Semantic Support for Engineering
Design Processes

Thilo Breitsprecher Mihai Codescu
Constantin Jucovschi Michael Kohlhase Lutz Schroder
Sandro Wartzack

March 12, 2015

The engineering design process typically follows a series of standardized
stages, beginning with a requirement specification and ending with the fi-
nal design, the embodiment. While the embodiment stage nowadays has
highly developed tool support in the shape of modern CAD systems, which
represent the design as a formalized object with a fairly clear geometric
and physical semantics, the other stages have only intermittent information-
technological support. In fact, documents from the early stages of the process
are often represented in general-purpose office applications or even as hand-
drawn sketches. Here, we discuss an approach to enabling pervasive tool
support in the engineering design process based on semantic technologies.
In particular, we show how parts and requirements can be traced through
a document-oriented semantic workflow using a combination of an invasive
semantic middleware and a background ontology of engineering knowledge.

1 Introduction

The engineering design of mechanical products is a multi-stage process, and is formally
described as such by a range of product development process models and methodolo-
gies. The Systematic approach to Engineering Design of Pahl and Beitz [PBFGOT], the
Miinchener Vorgehensmodell of Lindemann [Lin09], the Systematic Approach to the De-
sign of Technical Systems and Products according to the guideline VDI2221 [VDI95] and
the Design Methodology for Mechatronic Systems, also known as the V-model [VDI04]
are just a few well-known examples. For some specific stages within such product de-
velopment process models, computer-based approaches have been developed to support
the design engineer, such as Computer-Aided Design (CAD), Computer-Aided Engi-
neering (CAE) or Computer-Aided Manufacturing (CAM). These approaches are based

on formal (i.e. machine-interpretable) representations of the outcomes of the relevant
development stage, such as CAD-models, FEA-models (CAE), or CNC-code. However,
other recognized development stages and their associated documents such as require-
ment lists, function models or the principle solution are left largely informal and in fact
are often not laid down in any immediately machine-processable form (being, e.g., just
hand drawn sketches). This circumstance leads to gaps regarding the semantic links
between stages of the product development process and related documents and objects.
These links embody questions such as ‘Does the embodiment X fulfill the requirement
Y? or, as a more specific example, ‘ Does this shaft-hub connection still correspond to the
predetermined principle solution and function structure?’. Little or no machine-support
is currently available for verifying or even just managing such consistency assertions in
the development process.

This contribution is the result of a research collaboration between the School of Engi-
neering and Science (Jacobs University Bremen), the Chair of Theoretical Computer
Science and the Chair of Engineering Design (both Friedrich-Alexander Universitét
Erlangen-Niirnberg). In the current work, we propose a semantic approach where ob-
jects are linked across the stages of the product development process process using a
federated ontology, in which all objects are grounded via annotations with ontological
concepts and assertions. We embed this approach into a document-oriented design work-
flow, in which the federated ontology and semantic annotations in design documents are
exploited to trace parts and requirements through the development process and across
different applications. We thus make requirements and ensuing design decisions explicit
and, hence, available for further machine processing at all stages of the development.
In our proof of concept for this approach, we trace a sample requirement through the
development of a spring tester.

The material is organized as follows. After a short description of a common product
development process model and exemplary related documents, we discuss the state of
the art in the application of semantic technologies in engineering design. Subsequently,
we present our overall approach, and lay out in detail how semantic services within
the product development process process are enabled via our Multi-Application Semantic
Alliance Framework (MASally). To illustrate the added value of this approach, we then
describe the spring tester case study in detail.

1.1 The Systematic Approach to the Design of Technical Systems
and Products

The Association of German Engineers (VDI) published the first version of the guideline
VDI2221 in 1993 to replace the guideline VDI2222. We recall the steps of the engineering
design process according to the VDI2221 [VDI95):
1. Clarify and define tasks: A concise formulation of the purpose of the product
to be designed, laid down in the requirement list.
2. Determine functions and their structure: Based on the requirements, one
determines sub-functions to be performed for specific tasks; these sub-functions

are combined in the function structure.

3. Search for solution principles and their combinations: Effects (e.g. physical
or chemical) that can fulfill a sub-function are determined in the form of working
principles. These are combined to yield the overall principle solution.

4. Divide into realizable modules: Working from the principle solution, one iden-
tifies subsystems, groupings, and interfaces to guide the detailed design, thus de-
termining the module structure.

5. Develop layout of key modules: For each module, preliminary layouts are
created, assessed and released.

6. Complete overall layout: The preliminary layouts of the modules are completed
by the addition of further details and by adding the layout of components not
included in the previous step. The combination of all assemblies and components
then leads to the definitive layout.

7. Prepare production and operating instructions: All documents that are
necessary for the manufacturing and assembly of the product are created. This
product documentation includes, e.g., technical drawings, assembly instructions,
and user manuals.

In all these stages, several variants of a solution may be analysed and, where necessary,
tested by means of virtual or physical prototypes, which are then evaluated. Note
that these stages can be further subdivided, depending on the complexity of each task.
Furthermore the stages do not necessarily follow a fixed procedure. Rather, they are
carried out iteratively, with jumps forward and backward, thus achieving a step-by-step
optimization.

We embed our overall approach into a document-oriented workflow based on docu-

ments arising in the development process as indicated above; Figure 1 gives an overview
of the most important document types.

2 Semantics in Engineering Design

Various approaches have been explored to integrate semantics into the engineering design
process. One such approach is the so-called feature technology, which has been researched
by several institutes. According to VDI2218 [VDI99], features are an aggregation of
geometry items and semantics. Different types of features are defined (eg. form features,
semantic features, application features, compound features), depending strongly on the
technical domain and the product life-cycle phase in which features are used. We expect
features to play a role in further semanticizing step S6 (embodiment, Section 1.1) in
future work.

Li et al [LMN13] have developed an ontology-based annotation approach to support
multiple evaluations of computer-aided designs, especially in later phases of the design
process. The annotation data are contained within a consistent three-layered ontology
framework that supports the integration of multiple specialist viewpoints by associating
annotation content with anchors in a boundary representation model. The ontology also
allows checking of data structures and other reasoning.

Table 1. Different types of document and their occmrence within product development

Stage Result Data type and content
1 Clarify and Requirement | e Research results, client surveys,
define tasks list requirements, technical offerings, etc.

s Open text, tables, PDF, pictures

(5]

Determine functions Function ¢ Function diagrams,
and their structure structure ¢ Mind maps, graphs, sketches,
ontologies, function trees

3 Search for solution Principle ¢ Data in context of idea search and
principles and their solution assessment
combinations ¢ Sketches, tables, mind maps
4 | Divide into realizable Module ¢ Rough structure of product,
modules structure arrangement of components

* CAD-file with product skeleton

5 | Develop layout of key Preliminary | ¢ Detailed CAD files, data from

modules layouts simulations (e.g. FEA), calculations for
dimensioning

¢ Proprietary and neutral CAD- or FEA-
files, calculation documents

6 | Complete overall layout Definitive ¢ CAD-files of standard part catalogues,

layout calculations for recalculation of final
design

s Proprietary and neutral CAD- or FEA-
files, calculation documents

7 | Prepare production and Product * Manufacturing drawings, bill of
operating instructions | documentation material, meta data for interfaces
e CNC files, XML files

Figure 1: Screenshot of the table with objects in design process

3 Semantic Support of a Document-Oriented
Engineering Design Workflow

The documents generated for each development stage are initially related only in the
mind of the engineer. These ties can be made explicit, so that computers can act
on them, by annotating parts of these documents with concepts in ontologies. Such
annotations (depicted with dashed arrows in Figure 2) can express simple facts e.g. that
Fhana (from requirements list) is the hand force (from domain ontology) with which a
user can interact with a product and constraints like 0 N < Fj4,q9 < 200 N for this force
— see Section 5 for details. Depending on the complexity of the statement that needs
to be made explicit, different logics can be used. This feature is enabled by federated
ontologies (the cloud in Figure 2) — a method of combining heterogeneous ontologies
by meaning-preserving interpretations [RK13].

Federated Engineering Ontology

Clarify and define tasks | §]1

Determine functions and their structure | S2 £---(-3 2

Search for solution principles ... | S§3

Divide into realizable modules | S4

Develop layout of key modules 1 S5 \ AN

Complete overall layout @

Prepare production and operating instructions

Figure 2: An Ontology-Supported Document-Oriented Design Process

3.1 Semantic Annotations in Design Documents

Semantic annotations are also used to relate objects from different design stages e.g. the
gear nut from the CAD model in the complete overall layout stage can be annotated as a
refinement of the gear nut object from the principle solution. Most software products do
not, by default, support the user in creating/updating semantic annotations. However,
product dependent extentions may enable users to create/update such annotations.

We used AktiveMedia ([CCL06]) for annotating images like the principle solution (see
Figure 3). As we could not find a semantic authoring solutions for word processing
documents that fit our needs, we used sTEX — a semantic extension of the TEX/IATEX
format. To annotate CAD documents, we used the ability of our CAD environment
(Autodesk Inventor) to associate custom information to CAD objects and hence no
specialized solution had to be used.

As annotations are assigned to parts of documents (e.g. some character range or
assembly part), change management services can approximate how changes made to the
document affect the semantics of these annotations. This allows services to perform
impact analysis and management of change.

3.2 Semantic Services via the MASally System

The Multi-Application Semantic Alliance Framework (MASally) is a semantic middleware that
allows embedding semantic interactions into (semantically preloaded) documents. The
aim of the system is to support the ever more complex workflows of knowledge workers
with tasks that so far only other humans have been able to perform without forcing
them to leave their accustomed tool chain.
The MASally system is realized as
e a set of semiformal knowledge management web services (comprised together with
their knowledge sources under the heading Planetary on the right of Figure 4);

T oo

i
i
handle ;
— o 5] i 5 i st .’_ - I_
| Screw Ball - Definition Lookup o
- ° -]
I:hand ! : P l o -
! anetary
T =
tl I |4 ball screw is a mechanical linear actugtor that translates rotational motion
cantilever - o linear motion with little friction. A threddtd shaft provides a helical raceway
; for ball bearings which act as a precision screw. As well as bsing sble to apply
; or withstand high thrust loads, they can de so with minimum internal friction.
; They are made to close tolerances and are therefore suitable for use in
. situations in which high precision is necessary. The ball assembly acts as the nut
! while the threaded shaft is the screw. In contrast to conventional leadscrews,
! ballscrews tend to be rather bulky, due to the need to have a mechanism to re-
)] | || rfcircuiste the ball. L
1 A
) ¢ : /.'T | toox |
L)
; | he————— ,
; | ; : upper main frame
i i
screw Shaﬂ \ I i
1 1
T |
i e
i i
i
i
|
punch \ :

7|

guide bars :

1
load measuring cell ;
i
\ o
. En .
lower main frame \1\ i \I: :l i |
i

spring mounting

Figure 3: Principle Solution of the Spring Tester with Definition Lookup

e a central interaction manager (Sally, the semantic ally) that coordinates the provi-
sioning and choreographing of semantic services with the user actions in the various
applications of her workflow;

e and per application involved (we show a CAD system and a document viewer for
S4/S5 in Figure 4)

— a thin API handler Alex that invades the application and relates its internal
data model to the abstract, application-independent, content-oriented docu-
ment model in Sally;

— an application-independent display manager Theo, which super-imposes in-
teraction and notification windows from Sally over the application window,
creating the impression the semantic services they contain come from the
application itself.

This software and information architecture is engineered to share semantic technologies
across as many applications as possible, minimizing the application-specific parts. The
latter are encapsulated in the Alexes, which only have to relate user events to Sally,
highlight fragments of semantic objects, handle the storage of semantic annotations in
the documents, and export semantically relevant object properties to Sally. In particular,
the Theos are completely system-independent. In our experience developing an Alex for

Desktop p

J

Planetary
E——

Theo

Project documentation
SaIIy — semiformal —

AN
CAD system

———

—
_ Background knowledge
- (physics, engineering)

e

Theo *d

Project Docs ISO/DIN norms
— semiformal —

a N

L Alex /

Figure 4: The MASally Architecture

(.

"

an open-API application is a matter of less than a month for an experienced programmer;
see [DJKK12] for details on the MASally architecture.

To fortify our intuition about semantic services, let us consider the following situation.
The design engineer is working on the principle solution from Figure 3 — a sketch realized
as a vector image, displayed in an (in this case browser-based) image viewer. The user
clicked on a detail of the sketch and received a (Theo-provided) menu that

1.

4.

D.

identifies the object as ‘ScrBall4’ (the image is extended with an image map,
which allows linking the region ‘ScrBall4’ with the concept of a “screw-ball” in
the ontology); further information about the object can be obtained by clicking on
this menu item;

. gives access to the design refinement relation between the project documents: here,

the object ScrBall4 is construed as a design refinement of the requirement ScrBall2
from the project requirements and has been further refined into object ScrBall6 in
the CAD assembly and the plans generated from that;

. gives access to the project configuration that identifies the other documents in the

current design;

allows direct interaction with the ontology (e.g. by definition lookup; see Figure 3,
here triggered from the CAD system for variety);

gives shortcuts for navigation to the other screw balls in the current project.

Generally, the MASally system supports generic help system functionalities (defi-
nition lookup, exploration of the concept space, or semantic navigation: lookup of
concrete CAD objects from explanations) and allows focus-preserving task switching
(see [KKJT13] for a discussion). All we need for this are annotations of the VDI2221
relations, ontology links and of course the ontology itself, which we will discuss next.

4 The Federated Engineering Ontology (FEQO)

We now describe the design of the ontology that acts as the central representation of
the background knowledge and the common ground of all actors in the design process.
It serves as a synchronization point for semantic services, as a store for the properties of
and relations between domain objects, and as a repository of help texts for the MASally
system. The backbone of the federated ontology is provided by flexiformal documents
consisting of concept definitions and statements of properties of the objects described
using these objects. The statements are given in natural language and are interspersed
with formulas. Furthermore, our federated ontology contains formal ontologies that
enable verification of properties between different stages of design.

We will not go into the design or content of the FEO, and refer the reader to [BCJ*13].
We only note that we call a document flexiformal, if it contains material at different
levels of formality [Kohl13], ranging from fully informal — and thus foreign to machine
support — text via text annotated with explicit semantic relations —i.e. open to semantic
services — to fully formal — i.e. expressed in a logical system, which supports machine
inference and thus verification of constraints — content. As the FEO has to cover quite
disparate aspects of the respective engineering domain at different levels of formality,
it is unrealistic to expect a homogeneous ontology in a single representation regime.
Instead, we utilize the heterogeneous OMDoc/MMT framework [Koh06, RK13] that allows
representing and interrelating ontology modules via meaning-preserving interpretations
(i.e. theory morphisms).

As an example of formal ontologies, as detailed in [BCJ*13], we build OWL ontologies
for stating qualitative properties (e.g., abstract geometrical properties, but also function
and behavior or parts could be included) and for representing a CAD model as an as-
sembly of parts built using features, according to its history of construction. A further
OWL ontology of rules regarding geometrical properties of objects is built by repeated
applications of features and thus enables verification of these properties for actual de-
signs. The formal ontologies are related to the backbone flexiformal ontology by theory
morphisms. A similar approach can be pursued to obtain tool support for checking that
other steps of the design process are correct, e.g. that the principle solution fulfils the
functions specified in the function structure .

5 Case Study

Our case study is based on a spring tester (an intentionally simple example chosen
for being presentable in limited space) that can measure the spring force of cylindrical
compression springs at a given deflection. We have previously used this example in
practical design assignments for engineering students. Students were given a principle
solution (see Figure 3) for the spring tester (stage S3 of the design process in Figure 2)
along with a requirements specification and a function structure (stages S1 and S2),
and were asked to design an embodiment, i.e. to complete stages S4 to S7 of the design
process.

The requirement specification (S1) states the goal of creating a spring tester to de-
termine the spring rate of cylindrical compression springs according to a specific norm.
The device has to be hand-driven, where it is assumed that a normal person can act
with a hand force of approximately 200N per hand. During the measurement, the spring
is to be compressed by Hmm. The resulting force is detected via a suitable load cell.
In order to avoid distorting the force measurement, the spring tester must not exceed a
critical elastic deformation of half of the load cell’s accuracy class.

In our case study, we annotated documents from stages S1-S3, which were produced
by faculty members, and two sets of documents from stages S4-S7 produced by students
— we want to study supporting design alternatives. As these documents come from an
ongoing educational process, the annotation was necessarily post-mortem; experiments
with integrating our methods in a live development process are the subject of future
research. In particular, we looked at the following services: i) definition lookup for
document elements (see Figure 3), ii) topical navigation among documents in different
development stages along the refinement relations (see Figure 5), and i) propagation of
change impacts by highlighting document elements in other documents that would need
to be revised (see Figure 7).

e
_xmg\\ | \&Q{q\

VDI2221 Design Flow »
Spring Tester Project

Select for refinement (edit)
Refines Screw Ball ScrBall2 from S1-Req.tex iy
——— | Knowledge Base Refined to Screw Ball ScrBall6 in S6-embodiment.iam

Other Screw Ball Design Variants

Figure 5: Navigating the Refinement Relation

Note that these services can only work if we have explicit semantic annotations in the
documents. For instance, for definition lookup, we had to annotate documents with
concepts in the ontology. For text documents, that meant using the sTEX macros that
link text fragments with ontological concepts. From these we can generate a pdf/html
document where a piece of text, e.g. ‘screw nut’, is annotated with a suitable ontology
term such as screw-nut (internally represented as a URI). The use of sSTEX serves to
provide a proof-of-concept; we are currently working on the integration of semantic
annotation functionalities into more widely used document preparation systems. We
also note that many of these annotations could be semi-automatically detected using
the NNexus [Ginl3] framework in the future; the integration of this framework with the
current approach is ongoing.

Annotating relations among different document was done using the MASally frames.
We used the same document parts that we annotated for definition lookup and enriched
them with additional relations such as “X refines Y”, meaning that a document element
Y (usually from a previous development stage) was refined at a later stage of development

by document element X (see Figure 5).
For impact analysis, we enriched the documents with more domain specific annota-
tions. Let us consider the requirement

(*) “Max hand force Fj g = 200 N”

from S1. In the following design steps the user annotates all artifacts in S2-S7 that is
influenced by this requirement with a refinement link to (*). For the function structure
(S2; see Figure 6) these include the sub-functions “Induce Fyng” (**) or “Amplify Fpang”
(**%). In the principle solution S3 the handle of the spring tester (“Induce Fjq,q”) and
the cantilever between the handle and the spindle (“Amplify Fj,,s”) are annotated as
refinements for (**) and (***).

Hand force Fppg —] . —— Spring force F,
Measure spring force for

. . specific deflection
Spring deflection Omm = = = = = - > pecilic dellection 4 _____ » Spring deflection Smm

spring

Spring, neutral position ——»f ————> Spring, deflected

— Deflect spring Measure spring force ——

————— k== > ===
—| Support sprin Induce F. Amplify F Turn Fygpginto
] upPP pring L u hand L P hand | ___,| springdeflection | __

energy material ~~ ------ > signal ‘

Figure 6: Function structure of spring tester

S4 concerns the modular structure of the design, it identifies the main design-affecting
requirements and creates a first CAD-file which represents the main dimensions by lim-
iting reference elements (points, lines, planes). Our exemplary requirement influences,
for example, the length of the cantilever, because the hand force has to be transformed
into a torque (according to the law of the lever) to deflect a spring via the screw spindle.
This (canti-)lever length can be represented within the CAD-file by a reference line.

Step S5 is quite extensive because preliminary designs have to be created and as-
sessed. As shown in Figure 1 these assessments include the dimensioning calculation
of key modules. These calculations can either be done manually on paper or digitally
via text/table files. In our case study we created MathCAD® files and annotated the
formulas, where Fj,,,q was used to calculate dimensions of key modules. An example is
the cantilever diameter, which must be sufficient to withstand the bending moment that
is caused at the fixing point to the spindle.

At the end of stage S6, the CAD-model of the spring tester, consisting of parts, sub-
assemblies and the main assembly, was finalized and annotated. Annotations were as-
signed both to parts and assemblies, depending on the purpose of the annotation. We an-
notated the part model cantilever.prt and linked it with the requirement Fj,,,q = 200 N
and thus linked the cantilever diameter in the CAD-model with the initial requirement.

10

Here we can see the utility of an impact management service: assume the spring
tester is to be changed so that it can be used by people with a decreased hand force
of F,,.. = 150N (e.g. for a different market). The change impact service shown
in Figure 7 highlights the handle of the spring tester — as it is (annotated to be) a
refinement of the changed requirement in S1 — clicking it results in a popup that details
the root changes and their influences. The “next/previous [conflict]” buttons are another
instance of a semantic interaction (navigation to the next affected part in this document,
later even across documents) which supports the change management workflow of the
engineer.

Impact Analysis

(previeus | |mpact Analysis
Source: 51-Req.tex
old requirement: max-hand-force(hand-force, 200M)

new requirement: max-hand-force{hand-force, 150N)

| Accept || Reject [| View Log ‘

[E18

Figure 7: Impact Propagation/Resolution for Changes to the Hand Force Requirement

Even in the final step S7 (product documentation) semantic annotations are helpful.
For instance, a service that justifies the spindle pitch for the trapezoid spindle embedded
in the manufacturing drawing helps avoid questions in the manufacturing process, since
a change of the spindle pitch affects the torque that is to be provided via hand force.

6 Summary and Outlook

While the final stages of the engineering design process have well-established
information-technological support in the shape of modern CAD/CAE/CAM systems,
tool support for earlier stages of the process (e.g. requirements, function structure, prin-
ciple solution) is less well-developed. Above, we have described a framework for pervasive
semantic support in engineering design processes, as part of a program to unify the un-
derlying tool chain and enhance tool support in all stages of the design process. We base
our framework on a flexiformal background ontology that combines informal and semi-
formal parts serving informational purposes with fully formalized qualitative engineering
knowledge and support for the annotation of design documents (e.g. specifications, prin-
ciple sketches, embodiments, documentation) with formal qualitative constraints. In
the current work, we have concentrated on a document-oriented workflow that relies on
the background ontology for tracking the identity of parts through the design process
and across different applications, which are accessed in a unified manner within the
MASally framework. We have shown in complementary work how the approach can be
augmented to enable automated requirements tracing and verification of the CAD model

11

against aspects of the principle solution (see [BCJT13] for details).

We have exemplified our approach on the development process of a spring tester, illus-
trating MASally support for semantic navigation between the various design documents
and for tracing and testing requirements. The flexiformal nature of the federated engi-
neering ontology governing the annotation of the design documents makes the integration
of formal and informal approaches feasible.

The federated engineering ontology is under continuous development. It will be fur-
ther integrated with established domain ontologies including geometric ontologies (whose
development is an active research field in its own right, see, e.g., the Shapes workshop
series [KBBS13]), CAD feature ontologies (e.g. [BG05, AGGSP07]), ontologies of func-
tion (e.g. [CMS07]), and repositories of standard parts, using modularity mechanisms
enabled by modern logical frameworks such as Distributed Ontology, Modeling and
Specification Language DOL [MKCL13, MLK13]. Moreover, its base of formalized engi-
neering knowledge will be broadened; the associated knowledge acquisition process is an
important aspect of further investigation. In proportion to the degree of formalization of
the underlying engineering knowledge, the potential for automated verification of later
stages in the design process against requirements formulated in earlier stages increases,
as illustrated in [BCJ*13].

One major impediment to employing the semantically enhanced workflow described
here in industrial applications is the fact that currently the only annotation system for
the documents is a variant of TEX/KTEX, which is not commonly used by engineers.
The choice of sSTEX for this purpose is based purely on availablility, and we are currently
working on Alexes for various word processors (primarily MS Word and OO Writer).

References

[AGGSP07] Samer Abdul-Ghafour, Parisa Ghodous, Behzad Shariat, and Eliane Perna.
A common design-features ontology for product data semantics interoper-
ability. In Web Intelligence, WI 2007, pages 443-446, Washington, DC,
USA, 2007. IEEE Computer Society.

[BCJ*13] Thilo Breitsprecher, Mihai Codescu, Constantin Jucovschi, Michael
Kohlhase, Lutz Schroder, and Sandro Wartzack. Towards ontological
support for principle solutions in mechanical engineering. CoRR, 2013.
http://arxiv.org/abs/0865290.

[BGO5] Gino Brunetti and Stephan Grimm. Feature ontologies for the explicit
representation of shape semantics. J. Comput. Appl. Technology, 23:192—
202, 2005.

[CCLO6] Ajay Chakravarthy, Fabio Ciravegna, and Vitaveska Lanfranchi. Aktive-
media: Cross-media document annotation and enrichment. Manuscript,
2006.

12

[CMS07]

[DJKK12]

[Gin13]

[KBBS13]

[KKJT13]

[Koh06]

[Koh13]

[Lin09]

[LMN13]

[MKCL13]

[MLK13]

Gianluca Colombo, Alessandro Mosca, and Fabio Sartori. Towards the
design of intelligent cad systems: An ontological approach. Advanced En-
gineering Informatics, 21(2):153-168, 2007.

Catalin David, Constantin Jucovschi, Andrea Kohlhase, and Michael
Kohlhase. Semantic alliance: A framework for semantic allies. In Intel-
ligent Computer Mathematics, CICM 2012, volume 7362 of LNAI, pages
49-64. Springer, 2012.

Deyan Ginev. NNexus Glasses: a drop-in showcase for wikification. In
Conference on Intelligent Computer Mathematics, CICM 2013, Workshop
Proceedings, volume 1010 of CEUR Workshop Proceedings, 2013.

Oliver Kutz, Mehul Bhatt, Stefano Borgo, and Paulo Santos, editors. The
Shape of Things, SHAPES 2013, volume 1007 of CEUR Workshop Proceed-
ings, 2013.

Andrea Kohlhase, Michael Kohlhase, Constantin Jucovschi, and Alexandru
Toader. Full semantic transparency: Overcoming boundaries of applica-
tions. In Human-Computer Interaction — INTERACT 2013, volume 8119
of LNCS, pages 406-423. Springer, 2013.

Michael Kohlhase. OMDoC - An open markup format for mathematical
documents [Version 1.2], volume 4180 of LNAI Springer, 2006.

Michael Kohlhase. The flexiformalist manifesto. In Andrei Voronkov, Viorel
Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, and Stephen M. Watt ane
Daniela Zaharie, editors, 14th International Workshop on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC 2012), pages 30—
36, Timisoara, Romania, 2013. in press.

Udo Lindemann. Methodische Entwicklung technischer Produkte, Methoden
flexibel und situationsgerecht anwenden. VDI Book. Springer Verlag, 2009.

Chun Lei Li, Chris McMahon, and Linda Newnes. Supporting multiple en-
gineering viewpoints in computer-aided design using ontology-based anno-
tations. In Proceedings of the 19th International Conference on Engineering
Design (ICED13). Design Society, 2013.

Till Mossakowski, Oliver Kutz, Mihai Codescu, and Christoph Lange. The
distributed ontology, modeling and specification language. In Workshop on
Modular Ontologies, WoMo 2013, volume 1081 of CEUR Workshop Pro-
ceedings, 2013.

Till Mossakowski, Christoph Lange, and Oliver Kutz. Three semantics
for the core of the distributed ontology language (extended abstract). In
International Joint Conference on Artificial Intelligence, IJCAI 2013. 1J-
CAI/AAAI 2013.

13

[PBFGO7]

[RK13]

[VDIO5]

[VDI99]

[VDI04]

Gerhard Pahl, Wolfgang Beitz, Jorg Feldhusen, and Karl-Heinrich Grote.
Engineering Design. Springer, 2007.

Florian Rabe and Michael Kohlhase. A scalable module system. Inf. Com-
put., 230:1-54, 2013.

VDI. Methodik zum Entwickeln und Konstruieren technischer Systeme und
Produkte — VDI 2221, 1995. (Systematic approach to the development and
design of technical systems and products).

VDI-Gesellschaft Entwicklung Konstruktion Vertrieb. Informationsverar-
beitung in der Produktentwicklung — Feature-Technologie — VDI 2218, 1999.
(Information technology in product development — Feature Technology).

VDI-Gesellschaft Entwicklung Konstruktion Vertrieb. Entwick-
lungsmethodik fir mechatronische Systeme — VDI 2206, 2004. English title:
Systematic approach to the development and design of technical systems
and products.

14

