
Breitsprecher et al. / Ontological Support for Principle Solutions 1

Towards Ontological Support for Principle
Solutions in Mechanical Engineering

Thilo BREITSPRECHER a, Mihai CODESCU b, Constantin JUCOVSCHI c,
Michael KOHLHASE c, Lutz SCHRÖDER d, and Sandro WARTZACK a

a Department of Mechanical Engineering, FAU Erlangen-Nürnberg
b Department of Computer Science, Otto-von-Guericke-Universität Magdeburg

c Computer Science, Jacobs University Bremen
d Department of Computer Science, FAU Erlangen-Nürnberg

Abstract. Among the standard stages of the engineering design process, the prin-
ciple solution can be regarded as an analogue of the design specification, fixing the
way the final product works. It is usually constructed as an abstract sketch where
the functional parts of the product are identified, and geometric and topological
constraints are formulated. Here, we outline a semantic approach where the princi-
ple solution is annotated with ontological assertions, thus making the intended re-
quirements explicit and available for further machine processing; this includes the
automated detection of design errors in the final CAD model, making additional
use of a background ontology of engineering knowledge.

Keywords. Knowledge-based engineering, document-oriented processes

1. Introduction

Much like software engineering design (in an ideal world), design processes in me-
chanical engineering proceed in multiple stages successively refining abstract require-
ments into a final solution. This process of systematic engineering design is standardized
in models that bear substantial resemblance to the V-model, such as the German VDI
2221 [16]. However, only the last stage in this process, corresponding to the actual im-
plementation in software engineering, has well-developed tool support, in the shape of
CAD systems that serve to document the final design. Other stages of the design process
are typically documented in natural language, diagrams, or drawings. There is little or no
support available for interconnecting the various stages of the design, let alone verifying
that decisions made in one stage are actually implemented in the next stage.

Here, we embark on a program to fill this gap, focusing for a start on the last step in
the development process, in which we are given a principle solution and need to imple-
ment this solution in the final design, a CAD model. The principle solution fixes design
decisions regarding physical layout, materials, and connections but does not normally
carry a commitment to a fully concrete physical shape. It is typically represented by a
comparatively simple drawing, produced using plain graphics programs or even by hand.
As such, it has a number of interesting features regarding the way it does, and also does
not, convey certain information. The basic issue is that while one does necessarily indi-



2 Breitsprecher et al. / Ontological Support for Principle Solutions

cate only one concrete shape in the drawing, not all aspects and details of this sketch are
actually meant to be reflected in the final design. While some of this is obvious, other
aspects are less straightforward; e.g. symmetries in the drawing such as parallelism of
lines or equal lengths of certain parts, right angles, and even the spatial arrangement and
ordering of certain components may constitute integral parts of the principle solution or
mere accidents of the sketch (work on sketch maps in GIS [7] may eventually help make
automatic distinctions here).

The approach we propose in order strengthen and explicate the links between the
stages of the design process is, then, to integrate the documents associated to each stage
into a unified document-oriented engineering design process using a shared background
ontology. This ontology should be strong enough to not only record mere hierarchical
terminologies but also, in our concrete scenario of principle solutions, to capture as far
as possible the qualitative design intentions reflected in the principle sketch as well as
the requisite engineering knowledge necessary for its understanding. Such an ontology
will in particular support the tracing of concepts and requirements throughout the de-
velopment process; we shall moreover demonstrate on an example how it enables actual
verification of a final design against constraints indicated in the principle solution.

An extended version of this work is available [3].

2. A Document-Oriented Process with Background Knowledge

We recall the stages of the engineering design process according to VDI 2221 [16].

S1 Problem: a concise formulation of the purpose of the product to be designed.
S2 Requirements List: a list of explicitly named properties of the envisioned product.
S3 Functional Structure: a document that identifies the functional components of the

envisioned product and relates them to each other.
S4 Principle Solution: an abstract sketch capturing the core ideas of the design.
S5 Embodiment Design: a CAD design that specifies the geometry of the final product.
S6 Documentation: accompanies all steps of the design process.

An approach to vertical semantic integration of this process is outlined in [2]. Here, we
describe step S4 in more detail, as it offers the most obvious handles for adding value
using semantic services, and discuss the structure of the ontology that drives them.

According to Pahl and Beitz [14], one can develop a principle solution for a product
by combining working principles that correspond to the sub-functions identified in the
function structure of the product. The search for applicable working principles and their
ensuing combination in the principle solution is essential for the further product devel-
opment. For example, the manufacturing costs are determined to a large extent by these
decisions. However, a combination of working principles cannot be fully evaluated until
it is turned into a suitable representation. At this stage of the design process, the engi-
neer does not want to consider the formalities inherent to a full-fledged CAD system.
For this reason, probably the most common representations of principle solutions are
old-fashioned hand-drawn sketches. Developing the principle solution mainly involves
the selection of materials, a rough dimensional layout, and other technological issues.

Our main case study concerns an assembly crane for lifting heavy ma-
chine components in workshops. The assembly crane to be designed (Fig. 1)



Breitsprecher et al. / Ontological Support for Principle Solutions 3

Figure 1.: The Assembly Crane

can be divided into modules performing var-
ious functions. The modules are indicated by
numbers in the figure: the main frame with a
vertical beam, a cantilever, and parallel hori-
zontal base profiles (1); and a lifting system,
consisting of an electrically powered winch
unit (2), connected via a cable (3), which
is guided via deflection rollers, to a crane
hook (4). We are going to use the design deci-
sion that the legs of the frame should be par-
allel as a running example.

3. The Federated Engineering Ontology

The Federated Engineering Ontology (FEO) acts as the central repository of background
knowledge. It serves as a synchronization point for semantic services, as a store for the
properties of and relations between domain objects, and as a repository of help texts. As it
has to cover quite disparate aspects of the respective engineering domain at different lev-
els of formality, it is unrealistic to expect a homogeneous ontology in a single representa-
tion regime. Instead, we use the heterogeneous OMDoc/MMT framework [8] that allows
representing and interrelating ontology modules via meaning-preserving interpretations.
In particular, OMDoc/MMT supports the notion of meta-theories so that we can have on-
tology modules represented in OWL2 [6] alongside modules written in first-order logic,
as well as informal modules given in natural language. Reasoning support is provided
by the verification environment of the Heterogeneous Tool Set HETS [13], a proof man-
agement tool that interfaces state-of-the-art reasoners for logical languages. Within these
frameworks, we employ the Distributed Ontology, Modeling and Specification Language
DOL [12], which provides specific support for heterogeneity in ontologies.

A Verification Methodology We propose a general methodology for the verification of
qualitative properties of CAD assemblies against principle solutions. While the checking
of explicit quantitative constraints in principle solutions is supported by a number of re-
search tools (e.g. the ProKon system [9]; in fact, some CAD systems themselves include
constraint languages such as CATIA Knowledge Expert, which however are not typi-
cally interrelated with explicit principle solutions), there is to our knowledge currently
no support for checking qualitative requirements given by the principle solution.

The first step is to provide a formal terminology for expressing the qualitative prop-
erties that a CAD design should fulfill. Here, we concentrate on geometric properties
of physical objects and therefore we tackle this goal by developing an ontology of geo-
metric shapes. We then need to have means to formally describe the aspects of a CAD
design that are relevant for the properties that we want to verify. Since we want to verify
geometric properties, we are going to make use of an ontology of CAD features. We then
need to formulate general rules regarding geometric properties of objects constructed by
repeated applications of CAD features. This gives us a new ontology, of rules relating
geometric properties and CAD features.

We now come to the task of verification of a concrete CAD design against the re-
quirements captured by a given principle solution. In a first step, we generate a represen-
tation of the requirements as an ABox TR over the ontology of rules, explained below.



4 Breitsprecher et al. / Ontological Support for Principle Solutions

Ontology of geometry Ontology of CAD features

Ontology of rules

TM |=TR

Figure 2. Verification of qualitative properties of CAD designs.

The next step is to generate a representation of the CAD design as another ABox TM

over the same ontology of rules, and then to make use of the rules to formally verify that
TM logically implies TR. This process is illustrated in Figure 2.

Ontology of Shapes We begin setting up our verification framework by developing an
ontology of abstract geometric objects, with their shapes and properties. The shape of
a geometric object would seem to be a well-understood concept; however, the task of
formalizing the semantics of shapes and reasoning about them is difficult to achieve
in a comprehensive way. For a broader discussion, including some attempts to develop
ontologies of geometric shapes, see, e.g., the proceedings of the Shapes workshop [10].

Our ontology, inspired by CYC [11], concentrates on geometric primitives of inter-
est for CAD design . The central concept is that of PhysicalObject, which may be of an
unspecified shape or can have a 2-dimensional or 3-dimensional shape. The object and
data properties of the ontology are either parameters of the geometric shapes (e.g. diam-
eter of a circle, or length of the sides of a square) or general geometric properties, like
symmetric 2D- and 3D-objects and parallel lines.

We present the fragment of the ontology1 of shapes that is relevant for asserting that
two objects are parallel, a DOL specification that extends our OWL formalization of ge-
ometry with the axiom that two lines are parallel if the angles of their intersections with
a third line are equal. Since the intersection of two lines is a three-place relation, the two
intersecting lines and the angle between them, we use reification to represent it as a con-
cept Intersection, together with a role intersectsWith that links to the first constituent line,
a class LineAngle for pairs of lines with angles (with associated projection roles) and a
role hasLineAngle that links to the pair of the second line of an intersection and the angle
between the two lines. We denote the inverses of hasLineAngle and intersectsWith by
lineAngleOf and hasIntersection , respectively.

Ontology of CAD Features Inspired by [4], our ontology of features contains informa-
tion about the geometry and topology of CAD parts. It describes assemblies and their
parts, feature constructors and transformers, 2D sketches and their primitives, and con-
straints. We present here a fragment of the ontology of features that is relevant for veri-

1The current version of the ontology is available at http://ontohub.org/fois-ontology-
competition/FormalCAD/.



Breitsprecher et al. / Ontological Support for Principle Solutions 5

fying that two objects are parallel. We have a concept of 3DPart of an assembly and each
part has been constructed in a 3D space which has 3 axes of reference. We record this
by an object property hasAxis, with the inverse isAxisOf. Furthermore, 3D parts can be
constrained at the assembly level. The constraint of interest for us is an angle constraint
that specifies the angle formed between two axes, two edges or two faces of two cho-
sen parts. Since this is again a relation with three arguments, we reify again to obtain a
class AngleConstraint and three roles, firstConstrainedLine and secondConstrainedLine
giving the two lines that are constrained and constrainedAngle giving the specified angle.

Ontology of rules The next step is to relate via rules the concrete designs using fea-
ture transformers and constructors, given as elements of the ontology of features, to the
abstract shapes in the ontology of geometry. We make use of DOL alignments to ex-
press semantic relations between the concepts in the two ontologies, e.g. that each part
is a physical object and that lines and angles in the same ontologies are equivalent. The
outcome is that we can use DOL combinations to put together the two ontologies while
taking into account the semantic relations given by the alignment. We can then further
state that an angle constraint in an assembly gives rise to an intersection between the
constrained lines and that two parts of an assembly are parallel if their axes are parallel.

Generating the ABoxes and proving correctness The principle solution is available as
an image file, together with a text document that records additional requirements intro-
duced in the principle solution, thus further restricting the acceptable realizations of the
design. Each part of the sketch has been identified as a functional part of the principle
solution and given a name; this yields the required individual names for our ABox. The
assertions regarding the individuals thus obtained are added as semantic annotations to
the text that accompanies the image e.g. the fact that leg1 is parallel with leg2.
The ABox of the CAD design is generated from its history of construction, using a plugin
for the CAD system. Thus we extract that the two legs of the crane have been explicitly
constrained to be perpendicular to the main frame and coplanar in the CAD model.
Following Figure 2, we have to show that all models of the ABox generated from the
CAD design are models of the ABox generated from the principle solution. DOL uses
interpretations to express this; their correctness can be checked using one of the provers
interfaced by HETS, e.g. the Pellet reasoner for OWL [15]; as expected, for our simple
scenario the reasoner makes short work of this.

4. Conclusions

We have described a framework for semantic support in engineering design processes,
focusing on the step from the principle solution to the final CAD model. We base our
framework on a flexiformal background ontology, the FEO, that combines informal and
semiformal parts serving informational purposes with formalized qualitative engineer-
ing knowledge and formal semantic annotation of principle sketches. The latter serve to
separate contingencies of the sketch from its intended information content, and enable
automated verification of the CAD model against aspects of the principle solution.

In the future, we plan to deepen and extend the FEO, and include in particular suit-
able feature ontologies originally developed to support interoperability and data inter-
change between CAD systems, such as OntoSTEP [1]. Moreover, we will extend the



6 Breitsprecher et al. / Ontological Support for Principle Solutions

FEO to cover the full development process, including requirements and function struc-
ture, taking into account existing work on knowledge-based systems for the latter [5].

We currently use OWL as the logical core of our verification framework. In prin-
ciple, our approach is logic-agnostic, being based on heterogeneous principles, in par-
ticular through use of the Heterogeneous Tool Set HETS and the Distributed Ontology,
Modeling and Specification Language DOL [12]. It is thus possible to go beyond expres-
sivity boundaries of OWL where necessary, e.g. by moving parts of the ontology into
first-order logic– this will increase the complexity of reasoning but HETS will localize
this effect to those parts of the ontology that actually need the higher expressive power.

Acknowledgements. We acknowledge support by the German Research Foundation
(DFG) under grant KO-2484/12-1 / SCHR-1118/7-1 (FormalCAD).

References

[1] R. Barbau, S. Krima, R. Sudarsan, A. Narayanan, X. Fiorentini, S. Foufou, and R. D. Sriram. OntoSTEP:
Enriching product model data using ontologies. Computer-Aided Design, 44:575–590, 2012.

[2] T. Breitsprecher, M. Codescu, C. Jucovschi, M. Kohlhase, L. Schröder, and S. Wartzack. Semantic
support for engineering design processes. In Int. Design Conf., DESIGN 2014. To appear.

[3] T. Breitsprecher, M. Codescu, C. Jucovschi, M. Kohlhase, L. Schröder, and S. Wartzack. Towards onto-
logical support for principle solutions in mechanical engineering. In Formal Ontologies Meet Industry,
FOMI 2014. To appear.

[4] G. Brunetti and S. Grimm. Feature ontologies for the explicit representation of shape semantics. J.
Comput. Appl. Technology, 23:192–202, 2005.

[5] M. Erden, H. Komoto, T. van Beek, V. D’Amelio, E. Echavarria, and T. Tomiyama. A review of function
modeling: Approaches and applications. AI EDAM, 22:147–169, 2008.

[6] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: the making of
a web ontology language. J. Web Semantics, 1:7–26, 2003.

[7] S. Jan, A. Schwering, M. Chipofya, and J. Wang. Qualitative representations of schematized and dis-
torted street segments in sketch maps. In Spatial Cognition 2014, LNCS. Springer, 2014. To appear.

[8] M. Kohlhase. OMDOC – An open markup format for mathematical documents [Version 1.2], vol. 4180
of LNAI. Springer, 2006.

[9] M. Kratzer, M. Rauscher, H. Binz, and P. Göhner. Konzept eines Wissensintegrationssystems zur be-
nutzerfreundlichen, benutzerspezifischen und selbständigen Integration von Konstruktionswissen. In
Design for X, DFX 2011. TuTech Innovation, 2011.

[10] O. Kutz, M. Bhatt, S. Borgo, and P. Santos, eds. The Shape of Things, SHAPES 2013, vol. 1007 of
CEUR Workshop Proc., 2013.

[11] D. Lenat. Cyc: A Large-Scale Investment in Knowledge Infrastructure. CACM, 38:33–38, 1995.
[12] T. Mossakowski, O. Kutz, M. Codescu, and C. Lange. The distributed ontology, modeling and specifi-

cation language. In Modular Ontologies, WoMo 2013, vol. 1081 of CEUR Workshop Proc., 2013.
[13] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set, HETS. In Tools Alg. Constr.

Anal. Systems, TACAS 2007, vol. 4424 of LNCS, pp. 519–522. Springer, 2007.
[14] G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote. Engineering Design. Springer, 3rd ed., 2007.
[15] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner. J. Web

Semantics, 5:51–53, 2007.
[16] VDI. Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte (Systematic ap-

proach to the development and design of technical systems and products) – VDI 2221, 1993.


