} = a \qquad \quad \overline{a \lor b} = \overline{a}; \overline{b} \qquad \quad \overline{\bot} = \eta$

(this makes *B* into a Boolean algebra)

This enables encodings

Branching	$(if\ b\ then\ p\ else\ q)$	as	$b?; p \lor \overline{b}?; q$
Looping	$(while\ b\ do\ p)$	as	$(b?;p)^*;\overline{b}?$
 Hoare triples 	$\{a\} p \{b\}$	as	a?;p;b?=a?;p

In particular, we can embed deterministic semantics to non-deterministic semantics

Nondeterminism is a computational effect. If we want to add other effects, we need to add more operations and equations

Example: Probabilistic choice $(+_p \colon S \to S)_{p \in [0,1]}$, plus axioms of barycentric algebras

 $x +_0 y = y \qquad x +_p x = x \qquad x +_p y = x +_{1-p} y$ $(x +_p y) +_q z = x +_{\frac{p}{p+q-pq}} (y +_{p+q-pq} z)$

plus distributivity $(x \lor y) +_p z = (x +_p z) \lor (y +_p z)$

Problem 1: Not all effects mix well with Kleene algebra, e.g. exception raising:

raise
$$e_1$$
 = raise e_1 ; \bot = raise e_2 ; \bot = raise e_2

Problem 2: We might want a stronger theory of non-determinism, e.g. the law x; $(y \lor z) = x$; $y \lor x$; z is unsound w.r.t. strong bisimilarity

Problem 3: What is a disciplined way to extend iteration to other settings (muti-type, multi-effect, foundation-independent)?

CATEGORIFYING ITERATION

Definition (Monad)

A monad T (on a category C) is given by a Kleisli triple $(T, \eta, -*)$ where

 $\blacksquare T \colon |\mathbf{C}| \to |\mathbf{C}|$

• η is a family of morphisms $\eta_X \colon X \to TX$, forming monad unit

• $(-)^*$ assigns to each $f: X \to TY$ a morphism $f^*: TX \to TY$

satisfying the laws: $\eta^* = \operatorname{id}, f^* \eta = f, (f^* g)^* = f^* g^*$

This entails that

- $\blacksquare T$ is a functor, η is a natural transformation
- $f: X \to TY$ and $g: Y \to TZ$ (regarded as programs) can be Kleisli composed to $f; g = g \cdot f = g^* f: X \to TZ$

By varying **T** we obtain various 'generalized programs' $f: X \to TY$ while programs of the form ηf can be seen as 'pure programs'

Example: $T = \text{powerset} \Rightarrow \text{generalized programs} = \text{non-deterministic programs, pure programs = deterministic programs = functions}$

Definition (Kleene-Kozen Category)

Call C a Kleene-Kozen category if it is enriched over join-semilattices with \perp and strict join-preserving morphisms, and there is Kleene iteration

 $(-)^* \colon \operatorname{Hom}(X, X) \to \operatorname{Hom}(X, X),$

such that, given $f: Y \to Y$, $g: Y \to Z$ and $h: X \to Y$, gf^* is the least fixpoint of $g \lor (-)f$ and f^*h is the least fixpoint of $h \lor f(-)$

Proposition: A Kleene algebra is a Kleene-Kozen single-object category

Definition:¹ A monad **T** is a Kleene monad if its Kleisli category is Kleene-Kozen

This suggests a canonical definition of an n-sorted Kleene algebra as a Kleene-Kozen category with n objects

E.g. KAT becomes a certain two-sorted category

¹Goncharov, Schröder, and Mossakowski, "Kleene monads: handling iteration in a framework of generic effects", 2009.

Examples:

- For any monoid *M*, $\mathcal{P}(M \times -)$ is a Kleene monad (generalizes language-theoretic models)
- If T is a Kleene monad then so is the state-monad transform $(T(-\times S))^S$ for any S (generalized relational models)

Non-Examples:

- **Maybe monad** TX = X + 1 has \perp but no \vee
- $TX = \mathcal{P}^+(X+1)$ (where \mathcal{P}^+ is non-empty powerset) fails $|f \lor \bot = f|$
- $\blacksquare TX = \mathcal{P}(A^* \times X + A^{\omega}) \text{ fails } f; \bot = \bot$
- TX is a final coalgebra for $\mathcal{P}_{\omega_1}(X + A \times (-))$ (where \mathcal{P}_{ω_1} is the countable powerset functor) fails $f; (g \lor h) = f; g \lor f; h$

Definition (Elgot monad)

A (complete) Elgot monad² in a category with binary coproducts is a monad **T** equipped with an Elgot iteration operator

 $(-)^{\dagger}$: Hom $(X, T(Y + X)) \rightarrow$ Hom(X, TY),

satisfying four laws: fixpoint, uniformily, naturality and codiagonal

- Elgotness is robust and stable under many monad transformers
 - $\begin{array}{ll} & T \mapsto T(M \times -) & (\text{writer}) \\ & T \mapsto T(-+E) & (\text{exception}) \\ & T \mapsto (T(- \times S))^S & (\text{state}) \\ & T \mapsto \nu\gamma. T(-+H\gamma) & (\text{resumption}) \end{array}$
- Laws go back to Elgot³, except for uniformity
- All previous examples are Elgot

²Adámek, Milius, and Velebil, "Equational properties of iterative monads", 2010. ³Elgot, "Monadic Computation And Iterative Algebraic Theories", 1975.

Fixpoint $(f: X \rightarrow T(Y + X))$:

Uniformity $(f: X \to T(Z + X), g: Y \to T(Z + Y), h: X \to Y)$:

Naturality $(f: X \to T(Y + X), g: Y \to TZ)$:

Codiagonal $(f: X \rightarrow T(Y + (X + X)))$:

Naturality and Codiagonal are basically coherence laws

Theorem

Every Kleene monad is an Elgot monad under

where —o is the deadlock

Proof.

Essentially a known fact about iteration theories⁴

But, how large is the gap between Kleene monads and Elgot monads + { \perp, \lor }?

⁴Cazanescu and Stefanescu, "Feedback, Iteration and Repetition", 1994.

The **Dinaturality** law

is derivable⁵, also it was included in the original axiomatization

Q: So, maybe there are more derivable axioms?

A: In fact, it is provable that the present axiomatization is minimal

⁵Ésik and Goncharov, "Some Remarks on Conway and Iteration Theories", 2016.

WHILE-MONADS

- A key distinction between Elgot iteration and Kleene iteration is that the former needs a (simple) type system, while the later can make do without any types whatsoever
- Kleene algebra with tests has two sorts, and yet no types

Definition (Decisions)

We call a family $(\mathbf{C}^{d}(X) \subseteq \mathbf{C}(X, X + X))_{X \in |\mathbf{C}|}$ in a category **C**, decisions if every $\mathbf{C}^{d}(X)$ contains inl, inr, and \mathbf{C}^{d} is closed under if-then-else.

We encode logical operations on decisions as follows:

 $\begin{array}{ll} {\rm ff} \ = {\rm inl}, & b \ \delta \delta \ c = {\rm if} \ b \ {\rm then} \ c \ {\rm else} \ {\rm ff}, & {}^{\sim} b = {\rm if} \ b \ {\rm then} \ {\rm ff} \ {\rm else} \ {\rm tt}, \\ {\rm ff} \ = {\rm inr}, & b \ || \ c = {\rm if} \ b \ {\rm then} \ {\rm tt} \ {\rm else} \ c. \end{array}$

By definition, decisions can range from the smallest family with $C^{d}(X) = \{ff, tt\}$, to the greatest one with $C^{d}(X) = C(X, X + X)$

A while-monad is a monad **T**, equipped with an operator while: $\mathbf{C}^{d}_{\mathbf{T}}(X) \times \mathbf{C}(X, TX) \rightarrow \mathbf{C}(X, TX),$

such that the following axioms are satisfied

W-Fix while $b \ p = \text{if } b$ then p; (while $b \ p$) else η

W-Or while $(b \mid | c) p = (\text{while } b p);$ while c (p; while b p)

W-And
$$\frac{\eta h; b = \eta u; \text{ ff}}{\text{while} (b \ \delta \delta \ (c \ || \ \eta u; \text{ ff})) \ p = \text{while} \ b \ (\text{if} \ c \ \text{then} \ p \ \text{else} \ \eta h)}$$

W-Uni
$$\frac{\eta h; b = \text{if } c \text{ then } \eta h'; \text{tt else } \eta u; \text{ff } \eta h'; p = q; \eta h}{\eta h; \text{while } b p = (\text{while } c q); \eta u}$$

WHILE-MONADS AND ELGOT MONADS

From $(-)^{\dagger}$ to while : while $b \ p = (\text{if } b \text{ then } p; \text{tt else ff})^{\dagger}$, diagrammatically, while $b \ p$ is expressed as

From while to $(-)^{\dagger}$

Theorem

If for all $X, Y \in |\mathbf{C}|$, $\eta(\mathsf{inl} + \mathsf{inr}) \in \mathbf{C}^{\mathsf{d}}_{\mathsf{T}}(X + Y)$ then T is and Elgot monad iff it is a while-monad w.r.t. $\mathbf{C}^{\mathsf{d}}_{\mathsf{T}}$

Theorem

A monad **T** is a Kleene monad iff

- the Kleisli category of **T** is enriched over join-semilattices with ⊥ and strict join-preserving morphisms;
- there is an operator $(-)^*$: Hom $(X, TX) \rightarrow$ Hom(X, TX), such that

1.
$$f^* = \eta \lor f^* \cdot f$$

2. $\eta^* = \eta$
3. $f^* = (f \lor \eta)^*$
4. $f \cdot h = g \cdot f \Rightarrow f \cdot h^* = g^* \cdot f$

Corollary: Since Kleene algebra is a special case, this is also a complete axiomatization for Kleene algebra

Theorem

A monad **T** is a Kleene monad iff

- 1. **T** is Elgot
- 2. the Kleisli category of **T** is enriched over bounded join-semilattices and strict join-preserving morphisms
- 3. T satisfies the law $(\eta \operatorname{inl} \lor \eta \operatorname{inr})^{\dagger} = \eta$
- 4. T satisfies strong uniformity:

where h is strict h; $\delta = \delta$, and where $\delta = (\eta \operatorname{inr})^{\dagger}$ by definition

UNIFORMITY V.S. STRONG UNIFORMITY

- Elgot monads that fail strong uniformity without the strictness assumption on h are easy to manufacture
 - For example, $\mathcal{P}(-+1)$ is an Elgot monad, obtained by transforming \mathcal{P}
 - Besides $\delta = \{inr \star\}$ it contains another 'divergence' $\bot = \{\}$
 - The premise of strong uniformity is satisfied with $h = \bot$ and $f = \eta$ inr, but the conclusion $\delta = (\eta \operatorname{inr})^{\dagger} = g^{\dagger}$ generally fails
- It is thus always reasonable to restrict *h* in strong uniformity to strict programs, i.e. $h; \delta = \delta$
- If we add finite nondeterminism and other laws, it is more difficult to construct a separating example, however

Proposition

There exists an Elgot monad **T**, whose Kleisli category is enriched over bounded semi-lattices, $(\eta \text{ inf} \lor \eta \text{ inr})^{\dagger} = \eta$, but **T** fails strong uniformity.

- 1. The idea is based on Kozen's separating example for left-handed and right-handed Kleene algebras⁶
- 2. Consider the submonad T of the continuation monad (neighbourhood monad, dualization monad) $(- \rightarrow 2) \rightarrow 2$, formed by those f that preserve finite unions:

 $f\{\} = \{\}$ $f(A \cup B) = f(A) \cup f(B)$

- 3. Using the fact that every TX is a complete lattice, define f^{\dagger} as a least fixpoint, using the Knaster-Tarski theorem. Hence $(\eta \operatorname{inl} \lor \eta \operatorname{inr})^{\dagger} = \eta$
- 4. Enrichment in semilattices follow by definition
- 5. Remaining Elgot monad laws follow by transfinite induction
- 6. If T was a Kleene monad, any Hom(X, TX) would be a Kleene algebra, but Kozen showed it is not \Rightarrow T is not Kleene

⁶Kozen, "On Kleene Algebras and Closed Semirings", 1990.

So, what is the fundamental version of uniformity?

- Bloom and Ésik⁷ argued that there is only one theory of iteration, accepting only those instances of uniformity, where premises are internally provable. This is insufficient for practical equational reasoning
- Uniformity is arguable the most conservative extension of the purely equational theory and is a part of the Elgot monad axiomatization
- Strong uniformity with strict maps bridges the gap with Kleene monads

⁷Bloom and Ésik, Iteration theories: the equational logic of iterative processes, 1993.

We obtained a spectrum

Further Work:

- How can we define while-algebras, generalizing KAT, in the upshot?
 - The main hurdle is uniformity, which should preferably not allude to a yet another sort of programs, and be properly weaker than strong uniformity
- When can we equivalently replace while $+ \vee$ with Kleene star $+ \vee$ so that $p^* =$ while (ff \vee tt) p?
- Generic completeness theorems, generalizing completeness for KAT