
MFPS 2015

Unguarded Recursion
on Coinductive Resumptions 1

Sergey Goncharov Christoph Rauch Lutz Schröder

Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

We study a model of side-effecting processes obtained by adjoining free operations to a monad modelling
base effects by means of a cofree coalgebra construction; one thus arrives at what one may think of as types
of non-wellfounded side-effecting trees, generalizing the infinite resumption monad. Types of this kind have
received some attention in the recent literature; in particular, it has been shown that they admit guarded
iteration. Here, we show that they also admit unguarded iteration, i.e. form complete Elgot monads,
provided that the underlying base effect supports unguarded iteration.

Keywords: Recursion, coalgebra, coinduction, complete Elgot monad, resumptions.

1 Introduction

Following seminal work by Moggi [17], monads are widely used to represent com-

putational effects in program semantics, and in fact in actual programming lan-

guages [28]. Their main attraction lies in the fact that they provide an interface

to a generic notion of side-effect at the right level of abstraction: they subsume a

wide variety of side-effects such as state, non-determinism, random, and I/O, and

at the same time retain enough internal structure to support a substantial amount

of generic meta-theory and programming, the latter witnessed, for example, by the

monad class implemented in the Haskell basic libraries [19].

In the current work, we study a particular construction on monads motivated

partly by the goal of modelling generic side-effects in the semantics of reactive

processes. Specifically, given a base monad T and objects (types) a, b, we have,

assuming enough structure on T and the base category, a family of final coalgebras

T baX = νγ. T (X + a× γb)

for each object X. These final coalgebras can be seen as arising in two ways: on

the one hand, one may start from reactive processes sending messages of type a and

1 Work supported by the DFG under project HighMoon (SCHR 1118/8-1)

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Goncharov, Rauch and Schröder

receiving messages of type b (possibly terminating with results of type X), modelled

as non-wellfounded a-labelled b-branching trees (with leaves labelled in X), i.e.

inhabitants of νγ. (X + a × γb), and then add generic side-effects encapsulated by

T to the model (e.g. non-determinism or access to a global shared memory). On

the other hand, one may see a and b as the types of an uninterpreted side-effect

f : a→ b added to the base monad T , e.g. an I/O-operation (in fact, the interactive

input and output monads originally considered as examples by Moggi [17] can be

seen as generated by uninterpreted effects of this kind); if one wishes to model

non-terminating programs that use f as well as side-effects from T , one obtains

infinite trees of exactly the kind given by T baX. The construction of T baX from

T is an infinite version of the generalized resumption transformer introduced by

Cienciarelli and Moggi [9]. It has been termed the coalgebraic generalized resumption

transformer by Piróg and Gibbons [20] (later generalized further [21]), who show

that on the Kleisli category of T , T ba is the free completely iterative monad generated

by T (a× b).

The result that T ba is a completely iterative monad brings us to the contribution

of the current paper. Recall that complete iterativity of T ba means that for every

morphism

e : X → T ba(Y +X),

read as an equation defining the inhabitants of X, thought of as variables, as terms

over the defined variables (from X) and parameters from Y , has a unique solution

e† : X → T baY

in the evident sense, provided that e is guarded. The latter concept is defined in

terms of additional structure of T ba as an idealized monad, which essentially allows

distinguishing terms beginning with an operation from mere variables. Guarded-

ness of e then means essentially that recursive calls can happen only under a free

operation. Similar results on guarded recursion abound in the literature; for exam-

ple, the fact that T ba admits guarded recursive definitions can also be deduced from

more general results by Uustalu on parametrized monads [27].

The central result of the current paper is to remove the guardedness restriction

in the above setup. That is, we show that a solution e† : X → T baY exists for every

morphism e : X → T ba(X + Y). Of course, the solution is then no longer unique

(for example, we admit definitions of the form x = x); moreover, we clearly need to

make additional assumptions about T . Our result states, more precisely, that T ba
allows for a principled choice of solutions e† satisfying standard equational laws for

recursion [25], thus making T ba into a complete Elgot monad [3] 2 . The assumption

on T that we need to enable this result is that T itself is an Elgot monad (e.g.

partiality, nondeterminism, or combinations of these with state), i.e. we show that

the class of Elgot monads is stable under the coinductive generalized resumption

transformer. We show moreover that the structure of T ba as an Elgot monad is

uniquely determined as extending that of T .

2 We vary the original definition of Elgot monads, which requires the object X of variables to be a finitely
presentable object in an lfp category, by admitting unrestricted objects of variables; this change is explicitly
not an important part of our contribution, and presumably not central to the technical development although
we have not checked details in the finitary case.

2

Goncharov, Rauch and Schröder

The motivation for these results is, well, to free non-wellfounded recursive def-

initions from the standard guardedness constraint. Note for example that in [20],

it was necessary to assume guards in all loop iterations when interpreting a while-

language with actions originally proposed by Rutten [24] over a completely iterative

monad. Contrastingly, given that T ba is a (complete) Elgot monad, one can now just

write unrestricted while loops. We elaborate this example in Section 5, and recall

a standard example of unguarded recursion in process algebra in Section 6.

2 Preliminaries

According to Moggi [17], a notion of computation can be formalized as a strong

monad T over a Cartesian category C (i.e. a category with finite products). In

order to support the constructions occurring in the main object of study, here we

work in a distributive category C, i.e. a category with finite products and coproducts

(including a final and an initial object) and such that the natural transformation

X × Y +X × Z [id× inl,id× inr]−−−−−−−−−−−−→ X × (Y + Z)

is an isomorphism [10], whose inverse we denote distX,Y,Z . Here we denote injections

into binary coproducts by inl : A→ A+B, inr : B → A+B. The projections from

binary products are denoted fst : A×B → A, snd : A×B → B; pairing is denoted

by 〈 , 〉, and copairing of f : A → C, g : B → C by [f, g] : A + B → C. Unique

morphisms A→ 1 into the terminal object are written !A, or just !. We write |C| for

the class of objects of C. Distributivity essentially allows for using context variables

in case expressions, i.e. in copairing.

We shall also require existence of certain exponentials, i.e. objects Xa adjoint to

Cartesian products a×X, which means: for any X and Y , there is an isomorphism

curryX,Y : HomC(X × a, Y) ∼= HomC(X,Y a)

natural in X and Y . We write uncurryX,Y for the inverse map curry−1
X,Y . Then evalu-

ation morphism evX : Xa×a→ X (natural in X) is obtained as uncurryXa,X(idXa).

We commonly omit indices at natural transformations if it improves readability un-

less confusion arises.

Remark 2.1 The role of exponents in Xa is to capture a notion of arity of algebraic

operations generating effects, e.g. a = 2 would correspond to binary operations such

as nondeterministic choice. A more general setup would involve categories enriched

over a symmetric monoidal closed category V whose objects are then treated as

arities (and coarities, i.e. objects used for indexing families of operations) [13,12].

Instead of assuming existence of exponentials Xa one assumes existence of tensors

a × X and cotensors Xb with a, b ∈ |V|. Cotensors are adjoint to tensors in the

same way as exponentials are adjoint to products with a constant object. We expect

that our main results extend to this setting.

Recall that a monad T over C can be given by a Kleisli triple (T, η, ?) where T

is an endomap of |C| (in the following, we always denote Kleisli triples and their

functor parts by the same letter, with the former in blackboard bold), the unit η is

3

Goncharov, Rauch and Schröder

a family of morphisms ηX : X → TX, and the Kleisli lifting ? maps f : X → TY

to f? : TX → TY , subject to the equations

η? = id f? ◦ η = f (f? ◦ g)? = f? ◦ g?.

This is equivalent to the presentation in terms of an endofunctor T with natural

transformations unit and multiplication. A monad is strong if it is equipped with

a natural transformation τX,Y : X × TY → T (X × Y) called strength, subject to a

number of coherence conditions (e.g. [17]). Strength enables interpreting programs

over more than one variable, and allows for internalization of the Kleisli lifting, thus

legitimating expressions like λx. (f(x))? : X → (TY → TZ) for f : X → (Y → TZ),

which essentially encodes curry(uncurry(f)?◦τ). Strength is equivalent to the monad

being enriched over C [14]; in particular, every monad on Set is strong. Henceforth

we shall use the term ‘monad’ to mean ‘strong monad’ unless explicitly stated

otherwise.

The standard intuition for a monad T is to think of TX as the set of terms

in some algebraic theory, with variables taken from X. In this view, the unit

converts variables into terms, and a Kleisli lifting f? applies a substitution f : X →
TY to terms over X. In our setting, the ‘terms’ featuring here are often infinite;

nevertheless, we sometimes call them algebraic terms for distinction from the terms

in our metalanguage.

The Kleisli category CT of a monad T has the same objects as C, and C-

morphisms X → TY as morphisms X → Y . The identity on X in CT is ηX ; and

the Kleisli composite of f : X → TY and g : Y → TZ is g? ◦ f . A monad T has

rank κ if it preserves κ-filtered colimits. On Set this condition intuitively means

that T is determined by its values on sets whose cardinality is smaller than κ.

3 Complete Elgot Monads

As indicated in the introduction, we will be interested in recursive definitions over

a monad T; abstractly, these are morphisms

f : X → T (Y +X)

thought of as associating to each variable x : X a definition f(x) in the shape of an

algebraic term from T (Y + X), which thus employs parameters from Y as well as

the defined variables from X. The latter amount to recursive calls of the definition.

This notion is agnostic to what happens in the case of non-terminating recursion.

For example, T might identify all non-terminating sequences of recursive calls into

a single value ⊥ signifying non-termination; at the other extreme, T might be a

type of infinite trees that just records the tree of recursive calls explicitly.

To a recursive definition f as above, we wish to associate a solution

f † : X → TY,

which amounts to a non-recursive definition of the elements of X as terms over Y

only. As we do not assume any form of guardedness, this solution will in general

4

Goncharov, Rauch and Schröder

fail to be unique. We thus require a coherent selection of solutions f † for all equa-

tions f , where by coherent we mean that the selection satisfies a standard set of

(quasi-)equational properties. Formally:

Definition 3.1 (Complete Elgot monads) A complete Elgot monad is a strong

monad T equipped with an operator †, called iteration, that sends any f : X →
T (Y +X) to f † : X → TY satisfying the following conditions:

• unfolding: [η, f †]? ◦ f = f †;

• naturality: g? ◦ f † = ([T inl ◦ g, η ◦ inr]? ◦ f)† for any g : Y → TZ;

• dinaturality: ([η ◦ inl, h]? ◦ g)† = [η, ([η ◦ inl, g]? ◦ h)†]? ◦ g for any g : X →
T (Y + Z) and h : Z → T (Y +X);

• codiagonal: (T [id, inr] ◦ g)† = (g†)† for any g : X → T ((Y +X) +X);

• uniformity: f ◦ h = T (id+h) ◦ g implies f † ◦ h = g† for any g : Z → T (Y +Z)

and h : Z → X.

Additionally, iteration must be compatible with strength in the following sense: for

any f : X → T (Y +X), τ ◦ (id×f †) = (T dist ◦ τ ◦ (id×f))†.

Remark 3.2 The above definition is inspired by the axioms of parametrized uni-

form iterativity [25], which goes back to Bloom and Ésik [8]. Adámek et al. [3]

define Elgot monads by means of a slightly different system of axioms: the co-

diagonal and dinaturality axioms are replaced with the Bekić identity. Both ax-

iomatizations are however equivalent, which is essentially a result about iteration

theories [8, Section 6.8]. Moreover, the iteration operator in [3] is defined only for

f : X → T (Y +X) with finitely presentable X, under the assumption that C is lo-

cally finitely presentable; hence our use of the term ‘complete Elgot monad’ instead

of ‘Elgot monad’. We have the impression that this difference is not technically

essential but have not checked details for the finitary variant of our results.

In the further development, examples of complete Elgot monads will arise either

as so-called ω-continuous monads (Definition 3.3) or as extensions thereof with free

operations, i.e. via the coinductive generalized resumption transformer.

If T supports an iteration operator † then it is always possible to parametrize

it with an additional argument to be carried over the recursion loop, i.e. we derive

an operator ‡ sending f : Z ×X → T (Y +X) to f ‡ : Z ×X → TY by

f ‡ =
Ä
T (snd+ id) ◦ (T dist) ◦ τZ,Y+X ◦ 〈fst, f〉

ä†
. (1)

We call the derived operator ‡ strong iteration.

As indicated above, an important class of examples of complete Elgot monads

arises via a suitable order-enrichment of the Kleisli category.

Definition 3.3 (ω-continuous monad) An ω-continuous monad consists of a

monad T and an enrichment of the Kleisli category CT of T over the category

ωCppo of ω-complete partial orders with bottom and (nonstrict) continuous maps,

satisfying the following conditions:

• strength is ω-continuous: τ ◦ (id×⊔
i fi) =

⊔
i(τ ◦ (id×fi));

5

Goncharov, Rauch and Schröder

• copairing in CT is ω-continuous in both arguments:
î⊔

i fi,
⊔
i gi
ó

=
⊔
i[fi, gi];

• bottom elements are preserved by strength and by postcomposition in CT:

τ ◦ (id×⊥) = ⊥, f? ◦ ⊥ = ⊥.

Example 3.4 Many of the standard computational monads on Set [17] are ω-

continuous, including nontermination (TX = X + 1), nondeterminism (TX =

P(X)), and the nondeterministic state monad (TX = P(X × S)S for a set S of

states). On ωCppo, lifting (TX = X⊥) and the various power domain monads are

ω-continuous.

Remark 3.5 As observed by Kock [14], monad strength is equivalent to enrichment

over the base category. One consequence of this fundamental fact is that if C is

enriched over the category ωCpo of bottomless ω-complete partial orders and ω-

continuous maps (i.e. C is an O-category in the sense of Wand [29] and Smyth and

Plotkin [26]), with the bicartesian closed structure enriched in the obvious sense,

then CT is also enriched over ωCpo, since T , underlying a strong monad, is an

ωCpo-functor (aka locally continuous functor [26]). Then T is ω-continuous in

the sense of Definition 3.3 iff each Hom(X,TY) has a bottom element preserved

by strength and postcomposition in CT. This allows for incorporating numerous

domain-theoretic examples by taking C to be a suitable category of predomains,

and T, in the simplest case, the lifting monad TX = X⊥ (from which one builds

more complex examples by the construction explored next).

If T is an ω-continuous monad, then the endomap

h 7→ [η, h]? ◦ f

on the hom-set HomC(A, TB) is continuous because copairing and Kleisli composi-

tion in T are continuous, and hence has a least fixpoint by Kleene’s fixpoint theorem.

We can define an iteration operator by taking f † to be this fixpoint; in other words,

f † is defined to be the smallest solution of the unfolding equation as per Defini-

tion 3.1. The verification of the remaining identities is tedious but straightforward;

in summary,

Theorem 3.6 On every ω-continuous monad, defining iteration by taking least fix-

points determines a complete Elgot monad structure.

This result is unsurprising in the light of analogous facts known for so-called ω-

continuous theories [8, Theorem 8.2.15, Exercise 8.2.17].

Remark 3.7 Every complete Elgot monad T can express unproductive divergence

as the generic effect Ä
X

η ◦ inr−−−−→ T (Y +X)
ä†
.

This computation never produces any effects, i.e. behaves like a deadlock. If T
is ω-continuous, then unproductive divergence coincides with the least element of

Hom(X,TY), for which reason we use the same symbol ⊥ for the above morphism,

but in general, there is no ordering in which unproductive divergence could be a

least element.

6

Goncharov, Rauch and Schröder

4 The Coinductive
Generalized Resumption Transformer

We proceed to recall the definition of the coinductive generalized resumption trans-

former [20], of which for simplicity we consider a version with only one family of

free operations (rather than a whole signature or, even more generally, an arbitrary

endofunctor on the base category). We then prove our main result, stability of the

class of complete Elgot monads under this construction (Theorem 4.5).

Given a, b ∈ |C| such that exponentials of the form Xb exist and a monad T,

put

()ba = a× b and T baX = νγ. T (X + γba);

i.e. T baX is the final coalgebra of T (X + ()ba), which we assume to exist. The

assignment ()ba is clearly a functor, i.e. applies also to morphisms. Intuitively, T baX

is a type of possibly non-terminating computation trees, with each node consisting

of a computation with side-effects specified by T that either returns a value in X

or continues with one of a-many free operations each combining b-many subsequent

computations. Let

outX : T baX → T (X + (T baX)ba)

be the final coalgebra structure, and let coit(g) : Y → T baX denote the final mor-

phism induced by a coalgebra g : Y → T (X + Y b
a):

Y

g

��

coit(g)
// T baX

outX
��

T (X + Y b
a)

T (X+(coit(g))ba)
// T (X + (T baX)ba).

Intuitively, coit(g) encapsulates (in T baX) a computation tree that begins by exe-

cuting g, terminates in a leaf of type X if g does, and otherwise (co-)recursively

continues to execute g, forming a new tree node for each recursive call. It is easy to

verify that outX is natural in X. By Lambek’s lemma, out is a natural isomorphism.

Thus, T maps into T ba via

ext = T T inl // T (Id +(T ba)ba)
out-1 // T ba .

We record explicitly that T ba is a strong monad:

Lemma 4.1 Given a monad T and a, b ∈ |C|, T ba is the functorial part of a monad

Tba, with the monad structure characterized by the following properties.

(i) The unit ην : X → T baX is defined by out ◦ ην = η ◦ inl (i.e. ην = out−1 ◦ η ◦ inl).

(ii) Given f : X → T baY , the Kleisli lifting f § : T baX → T baY is the unique solution

of the equation out ◦f § =
î
out ◦f, η ◦ inr(f §)ba

ó? ◦ out.
(iii) Given f : X → T baY , let g = [f, ην] : X+Y → T baY ; then g§ is a final morphism

of coalgebras, namely g§ = coit
Ä
[T (id+(T ba inr)

b
a) ◦ out ◦g, η ◦ inr]? ◦ out

ä
.

(iv) The strength τν : X × T baY → T ba(X × Y) is the unique solution of out ◦ τν =

T (id+(τν)ba)◦Tδ ◦ τ ◦ (id× out) where δ : X× (Y +(T baY)ba)→ (X×Y)+(X×

7

Goncharov, Rauch and Schröder

T baY)ba is the obvious distributivity transformation:

X × T baY

τν

��

(Tδ)τ(id× out)
// T (X × Y + (X × T baY)ba)

T (id+(τν)ba)

��

T ba(X × Y) out // T (X × Y + T ba(X × Y)ba).

The proof of Lemma 4.1 is facilitated by the fact that T (X + ()ba) can be shown

to be a parametrized monad, which implies that Tba is a monad [27, Theorems 3.7

and 3.9]. Alternatively, the fact that Tba is a monad can be read off directly from

the results of [20]. What is new here is that we show that Tba is, in fact, strong, and

hence supports an interpretation of the standard computational metalanguage [17].

This amounts to showing that the strength defined in the last item satisfies the

requisite laws [17]. One fact of potentially independent interest used in the (quite

involved) proof of these laws is

Lemma 4.2 For any functor G : B→ C, outG : T baG→ T (G+(T baG)ba) is the final

T (G+ Idba)-coalgebra in [B,C].

Following Uustalu [27] (and other work [20,1]), we next introduce a notion of guard-

edness.

Definition 4.3 (Guardedness) A morphism f : X → T ba(Y + Z) is guarded if

there is u : X → T (Y + T ba(Y + Z)ba) such that out ◦f = T (inl+ id) ◦ u:

X
f

//

u
��

T ba(Y + Z)

out
��

T (Y + T ba(Y + Z)ba) T (inl+ id)
// T ((Y + Z) + (T ba(Y + Z))ba).

Guardedness of f : X → T ba(Y +Z) intuitively means that any call to a computation

of type Z in f occurs only under a free operation, i.e. via the right summand in

T ((Y + Z) + (T ba(Y + Z))ba). A familiar instance of this notion occurs in process

algebra [7], illustrated in simplified form as follows.

Example 4.4 Let T be the countable powerset monad over a suitable category, i.e.

TX = Pω1X = {Y ⊆ X | |Y | ≤ ω}. The object T 1
AX = νγ.Pω1(X +A× γ) can be

considered as the domain of possibly infinite countably nondeterministic processes

over actions from A with final results in X. A morphism n→ T 1
A(X+n) can be seen

as a system of n mutually recursive process definitions; the latter is guarded in the

sense of Definition 4.3 iff every recursive call of a process is preceded by an action,

which coincides with the standard notion of guardedness from process algebra. We

recall an example of an unguarded definition in this setting in Section 6.

The following result is the main technical contribution of the paper; it states es-

sentially that iteration operators, i.e. Elgot monad structures, propagate uniquely

along extensions T→ Tba.

8

Goncharov, Rauch and Schröder

Theorem 4.5 Let T be a complete Elgot monad. Given a, b ∈ |C|, let Tba be the

monad identified in Lemma 4.1.

(i) There is a unique iteration operator making Tba a complete Elgot monad that

extends iteration in T in the sense that for f : X → T ba(Y + X) and g : X →
T (Y +X), if

out ◦f = (T inl) ◦ g
(i.e. f = out−1 ◦(T inl) ◦ g) then

out ◦f † = (T inl) ◦ g†.

(ii) For any guarded morphism f : X → T ba(Y + X), f † is the unique morphism

satisfying the unfolding property [ην , f †]§ ◦ f = f †.

Proof. (Sketch) Uustalu already proves that guarded morphisms f have unique

iterates f † [27, Theorem 3.11]. The key step is then to define f † for unrestricted f

in a consistent manner. For f : X → T ba(Y +X), let �f : X → T ba(Y +X) be the

composite

X
w†−−−−→ T (Y + T ba(Y +X)ba)

T (inl+ id)−−−−−−−→ T ((Y +X) + T ba(Y +X)ba)

out-1−−−−−→ T ba(Y +X)

(guarded by definition), where w is the composite

X
f−−−→ T ba(Y +X)

out−−−→ T ((Y +X) + T ba(Y +X)ba)
Tπ−−−−→ T ((Y + T ba(Y +X)ba) +X)

with π = [inl+ id, inl inr]. That is, �f makes f guarded by iterating

out ◦f : X → T ((Y +X) + T ba(Y +X)ba)

(in the complete Elgot monad T) over the middle summand of the result. It is easy

to check that �f = f when f is guarded. We hence can define

f † = (�f)†

(in Tba). Further (nontrivial) calculations show that this definition indeed satisfies

the axioms of complete Elgot monads.

To establish uniqueness, we first show that any morphism f : X → T ba(Y + X)

can be decomposed into two morphisms g : X → T ba(Z+X) and h : Z → T ba(Y +X),

where Z = Y + T ba(Y +X)ba, as

f = [h, ην ◦ inr]§ ◦ g

with g completely unguarded, i.e. out ◦g = (T inl) ◦ g′ for some g′; that is, we split

f into a guarded part and a completely unguarded one, with iteration on the latter

9

Goncharov, Rauch and Schröder

part being determined by the requirement that iteration on T ba extend iteration

on T . Next we show that for any choice of Elgot monad structure † on T ba ,

f † = (h§ ◦ g†)†

and that

h§ ◦ g† = �f.

In summary, we then obtain that f † = (h§◦g†)† = (�f)†, i.e. our previous definition

of f † is the only possible one with the given properties, as �f is guarded and

therefore (�f)† is determined uniquely already by the unfolding property. 2

The following results characterize Tba within the (overlarge) category CElg(C) of

complete Elgot monads over C and (strong) monad morphisms [16] preserving it-

eration in the evident sense:

Definition 4.6 A complete Elgot monad morphism ξ : R → S between complete

Elgot monads R, S is a morphism ξ between the underlying strong monads (i.e.

ξ ◦ η = η, ξ ◦ f? = (ξ ◦ f)? ◦ ξ for f : X → RY , and ξ ◦ τ = τ ◦ (id×ξ)) additionally

satisfying

(ξ ◦ g)† = ξ ◦ g†

for g : X → R(Y +X).

Lemma 4.7 The natural transformation ext : T → Tba is a complete Elgot monad

morphism.

Theorem 4.8 Suppose that CElg(C) has an initial object L. Then

(i) Lba is the free complete Elgot monad over the signature functor ()ba : C→ C;

(ii) For any complete Elgot monad T, Tba is the coproduct of T and Lba in CElg(C),

with left injection ext : T→ Tba (in particular, ext is a morphism in CElg(C)).

The crucial step in proving Theorem 4.8 is the following statement, which is inter-

esting in its own right.

Lemma 4.9 Let a, b ∈ |C| and let T, S be two complete Elgot monads. Given a

complete Elgot monad morphism ρ : T→ S and a Kleisli morphism u : a→ Sb, the

transformation ζ† : T ba → S with ζ defined componentwise as the composite

T baX
out−−−−−→ T (X + a× (T baX)b)

[η◦inl,λ〈x,f〉. S(inr ◦f)u(x)]?◦ρ−−−−−−−−−−−−−−−−−−−−→ S(X + T baX)

extends to a complete Elgot monad morphism. Conversely, any ξ : Tba → S induces

ξ ext : T→ S and

a
out-1 ◦ η ◦ inr ◦ 〈id,λ . η〉−−−−−−−−−−−−−−−−→ T bab

ξb−−−−→ Sb.

These two passages are mutually inverse and thus witness a bijection between com-

plete Elgot monad morphisms Tba → S and pairs consisting of Kleisli morphisms

a→ Sb and complete Elgot monad morphisms T→ S.

The existence and the exact shape of the initial complete Elgot monad L mentioned

in Theorem 4.8 depend on the properties of C. Recall that C is hyperextensive [2]

10

Goncharov, Rauch and Schröder

if it has countable coproducts that are disjoint and universal (i.e. stable under

pullbacks), and coproduct injections are, as subobjects, closed under countable

disjoint unions. Examples include Set, ωCpo, and complete metric spaces as well

as all presheaf categories.

Theorem 4.10 Let C be hyperextensive. Then the monad L given by LX = X+1 is

ω-continuous. Equipped with the arising complete Elgot monad structure according

to Theorem 3.6, L is the initial complete Elgot monad over C.

Proof. The base category C is, a fortiori, extensive; in any extensive category,

L is the partial map classifier for partial morphisms whose domains are coproduct

injections. Thus, the Kleisli category of L inherits orderings on its hom-sets from the

extension ordering on partial functions; the fact that coproduct injections are closed

under unions in C then guarantees that these orderings are ω-complete (note that

any ascending chain of coproduct injections qua subobjects can, using universality of

coproducts, be transformed into a disjoint union of coproduct injections). Using the

properties of hyperextensive categories, one can show that this induces an ωCppo-

enrichment of CL that satisfies all additional conditions imposed in Definition 3.3.

To see initiality, note that any complete Elgot monad T for anyX ∈ |C| possesses

a global element ⊥X = δ†X : 1→ TX where δX = η ◦ inr : 1→ T (X + 1). It follows

by naturality of iteration that ⊥X is actually natural in X. Moreover, ⊥ is preserved

by complete Elgot monad morphisms. It is easy to see that ξX = [η,⊥X] yields a

complete Elgot monad morphism ξ : L→ T. On the other hand it is the only such

because for any other complete Elgot monad morphism θ : L → T one would have

θ ◦ inl = θ ◦ η = η = ξ ◦ inl and θ ◦ inr = θ ◦ ⊥ = ⊥ = ξ ◦ inr implying θ = ξ. 2

5 Example: Unrestricted While Loops

We use a simple while-language with actions proposed by Rutten, given by the

grammar

P,Q ::= A | P ;Q | if b thenP elseQ | while b do P
and, following Piróg and Gibbons [20], interpreted in the Kleisli category of a

monad M. Here, A ranges over atomic actions interpreted as Kleisli morphisms

JAK : n → Mn for some fixed object n, and b over atomic predicates, interpreted

as Kleisli morphisms JbK : n → M(1 + 1) (with the left-hand summand read as

‘false’). We say that A is of output type if JAK has the form (M fst) ◦ τ ◦ 〈idn, p〉 for

some p : n → M1, and of input type if JAiK factors through ! : n → 1. Sequential

composition P ;Q is interpreted as Kleisli composition JQK? ◦ JP K, and

Jif b thenP elseQK = [JQK ◦ fst, JP K ◦ fst]? ◦M dist ◦τ ◦ 〈id, JbK〉.

The key point, of course, is the interpretation of the while loop, given in the presence

of iteration † by

Jwhile b do P K =
Ä
[(M inl) ◦ η ◦ fst, (M inr) ◦ JP K ◦ fst]? ◦M dist ◦τ ◦ 〈id, JbK〉

ä†
. (2)

It has been observed by Piróg and Gibbons that if one instantiates M with a com-

pletely iterative monad, one needs to guard every iteration of the while loop, i.e.

11

Goncharov, Rauch and Schröder

change the semantics of while to be

Jwhile b do P K =
Ä
[(M inl) ◦ η ◦ fst, (M inr) ◦ JP K ◦ fst]? ◦M dist ◦τ ◦ 〈id, JbK〉 ◦ γ

ä†
where γ : n→Mn is guarded, as otherwise the iteration may fail to be defined. If

we instantiate M with an Elgot monad, such as Tba for an Elgot monad T, then the

guard is unnecessary, i.e. we can stick to the original semantics (2). As an example,

consider a simple-minded form of processes that input and output symbols from n

and have side effects specified by T; i.e. we work in M = (T1
n)n1 meaning to use the

adjoined free effects 1 → n to capture output and those of type n → 1 to capture

input. We assume an atomic action write that outputs a symbol from n, and an

atomic action read that inputs a symbol. We interpret write as being of output

type, i.e. by JwriteK = (M fst) ◦ τ ◦ 〈idn, w〉 where

w = ext ◦ out−1 ◦ η ◦ inr ◦〈idn, ην◦ !n〉 : n→ (T 1
n)n1 (1)

(ην being the unit of T1
n), while read is of input type, i.e. JreadK = r ◦ !n where

r = out−1 ◦ ην ◦ inr ◦〈id1, r0〉 : 1→ (T 1
n)n1n

and r0 : 1 → (T 1
n)n1 (n)n is obtained by currying ηM ◦ snd : 1 × n → (T 1

n)n1 (n) (ηM

being the unit of M). Moreover, assume a basic predicate b whose interpretation is

largely irrelevant to the example as long as it may take both truth values; for exam-

ple, b might just pick a truth value non-deterministically or at random, depending

on the nature of the base monad T. Consider the program

read ;while true do if b thenskip else write

where skip is an atomic action interpreted as JskipK = ηMn : n→Mn. It is possible

for the loop to not perform any write operations, as b might happen to always pick

the left-hand branch; that is, the loop body fails to be guarded. Since M is an

Elgot monad and not just completely iterative, the semantics of the loop is defined

(by (2)) nonetheless.

6 Example: Simple Process Algebra

It is shown in [5, Theorem 5.7.3] that a simple process algebra BSP featuring finite

choice and action prefixing can express all countable transition systems if unguarded

recursion is allowed. The idea of the proof is to introduce variables Xik for i, k ∈ N
representing the k-th transition of the i-th state, with Xi0 representing the i-th

state itself, and (unguarded) recursive equations

Xik = bik.Xj(i,k),0 +Xi,k+1 (3)

where the k-th transition of the i-th state performs action bik and reaches the

j(i, k)-th state. (It is then stated explicitly that the use of unguarded recur-

sion is essential.) To model this phenomenon using the coinductive generalized

12

Goncharov, Rauch and Schröder

resumption transformer, we take T = P, the powerset monad on Set (an El-

got monad by Theorem 3.6) and an operation act with interpretation JactK =

out−1 ◦ η ◦ inr ◦〈ida, ην !a〉 : a → T 1
a 1, where a is the type of actions. That is, we

regard (unbounded) nondeterminism as part of the base effect, and add action

prefixing via coinductive generalized resumptions. Then the definition (3) is rep-

resented by the map g = out−1 ◦f : N × N → T 1
a (N × N) ∼= T 1

a (0 + N × N) with

f : N× N→ T ((N× N) + a× T 1
a (N× N) (eliding the exponent 1) given by

f(i, k) = {inr(bik, ην(j(i, k), 0)), inl(i, k + 1)}.

Again, our result that T1
a is an Elgot monad guarantees that this equation has a

solution g†; the choice † of solutions in T1
a is uniquely determined as extending the

usual structure of T = P as an Elgot monad via taking least fixed points.

7 Related Work

The above results benefit from extensive previous work on monad-based axiomatic

iteration. In particular we draw on the concept of Elgot monad studied by Adámek

et al. [3]; the construction of the free Elgot monad over a functor [4] is strongly

related to Theorem 4.8.i, and we do not claim this result as a contribution of

this paper. There is extensive literature on solutions of (co)recursive program

schemes [6,1,15,11,20,21], from which our present work differs primarily in that

we do not restrict to guarded systems of equations. In particular, as mentioned in

the introduction, Piróg and Gibbons [20] actually work with the same monad trans-

former, the coinductive generalized resumption transformer. Piróg and Gibbons [21,

Corollary 4.6] also prove a characterization of the coinductive generalized resump-

tion transformer as taking coproducts of monads similar to our Theorem 4.8.ii; but

again, this takes place in a different category, that is, in completely iterative mon-

ads (admitting guarded recursive definitions) rather than complete Elgot monads

(admitting unrestricted corecursive definitions). One consequence of this is that the

second summand in our coproduct result is a free Elgot monad and not a free com-

pletely iterative monad over a × b, and hence has a built-in notion of divergence.

Technically, results on T ba being a completely iterative monad are incomparable to

our result on T ba being a complete Elgot monad – we prove a stronger recursion

scheme for T ba but need to assume that T is an Elgot monad, while T ba is completely

iterative without any assumptions on T .

We construct solutions of unguarded recursive equations from solutions of

guarded recursive equations, for the latter relying crucially on results by Uustalu on

guarded recursion over parametrized monads [27], which in particular has allowed

us to make do without idealized monads.

The axiomatic treatment of iteration via Elgot monads is essentially dual to

the axiomatic treatment of recursion by Simpson and Plotkin [25], who work in a

category D with a parametrized uniform recursion operator HomD(Y × X,X) →
HomD(Y,X) and a subcategory S of strict functions in D. Given a distributive

category C equipped with a complete Elgot monad, we can take S = Cop and

D = Cop
T . Then the iteration operator over CT sending f : X → T (Y + X) to

f † : X → TY induces precisely a parametrized uniform recursion operator for the

13

Goncharov, Rauch and Schröder

pair (D,S) in the sense of Simpson and Plotkin.

8 Conclusions and Future Work

We have developed semantic foundations for non-wellfounded side-effecting recur-

sive definitions, in the form of iteration, specifically for recursive definitions over

the so-called coinductive generalized resumption transformer that constructs from

a base monad T the monad νγ. T (+ a × γb). While previous work on the same

monad transformer was focussed on guarded corecursive definitions, in the frame-

work of completely iterative monads, we work in the setting of (complete) Elgot

monads, which admit unrestricted recursive definitions. As the core results, we

have established that

• T ba is a complete Elgot monad if T is a complete Elgot monad;

• the structure of T ba as a complete Elgot monad is uniquely determined as ex-

tending the one of T ;

• if the underlying category C admits an initial complete Elgot monad L (typi-

cally L = + 1) then T ba
∼= T + Lba in the category of complete Elgot monads

on C.

In particular this requires proving the equational laws of complete Elgot monads

for the solution operator that we construct on T ba . Ongoing work is concerned with

a formal verification of our results, which are technically quite involved, in the Coq

proof assistant; a preliminary version can be found at https://git8.cs.fau.de/

redmine/projects/corque.

Besides the fact that applying the coinductive resumption monad transformer

to a complete Elgot monad T again yields a complete Elgot monad Tba, the resulting

object obviously has a richer structure provided by the adjoined free operations. One

topic for further investigation is to identify (and possibly axiomatize) this structure.

Future work is concerned with using this structure for programming definitions of

free operations as morphisms T baX → TX in a similar spirit as in the paradigm of

handling algebraic effects [23]. In conjunction with iteration this actually produces

a recursion operator more expressive than iteration. This however requires going

beyond the first-order setting of this paper (which was sufficient for iteration), as

call-by-value recursion is known to be an inherently higher-order concept.

Acknowledgements The authors wish to thank Stefan Milius and Paul Blain Levy

for useful discussions.

References

[1] Aczel, P., J. Adámek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: a
coalgebraic view, Theoret. Comput. Sci. 300 (2003), pp. 1 – 45.

[2] Adámek, J., R. Borger, S. Milius and J. Velebil, Iterative algebras: How iterative are they?, Theory
Appl. Cat. 19 (2008), pp. 61–92.

[3] Adámek, J., S. Milius and J. Velebil, Equational properties of iterative monads, Inf. Comput. 208
(2010), pp. 1306–1348.

14

https://git8.cs.fau.de/redmine/projects/corque
https://git8.cs.fau.de/redmine/projects/corque

Goncharov, Rauch and Schröder

[4] Adámek, J., S. Milius and J. Velebil, Elgot theories: a new perspective of the equational properties of
iteration, Math. Struct. Comput. Sci. 21 (2011), pp. 417–480.

[5] Baeten, J., T. Basten and M. Reniers, “Process algebra: equational theories of communicating
processes,” Cambridge University Press, 2010.

[6] Bartels, F., Generalised coinduction, Math. Struct. Comput. Sci. 13 (2003), pp. 321–348.

[7] Bergstra, J., A. Ponse and S. Smolka, editors, “Handbook of Process Algebra,” Elsevier, 2001.

[8] Bloom, S. and Z. Ésik, “Iteration Theories,” Springer, 1993.

[9] Cenciarelli, P. and E. Moggi, A syntactic approach to modularity in denotational semantics, in: Category
Theory and Computer Science, CTCS 1993, 1993.

[10] Cockett, R., Introduction to distributive categories, Math. Struct. Comput. Sci. 3 (1993), pp. 277–307.

[11] Goncharov, S. and L. Schröder, A coinductive calculus for asynchronous side-effecting processes, Inf.
Comput. 231 (2013), pp. 204 – 232.

[12] Hyland, M., G. Plotkin and J. Power, Combining effects: Sum and tensor, Theoret. Comput. Sci. 357
(2006), pp. 70–99.

[13] Hyland, M. and J. Power, Discrete lawvere theories and computational effects, Theoret. Comput. Sci.
366 (2006), pp. 144–162.

[14] Kock, A., Strong functors and monoidal monads, Arch. Math. 23 (1972), pp. 113–120.

[15] Milius, S., L. Moss and D. Schwencke, Abstract GSOS rules and a modular treatment of recursive
definitions, Log. Methods Comput. Sci. 9 (2013).

[16] Moggi, E., An abstract view of programming languages, Technical Report ECS-LFCS-90-113, Univ. of
Edinburgh (1989).

[17] Moggi, E., A modular approach to denotational semantics, in: Category Theory and Computer Science,
CTCS 1991, LNCS 530 (1991), pp. 138–139.

[18] Moggi, E., Notions of computation and monads, Inf. Comput. 93 (1991), pp. 55–92.

[19] Peyton-Jones, S., ed, “Haskell 98 Language and Libraries — The Revised Report,” Cambridge
University Press, 2003, also: J. Funct. Prog. 13 (2003).

[20] Piróg, M. and J. Gibbons, Monads for behaviour, in: Mathematical Foundations of Programming
Semantics, MFPS 2013, ENTCS 298, pp. 309 – 324, Elsevier, 2013.

[21] Piróg, M. and J. Gibbons, The coinductive resumption monad, in: Mathematical Foundations of
Programming Semantics, MFPS 2014, ENTCS 308, pp. 273–288, Elsevier, 2014.

[22] Plotkin, G. and J. Power, Semantics for algebraic operations, in: Mathematical Foundations of
Programming Semantics, MFPS 2001, ENTCS 45, pp. 332–345, Elsevier, 2001.

[23] Plotkin, G. and M. Pretnar, Handlers of algebraic effects, in: European Symposium on Programming,
ESOP 2009, LNCS 5502, pp. 80–94, Springer, 2009.

[24] Rutten, J., A note on coinduction and weak bisimilarity for while programs, Inform. Théorét. Appl.
33 (1999), pp. 393–400.

[25] Simpson, A. and G. Plotkin, Complete axioms for categorical fixed-point operators, in: Logic in
Computer Science, LICS 2000, pp. 30–41, IEEE Computer Society, 2000.

[26] Smyth, M. and G. Plotkin, The category-theoretic solution of recursive domain equations, in:
Foundations of Computer Science, FOCS 1977, pp. 13–17, IEEE, 1977.

[27] Uustalu, T., Generalizing substitution, Inform. Théorét. Appl. 37 (2003), pp. 315–336.

[28] Wadler, P., How to declare an imperative, ACM Comput. Surv. 29 (1997), pp. 240–263.

[29] Wand, M., Fixed-point constructions in order-enriched categories, Theoret. Comput. Sci. 8 (1979),
pp. 13–30.

15

Goncharov, Rauch and Schröder

A Appendix: Omitted Proofs

Proof of Theorem 3.6

Since copairing and Kleisli composition are continuous, the endomap h 7→ [η, h]?f

over a hom-set HomC(A, TB) is also continuous and hence the least fixpoint of it

exists by Kleene fixpoint theorem. We take this fixpoint as the definition of f †.

Let us verify the axioms of Elgot monads one by one. To that end we employ

the following uniformity rule for continuous functionals [22]:

UF = GU U(⊥) = ⊥
U(µF) = µG (A.1)

• Unfolding. This holds by definition.

• Naturality. In (A.1) take F (u) = [η, u]?f , G(u) = [η, u]?[(T inl)g, η inr]?f and

U(h) = g?u. By definition, U(⊥) = ⊥, µF = f †, µG = ([η, u]?[(T inl)g, η inr])†.
Then we have

U(F (u)) = g?[η, u]?f = [η, g?u]?[(T inl)g, η inr]?f = G(U(u)).

Therefore, by (A.1), g?f † = U(µF) = µG = ([(T inl)g, η inr]?f)†.

• Dinaturality. Let us denote s = [η inl, h]?g and t = [η inl, g]?h. The identity in

question is then s† = [η, t†]?g. Observe that

[η, t†]?g =
î
η, [η, t†]?[η inl, g]?h

ó?
g (unfolding)

=
î
η, [η, [η, t†]?g]?h

ó?
g

=
î
η, [η, t†]?g

ó?
[η inl, h]?g,

i.e. [η, t†]?g satisfies the unfolding identity for s†, therefore s† v [η, t†]?g. By

symmetry we obtain t† v [η, s†]?h and therefore

[η, t†]?g v
î
η, [η, s†]?h

ó?
g (continuity)

= [η, s†]?[η inl, h]?g

= s†

We have thus shown the identity s† = [η, t†]?g by mutual inclusion.

• Codiagonal. Recall that we are claiming that

(T (id+∇)g)† = (g†)†

for g : A → T ((B + A) + A). We first show that (g†)† is a fixpoint of the

functional defining the left-hand side as a least fixpoint, thus proving v. That

is, we have to show that

[η, (g†)†]?T (id+∇)g = (g†)†. (A.2)

16

Goncharov, Rauch and Schröder

We proceed as follows:

(g†)† = [η, (g†)†]?g† (unfolding)

= [η, (g†)†]?[η, g†]?g (unfolding)

= [[η, (g†)†], [η, (g†)†]?g†]?g

= [[η, (g†)†], (g†)†]?g (unfolding)

= [η, (g†)†∇]?g

= [η, (g†)†]? T (id+∇)g.

For the converse inequality, continuity allows us to use fixpoint induction.

Recall that the right hand side is the least fixed point of the functional F :

(A→ TB)→ (A→ TB) defined by

F (f) = [η, f]?g†,

and hence the supremum of the chain (F i(⊥))i∈N. We show by induction on i

that all members of this chain are below (T (id+∇)◦ g)†, with trivial induction

base. So let f v (T (id+∇) ◦ g)†. We have to show

[η, f]?g† v (T (id+∇)g)†.

We establish this by a second fixpoint induction on the definition of g†, again

with trivial induction base. So assume that [η, f]?r v (T (id+∇)g)†, with

r : A→ T (B +A); we have to show that

[η, f]?[η, r]?g v (T (id+∇)g)†.

We calculate as follows:

[η, f]?[η, r]?g = [η, f, [η, f]?r]?g

v [η, f, (T (id+∇)g)†]?g (inner IH)

v [η, (T (id+∇)g)†, (T (id+∇)g)†]?g (outer IH)

= [η, (T (id+∇)g)†]T (id+∇)g

= (T (id+∇)g)†. (unfolding)

• Uniformity. Let f : A → T (X + A), g : B → T (X + B), G(u) = [η, u]?g,

F (u) = [η, u]?f , and U(u) = u?h. Then U(⊥) = ⊥ and

UF (u) = ([η, u]?f)?h

= [η, u]?(f?h)

= [η, u]?[η inl, (T inr)h]?g

=
î
[η, u]?η inl, [η, u]?(T inr)h

ó?
g

=
î
[η, u] inl, u?h

ó
g

= [η, u?h]g

=GU(u).

17

Goncharov, Rauch and Schröder

Therefore by (A.1), (f †)?h = UµF = µG = g†.

In the following, we will use the axioms of strength as in [16]:

snd = T sndτ (str1)

(Tα)τ = τ(id×τ)α (str2)

τ(id×η) = η (str3)

(τ(id×f))?τ = τ(id×f?) (str4)

where α : (X × Y) × TC → X × (Y × TC) is the associativity isomorphism of

products.

To prove compatibility of strength and iteration, we proceed by first showing

((T dist)τ(id×f))† v τ(id×f †).

First observe that, for any g : A→ TB,

C × (B +A)

id×[η,g]

��

dist // C ×B + C ×A
dist−1

oo

[η,τ(id×g)]
��

C × TB τ // T (C ×B).

(dst)

This is easily checked componentwise starting from C × B + C × A and using the

fact that by definition dist−1 = [id× inl, id× inr]. Then we have

τ(id×f †)
= τ(id×[η, f †]?f)

= τ(id×[η, f †]?)(id×f)

= (τ(id×[η, f †]))?τ(id×f) (str4)

= ([η, τ(id×f †)] dist)?τ(id×f) (dst)

= [η, τ(id×f †)]?(T dist)τ(id×f).

Therefore, τ(id×f †) is a fixed point of the functional defining ((T dist)τ(id×f))† as

a least fixpoint and the inequality above holds. The converse inequality,

τ(id×f †) v ((T dist τ)(id×f))†,

is shown by fixpoint induction as above for the codiagonal. The base case is trivial

with

τ〈fst,⊥ snd〉 = τ〈fst,⊥ fst〉 = τ〈id,⊥〉 fst = ⊥ fst = ⊥.
Assume now that τ(id×g) v (T dist τ(id×f))†. We can then calculate

τ(id×[η, g]?f)

= τ(id×[η, g]?)(id×f)

= (τ(id×[η, g]))?τ(id×f) (str4)

18

Goncharov, Rauch and Schröder

= ([η, τ(id×g)] dist)?τ(id×f) (dst)

v ([η, (T dist τ(id×f))†] dist)?τ(id×f)

= [η, (T dist τ(id×f))†]?T dist τ(id×f)

= (T dist τ(id×f))†

which completes the proof. 2
We extend the statement of Lemma 4.2:

Lemma A.1 If T baX exists for each X, then T ba is a functor and out : T ba →
T (Id +(T ba)ba) is a natural transformation. For any functor G : B → C, outG :

T baG→ T (G+ (T baG)ba) is the final T (G+ Idba)-coalgebra in [B,C].

Proof. Functoriality follows from T ba carrying a monad structure, as shown in the

proof of Theorem 4.5 independently of this lemma. Now T baf = (ηνf)§, so by the

description of § we have

outT baf = [out ηνf, ην inr(T baf)ba]
? out

= [η inl f, η inr(T baf)ba]
? out

= T [inl f, inr(T baf)ba] out

= T (f + (T baf)ba) out,

i.e. out is natural.

To show finality, let β : F → T (G + a × F b) be a natural transformation. We

define f : F → T baG componentwise by the equation

out fX = T (GX + a× f bX)βX

using finality of out : T baGX → T (GX + (T baGX)ba). We have to show that f is

natural (uniqueness is clear). So let g : X → Y ; we have to show fY Fg = T baGgfX .

Note that we have a T (GY + ()ba)-coalgebra

T (Gg + id)βX : FX → T (GX + (FX)ba)→ T (GY + (FX)ba);

we show that both fY Fg and (T baGg)fX are final coalgebra morphisms into T baGY

for T (Gg + id)βX . On the one hand, we have

out fY Fg = T (GY + (fY)ba)βY Fg (definition of fY)

= T (GY + (fY)ba)T (Gg + (Fg)ba)βX (naturality of β)

= T (GY + (fY Fg)ba)T (Gg + id)βX .

On the other hand,

out(T baGg)fX = T (Gg + (T baGg)ba) out fX (naturality of out)

= T (Gg + (T baGg)ba)T (GX + (fX)ba)βX (definition of fX)

= T (GY + ((T baGg)fX)ba)T (Gg + id)βX .

2

19

Goncharov, Rauch and Schröder

Proof of Lemma 4.1

T (X + ()ba) can be shown to be a parametrized monad, which implies that T ba
underlies a monad Tba, with unit and Kleisli lifting uniquely characterized by the

corresponding equations [27, Theorems 3.7 and 3.9]. What is missing is to show

that Tba is a strong monad, as we need here.

Let us first show the identity

g§ = coit
Ä
[T (id+(T ba inr)

b
a) out g, η inr]

? out
ä
, (A.3)

By definition, g§ is the unique morphism making the following diagram commute:

T ba(X + Y)

out

��

g§
// T baY

out

��

T (X + Y + T ba(X + Y)ba)
[out g, η inr(g§

b
a)]?

// T (Y + (T baY)ba)

We then have on the one hand,

out g§ = [out[f, ην], η inr(g§
b
a)]

? out (definition of §)

= [[out f, out ην], η inr(g§
b
a)]

? out

= [[out f, η inl], η inr(g§
b
a)]

? out (definition of ην)

and also on the other hand,

T (id+g§
b
a) [T (id+(T ba inr)

b
a) out g, η inr]

? out

= [T (id+(g§T ba inr)
b
a)[out f, out η

ν], η inr(g§)ba]
? out

= [[out f, η inl], η inr(g§
b
a)]

? out,

i.e. indeed g§ satisfies the characteristic property of the final morphism (A.3).

We proceed to prove that Tba is strong. We define the strength τν as the unique

final coalgebra morphism shown in the following diagram:

X × T baY

τν

��

(Tδ)τ(id× out)
// T (X × Y + (X × T baY)ba)

T (id+(τν)ba)

��

T ba(X × Y) out // T (X × Y + T ba(X × Y)ba)

That is, τν is the unique solution of equation out τν = T (id+(τν)ba)(Tδ)τ(id× out).
By Lemma A.1, τν is a natural transformation. Let us check the axioms of strength

from [16].

• (str1) The identity snd = (T ba snd)τν follows from T ba〈!, id〉 snd = τν , since

obviously snd = (T ba snd)T ba〈!, id〉 snd. Since τν is uniquely defined by the cor-

responding characteristic identity, it suffices to show that T ba〈!, id〉 snd satisfies

20

Goncharov, Rauch and Schröder

the same identity. Indeed,

T
Ä
id+ (T ba〈!, id〉 snd)ba

ä
(Tδ)τ(id× out)

= T
Ä
〈!, id〉 snd+ (T ba〈!, id〉 snd)ba

ä
(Tδ)τ(id× out)

= T
ÄÄ
〈!, id〉+ (T ba〈!, id〉)ba

ä
snd
ä
τ(id× out)

= T
Ä
〈!, id〉+ (T ba〈!, id〉)ba

ä
out snd

= out(T ba〈!, id〉) snd .

• (str2) In order to prove that (T baα)τν = τν(id×τν)α : (X × Y) × T baC →
T ba((X × Y) × C) where α : (X × Y) × T baC → X × (Y × T baC) is the obvi-

ous associativity isomorphism, we show that (T baα
−1)τν(id×τν)α satisfies the

identity characterizing τν , i.e.

outT baα
−1τν(id×τν)α = T (id+(T baα

−1τν(id×τν)α)ba)Tδτ(id× out).

We calculate, transforming the left hand side,

outT baα
−1τν(id×τν)α

= T (α−1 + (T baα
−1)ba) out τ

ν(id×τν)α (naturality of out)

= T (α−1 + (T baα
−1)ba)

T (id+(τν)ba)(Tδ)τ(id× out)(id×τν)α (definition of τν)

= T (α−1 + (T baα
−1τν)ba)

(Tδ)τ(id×(T (id+(τν)ba)(Tδ)τ(id× out)))α (definition of τν)

= T (α−1 + (T baα
−1τν)ba)

(Tδ)T (id×((id+(τν)ba)δ))τ(id×(τ(id× out)))α. (naturality of τ)

We continue to transform the last part of the term:

τ(id×(τ(id× out)))α

= τ(id×τ)(id×(id× out))α

= τ(id×τ)α((id× id)× out) (naturality of α)

= Tατ(id× out) (τ strength)

(contracting a product of identities into an identity in the last step). Summing

up, it remains to show that

T (α−1 + (T baα
−1τν)ba)TδT (id×((id+(τν)ba)δ))Tατ(id× out)

= T (id+(T baα
−1τν(id×τν)α)ba)Tδτ(id× out).

This will follow once we show that

δ(id×((id+(τν)ba)δ))α = (α+ ((id×τν)α)ba)δ.

We calculate

δ(id×((id+(τν)ba)δ))α

21

Goncharov, Rauch and Schröder

= δ(id×(id+(τν)ba))(id×δ)α
= (id× id+(id×τν)ba)δ(id×δ)α (naturality of δ)

= (id× id+(id×τν)ba)(α+ αba)δ

= (α+ ((id×τν)α)ba)δ.

Here, we use the obvious identity

δ(id×δ)α = (α+ αba)δ

in the last step, which is easily proved by reasoning in the internal language of

a bicartesian closed category.

• (str3) In order to obtain the identity τν(id×ην) = ην , we show that the left

hand side satisfies the characteristic equation for ην , i.e. out τν(id×ην) = η inl.
Indeed,

out τν(id×ην) = T (id+(τν)ba)(Tδ)τ(id× out)(id×ην) (definition of τν)

= T (id+(τν)ba)(Tδ)τ(id×η)(id× inl) (definition of ην)

= T (id+(τν)ba)(Tδ)η(id× inl) (str3 for τ)

= T (id+(τν)ba)(Tδ)T (id× inl)η (naturality of η)

= T (id+(τν)ba)(T inl)η

= η inl .

• (str4) Given f : X → T baZ, we show that (τν(id×f))§τν = τν(id×f §), which

generalizes the corresponding identity in [18] under f = id. Let g = [f, ην] and

let us show first that (τν(id×g))§τν = τν(id×g§). This implies the identity for

f as follows:

(τν(id×f))§τν = (τν(id×g)(id× inl))§τν

= (τν(id×g))§T ba(id× inl)τν

= (τν(id×g))§τν(id×T ba inl) (naturality of τν)

= τν(id×g§)(id×T ba inl) (str4 for g and τν)

= τν(id×g§T ba inl)
= τν(id×f §).

By Lemma 4.1 and by definition of τν , both g§ and τν are final morphisms from

suitable coalgebras. By composing the corresponding commutative squares we

22

Goncharov, Rauch and Schröder

obtain the following diagram:

X × T baY
id×[T (id+(T ba inr)ba) out g,η inr]? out

//

id×g§

��

X × T (Z + T baY
b
a)

(Tδ)τ

//

id×T (id+g§
b
a)

��

T (X × Z + (X × T baY)ba)

T (id+(τν(id×g§))ba)tt

X × T (Z + T baZ)
(Tδ)τ
��

X × T baZ

τν

��

id× out 11

(Tδ)τ(id× out)
,, T (X × Z + (X × T baZ)ba)

T (id+(τν)ba)
��

T ba(X × Z)
out

// T ba(X × Z + T ba(X × Z)ba)

from which we conclude that

τν(id×g§) = coit
Ä
(Tδ)τ(id×[T (id+(T ba inr)

b
a) out g, η inr]

? out)
ä
.

We will be done once we show that also (τν(id×g))§τν is a morphism from the

same coalgebra to the final one, i.e. the identity

out(τν(id×g))§τν

= T (id+((τν(id×g))§τν)ba)(Tδ)τ(id×[T (id+(T ba inr)
b
a) out g, η inr]

? out).
(A.4)

Let us denote T (id+(T ba inr)
b
a) out g by h and show that the following diagram

commutes:

T (X × (Y + (T baY)ba))

(τ(id×[h,η inr]))?

��

Tδ // T (X × Y + (X × T baY)ba)

[(Tδ)τ(id×h),η inr]?

��

T (X × (Z + (T baY)ba))
Tδ // T (X × Z + (X × T baY)ba)

(A.5)

Note that δ can explicitly be given by expression

δ(x, e) = [λy. inl〈x, y〉, λ〈z, c〉. inr〈z, λv. 〈x, c(v)〉〉]e.

Therefore,

[(Tδ)τ(id×h), η inr]?(Tδ)

= ([(Tδ)τ(id×h), η inr]δ)?

= (λ〈x, e〉. [(Tδ)τ(id×h), η inr][λy. inl〈x, y〉, λ〈z, c〉. inr〈z, λv. 〈x, c(v)〉〉]e)?

= (λ〈x, e〉. [λy.(Tδ)τ(x, h(y)), λ〈z, c〉. η inr〈z, λv. 〈x, c(v)〉〉]e)?

= (λ〈x, e〉. [λy.(Tδ)τ(x, h(y)), λy.ηδ(x, inr y)]e)?

= (λ〈x, e〉. [λy.(Tδ)τ(x, h(y)), λy.(Tδ)τ(x, η inr(y))]e)?

= (λ〈x, e〉. (Tδ)τ(x, [h, η inr]e))?

23

Goncharov, Rauch and Schröder

= (Tδ)(τ(id×[h, η inr]))?.

Now, we obtain (A.4) as follows:

T (id + ((τν(id×g))§τν)ba)

(Tδ)τ(id×[T (id+(T ba inr)
b
a) out g, η inr]

? out)

= T (id+((τν(id×g))§τν)ba)

[(Tδ)τ(id×T (id+(T ba inr)
b
a) out g), η inr]?(Tδ) out) (A.5)

= T (id+((τν(id×g))§τν)ba)

[(Tδ)τ(id×T (id+(T ba inr)
b
a))(id× out g), η inr]?

(Tδ)τ(id× out)

= T (id+((τν(id×g))§τν)ba)

[(Tδ)T (id×(id+(T ba inr)
b
a))τ(id× out g), η inr]?

(Tδ)τ(id× out) (naturality of τ)

= T (id+((τν(id×g))§τν)ba)

[T (id+(id×T ba inr)ba)(Tδ)τ(id× out g), η inr]?

(Tδ)τ(id× out) (naturality of δ)

= [T (id+((τν(id×g))§τν(id×T ba inr))ba)(Tδ)τ(id× out g),

η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out) (naturality of η)

= [T (id+((τν(id×g inr))§τν)ba)(Tδ)τ(id× out g),

η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out) (naturality of τν)

= [T (id+((τν(id×ην))§τν)ba)(Tδ)τ(id× out g),

η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out) (since g = [f, ην])

= [T (id+(τν)ba)(Tδ)τ(id× out g),

η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out) (str3 forτν)

= [T (id+(τν)ba)(Tδ)τ(id× out)(id×g),

η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out)

= [out τν(id×g), η inr((τν(id×g))§τν)ba)]
?(Tδ)τ(id× out) (definition of τν)

= [out τν(id×g), η inr((τν(id×g))§)ba)]
?

T (id+(τν)ba)(Tδ)τ(id× out)

= [out τν(id×g), η inr((τν(id×g))§)ba)]
? out τν (definition of τν)

= out(τν(id×g))§τν . (definition of §)

We have thus shown all properties (str1)–(str4) and the proof is completed.2

Proof of Theorem 4.5

We tackle Claim i and first show existence, i.e. we define an iteration operator on Tba
and show that it satisfies the axioms for complete Elgot monads and is consistent

with iteration in T. Along the way we will establish also Claim ii.

Our notion of guardedness coincides with that of Uustalu [27], who shows that

24

Goncharov, Rauch and Schröder

guarded morphisms f have unique iterates f †. For any f : X → T ba(Y +X) (possibly

not guarded) let �f : X → T ba(Y +X) be the morphism out−1 T (inl+ id)w† where

w is the composed morphism

X
f−−−→ T ba(Y +X)

out−−−→ T ((Y +X) + T ba(Y +X)ba)

(Tπ)−−−−−→ T ((Y + T ba(Y +X)ba) +X)

with π = [[inl inl, inr], inl inr]. Obviously, �f is guarded by definition. We now define

f † = (�f)†. To make sure that this definition is consistent we check that �f = f

whenever f is guarded. Suppose, out f = T (inl+ id)u. Then f = out−1 T (inl+ id)u

and therefore

�f = out−1 T (inl+ id)((Tπ) out f)†

= out−1 T (inl+ id)((Tπ) out out−1 T (inl+ id)u)†

= out−1 T (inl+ id)((Tπ)T (inl+ id)u)†

= out−1 T (inl+ id)(T inlu)†

= out−1 T (inl+ id)u

= f.

We are left to check the axioms of Elgot monads (Definition 3.1).

• Unfolding. For any f : X → T ba(Y +X) we have

f † = [ην , f †]§ � f (definition of †)
= [ην , f †]§ out−1 T (inl+ id)((Tπ) out f)† (definition of �)

= out−1
î
[η inl, out f †], η inr [ην , f †]§

b

a

ó?
T (inl+ id)((Tπ) out f)† (definition of §)

= out−1
î
η inl, η inr [ην , f †]§

b

a

ó?
((Tπ) out f)†

= out−1 T (id+[ην , f †]§
b

a)((Tπ) out f)†

and thus we obtain the following intermediate equation:

out f † = T
Ä
id+[ην , f †]§

b

a

ä
((Tπ) out f)†. (A.6)

Now, continuing the above calculation we obtain

f † = out−1 T (id+[ην , f †]§
b

a)((Tπ) out f)†

= out−1 T (id+[ην , f †]§
b

a)[η, ((Tπ) out f)†]?(Tπ) out f (unfolding)

= out−1[T (id+[ην , f †]§
b

a)η, out f
†]?(Tπ) out f (A.6)

= out−1[η(id+[ην , f †]§
b

a), out f
†]?(Tπ) out f (naturality of η)

= out−1
î
[η inl, out f †], η inr [ην , f †]§

b

a

ó?
out f

= out−1
î
out[ην , f †], η inr [ην , f †]§

b

a

ó?
out f (definition of ην)

25

Goncharov, Rauch and Schröder

= [ην , f †]§ out−1 out f (naturality of §)
= [ην , f †]§f.

• Naturality. Assume that h : X → T ba(Y + X) is guarded and show that so is

[(T ba inl)g, η
ν inr]§h for any g : Y → Z. Let u be such that outh = T (inl+ id)u

and let w = [(T ba inl)g, η
ν inr]. Then

out[(T ba inl)g, η
ν inr]§h =

î
outw, η inr(w§)ba

ó?
outh

=
î
outw, η inr(w§)ba

ó?
T (inl+ id)u

=
î
outw inl, η inr(w§)ba

ó?
u

=
î
out(T ba inl)g, η inr(w

§)ba
ó?
u

=
î
T (inl+T ba inl

b
a) out g, η inr(w

§)ba
ó?
u

= T (inl+ id)
î
T (id+T ba inl

b
a) out g, η inr(w

§)ba
ó?
u.

Now, since t = [(T ba inl)g, η
ν inr]§� f is guarded, it is the unique fixpoint of the

map

t 7→ [ην , t]§[(T ba inl)g, η
ν inr]§ � f.

However, on the other hand,

[ην , g§f †]§[(T ba inl)g, η
ν inr]§ � f

= [g, g§f †]§ � f

= [g, g§(�f)†]§ � f

= g§[ην , (�f)†]§ � f

= g§f †

and therefore t† = g§f †. It remains to show that [(T ba inl)g, η
ν inr]§ � f =

�[(T ba inl)g, η
ν inr]§f . Since �f is guarded by definition, we know by the calcu-

lation above that [(T ba inl)g, η
ν inr]§ � f is guarded and therefore

[(T ba inl)g, η inr]
§ � f = �[(T ba inl)g, η inr]

§ � f.

To finish the proof, we calculate

�[(T ba inl)g, η
ν inr]§ � f = out-1T (inl+ id)((Tπ) out[(T ba inl)g, η

ν inr]§ � f)†.

Further transforming the dagger expression in the previous term yields

((Tπ) out[(T ba inl)g, η inr]
§ � f)†

= ((Tπ)[outw, η inr(w§)ba]
?T (inl+ id)((Tπ) out f)†)†

= ((Tπ)[out(T ba inl)g, η inr(w
§)ba]

?((Tπ) out f)†)†

= (([(T inl)(Tπ)[out(T ba inl)g, η inr(w
§)ba], η inr]

?(Tπ) out f)†)† (nat. for T)

= (T [id, inr][(T inl)(Tπ)[out(T ba inl)g, η inr(w
§)ba], η inr]

?(Tπ) out f)† (codiag. for T)

= ([[(Tπ) out(T ba inl)g, η inr], (Tπ)η inr(w§)ba]
? out f)†

26

Goncharov, Rauch and Schröder

= ((Tπ)[[out(T ba inl)g, η inl inr], η inr(w
§)ba]

? out f)†

= ((Tπ)[out[(T ba inl)g, η
ν inr], η inr(w§)ba]

? out f)†

= ((Tπ) out[(T ba inl)g, η
ν inr]§f)†

and therefore

�[(T ba inl)g, η inr]
§ � f = �[(T ba inl)g, η inr]

§f.

• Dinaturality. Given g : X → T ba(Y + Z) and h : Z → T ba(Y + X), let s =

[ην inl, h]§g : X → T ba(Y +X), t = [ην inl, g]§h : Z → T ba(Y +Z), w = [ην , t†]§g :

X → T baY . The idea is to show the identity

[ην , w]§ � s = [ην , t†]§[ην inl,� t]§g (A.7)

from which we will be able to obtain that

w = [ην , t†]§g

= [ην , [ην , t†]§ � t]§g (unfolding)

= [ην , t†]§[ην inl,�t]§g

= [ην , w]§ � s, (A.7)

i.e. that w satisfies the recursive equation uniquely identifying s† and hence

w = s†. Let

p = T
Ä
(id+[ην inl, h]§

b

a) + id
ä

: T
Ä
Y + T ba(Y + Z) + Z

ä
→ T

Ä
Y + T ba(Y +X) + Z

ä
,

q = T
Ä
(id+[ην inl, g]§

b

a) + id
ä

: T
Ä
Y + T ba(Y +X) +X

ä
→ T

Ä
Y + T ba(Y + Z) +X

ä
and observe that

((Tπ) out s)† =
Ä
(Tπ)

î
out[ην inl, h], η inr[ην inl, h]§

b

a

ó?
out g

ä†
=
Äî
η inl(id+[ην inl, h]§

b

a), ((Tπ) outh)
ó?

((Tπ) out g)
ä†

= ([η inl, ((Tπ) outh)]?p((Tπ) out g))†.

An analogous calculation applies to ((Tπ) out t)† and hence we obtain

((Tπ) out s)† = ([η inl, ((Tπ) outh)]?p((Tπ) out g))†, (A.8)

((Tπ) out t)† = ([η inl, ((Tπ) out g)]?q((Tπ) outh))†. (A.9)

Let us calculate the left-hand side of (A.7):

out[ην , w]§ � s

=
î
out[ην , w], η inr [ην , w]§

b

a

ó?
out�s

=
î
out[ην , w], η inr [ην , w]§

b

a

ó?
T (inl+ id)((Tπ) out s)†

= T
Ä
id+[ην , w]§

b

a

ä
((Tπ) out s)†

27

Goncharov, Rauch and Schröder

= T
Ä
id+[ην , w]§

b

a

ä
([η inl, ((Tπ) outh)]?p((Tπ) out g))† (A.8)

= T
Ä
id+[ην , w]§

b

a

ä
[η, ([η inl,p((Tπ) out g)]?((Tπ) outh))†]?p((Tπ) out g)

= T
Ä
id+[ην , w]§

b

a

ä
[η(id+[ην inl, h]§

b

a),

([η inl,p((Tπ) out g)]?((Tπ) outh))†]?((Tπ) out g)

= [η(id+[ην , t†]§
b

a),

T (id+[ην , w]§
b

a)([η inl,p((Tπ) out g)]?((Tπ) outh))†]?((Tπ) out g),

where for the last step, note that

[ην ,[ην , w]§h]§

= [ην , [ην , [ην , t†]§g]§h]§

= [ην , [ην , t†]§[ην inl, g]?h]§

= [ην , t†]§.

Now, let us calculate the right-hand side of (A.7):

out[ην ,t†]§[ην inl,�t]§g

=
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
out[ην inl,�t]§g

=
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
[out[ην inl,�t], η inr [ην inl,�t]§

b

a]
? out g

=
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
[η(id+[ην inl,�t]§

b

a), out�t]
?((Tπ) out g)

= [η(id+[ην , t†]§
b

a),
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
out�t]?((Tπ) out g).

We have thus reduced (A.7) to

T (id+[ην , w]§
b

a)([η inl,p((Tπ) out g)]?(Tπ) outh)† =
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
out�t.

Then, on the one hand

T (id+[ην , w]§
b

a)([η inl,p((Tπ) out g)]?((Tπ) outh))†

= (T ((id+[ην , w]§
b

a) + id)[η inl,p((Tπ) out g)]?((Tπ) outh))†

= ([η inl(id+[ην , w]§
b

a), T ((inl+[ην , w]§
b

a) + id)p((Tπ) out g)]?((Tπ) outh))†

= ([η inl(d + [ην , w]§
b

a), T ((inl+[ην , t†]§
b

a) + id)((Tπ) out g)]?((Tπ) outh))†

= (T ((id+[ην , t†]§
b

a) + id)[η inl(id+[ην inl, g]§
b

a), ((Tπ) out g)]?((Tπ) outh))†

= T (id+[ην , t†]§
b

a)([η inl(id+[ην inl, g]§
b

a), ((Tπ) out g)]?((Tπ) outh))†

= T (id+[ην , t†]§
b

a)([η inl, ((Tπ) out g)]?q((Tπ) outh))†

and also on the other handî
out[ην ,t†], η inr [ην , t†]§

b

a

ó?
out�t

=
î
out[ην , t†], η inr [ην , t†]§

b

a

ó?
T (inl+ id)((Tπ) out t)†

28

Goncharov, Rauch and Schröder

= T (id+[ην , t†]§
b

a)((Tπ) out t)†

= T (id+[ην , t†]§
b

a)([η inl, ((Tπ) out g)]?q((Tπ) outh))†. (A.9)

The proof is thus completed.

• Codiagonal. Let g : X → T ba(Y +X +X). We shall show below that

�(T ba [id, inr]� g) = � (T ba [id, inr]g). (A.10)

Since T ba [id, inr]†g is the unique fixpoint of the map

γ 7→ [ην , γ]§ � T ba [id, inr]g

we will be done once we show that (g†)† is also a fixpoint of the same map, i.e.

(g†)† =
î
ην , (g†)†

ó§
�
Ä
T ba [id, inr]g

ä
. (A.11)

We denote by π : (Y + X) + X → (Y + X) + X the morphism swapping two

last components of the coproduct. We consider the following three cases.

(i) T ba [id, inr]g is guarded. Then we obtain (A.11) directly as follows

(g†)† = [ην , (g†)†]§g† (unfolding)

= [ην , (g†)†]§[ην , g†]§g (unfolding)

=
î
[ην , (g†)†], [ην , (g†)†]§g†

ó§
g

=
î
[ην , (g†)†], (g†)†

ó§
g (unfolding)

= [ην , (g†)†]§(T ba [id, inr])g

= [ην , (g†)†]§ �
Ä
(T ba [id, inr])g

ä
.

(ii) (T baπ)g is guarded. E.g. let (T baπ)g = out-1T (inl+ id)u. Then T ba [id, inr]� g
is also guarded, which is certified by the following calculation:

T ba [id, inr]� g

= T ba [id, inr]� ((T baπ) out-1T (inl+ id)u)

= T ba [id, inr] out-1T (inl+ id)
Ä
(Tπ) out(T baπ) out-1T (inl+ id)u

ä†
= T ba [id, inr] out-1T (inl+ id)

Ä
(Tπ)T (π + (T baπ)ba)T (inl+ id)u

ä†
= T ba [id, inr] out-1T (inl+ id)

Ä
T ((inl+ id) + id)(Tπ)T (id+(T baπ)ba)u

ä†
= T ba [id, inr] out-1T (inl+ id)T (inl+ id)

Ä
(Tπ)T (id+(T baπ)ba)u

ä†
= T ba [id, inr] out-1T (inl inl+ id)

Ä
(Tπ)T (id+(T baπ)ba)u

ä†
= out-1T ([id, inr] + T ba [id, inr]ba)T (inl inl+ id)

Ä
(Tπ)T (id+(T baπ)ba)u

ä†
= out-1T (inl+T ba [id, inr]ba)

Ä
(Tπ)T (id+(T baπ)ba)u

ä†
= out-1T (inl+ id)T (id+T ba [id, inr]ba)

Ä
(Tπ)T (id+(T baπ)ba)u

ä†
.

29

Goncharov, Rauch and Schröder

The proof of (A.11) now runs as follows:

(g†)† = ((�g)†)† (definition of †)
= [ην , ((�g)†)†]§ �

Ä
(T ba [id, inr])� g

ä
(Clause (i))

= [ην , (g†)†]§ �
Ä
(T ba [id, inr])g

ä
. (A.10)

(iii) g is guarded. Let h = (T baπ)� (T baπ)g. It is easy to see that h is guarded.

We use the following identity

�g† = [ην , g†]§h (A.12)

whose proof runs as follows. Let g = out-1T (inl+ id)u for some u and

observe that π inl = (inl+ id). We apply out to the right-hand side of the

equation,

out[ην , g†]§(T baπ)� (T baπ)g

= [out[ην , g†], η inr([ην , g†]§)ba]
?

out(T baπ) out-1T (inl+ id)((Tπ) out(T baπ)g)†

= [out[ην , g†]π inl, η inr([ην , g†]§(T baπ))ba]
?((Tπ) out(T baπ)g)†

= [out[ην inl, g†], η inr([ην , g†]§(T baπ))ba]
?

((Tπ)T (π + (T baπ)ba) out g)†

= ([(T inl)[out[ην inl, g†], η inr([ην , g†]§(T baπ))ba], η inr]
?

(Tπ)T (π + (T baπ)ba) out g)† (naturality)

= ([[(T inl) out[ην inl, g†], η inl inr([ην , g†]§(T baπ))ba], η inr]
?

(Tπ)T (π + (T baπ)ba) out g)†

= ([[(T inl) out[ην inl, g†], η inr], η inl inr([ην , g†]§(T baπ))ba]
?

T (π + (T baπ)ba) out g)† (defn. (Tπ))

= ([[(T inl) out[ην inl, g†], η inr]π, η inl inr([ην , g†]§

(T baπ)(T baπ))ba]
?T (inl+ id)u)† (g guarded)

= ([[(T inl) out[ην inl, g†], η inr]π inl, η inl inr([ην , g†]§)ba]
?u)†

= ([[η inl inl inl, η inr], η inl inr([ην , g†]§)ba]
?u)†

= ([η(inl inl+ id), η inl inr([ην , g†]§)ba]
?u)†.

On the other hand, applying out to the left-hand side yields the same result:

out�(g†)

= T (inl+ id)((Tπ) out(g†))†

= ([(T inl)η(inl+ id), η inr]?(Tπ) out(g†))† (naturality)

= ([[η inl inl inl, inl inr], η inr]?(Tπ) out[ην , g†]§g)†

= ([η(inl inl+ id), η inl inr]?[out[ην , g†], η inr([ην , g†]§)ba]
? out g)† (defn. (Tπ))

= ([η(inl inl+ id), η inl inr]?[[η inl, out g†], η inr([ην , g†]§)ba]
?

T (inl+ id)u)† (g guarded)

30

Goncharov, Rauch and Schröder

= ([η(inl inl+ id), η inl inr]?[η inl, η inr([ην , g†]§)ba]
?u)†

= ([η(inl inl+ id), η inl inr([ην , g†]§)ba]
?u)†.

Then the goal can be obtained as follows. First, observe the following:

(g†)† = ([ην , g†]§h)† (A.12)

= ([[ην inl, ην inr], g†]§h)†

= ([[ην inl, g†], η inr]§ � T baπ g)† (defn. π)

= ((T ba [id, inr])[[ην inl inl, T ba inl g
†], η inr]§ � T baπ g)†

= (([[ην inl inl, T ba inl g
†], η inr]§ � T baπ g)†)† (Clause (ii))

= (([T ba inl[η
ν inl, g†], η inr]§ � T baπ g)†)†

= ([ην inl, g†]§(�T baπ g)†)† (naturality)

= ([ην inl, g†]§(T baπ g)†)†. (defn. †)
= [ην , ([ην inl, g†]§(T baπ g)†)†]§[ην inl, g†]§(T baπ g)† (unfolding)

= [ην , (g†)†]§[ην inl, g†]§(T baπ g)†

= [ην , [ην , (g†)†]§g†]§(T baπ g)†

= [ην , (g†)†]§(T baπ g)†. (unfolding)

It is easy to see that (T baπ g)† is guarded, and hence, by the previous

calculation, (g†)† = ((T baπ g)†)†. Finally, by Clause (ii), ((T baπ g)†)† =

((T ba [id, inr])T baπ g)† = ((T ba [id, inr])g)†.

(iv) g is unrestricted. Then,

(g†)† = ((�g)†)†

= ((T ba [id, inr])� g)† (Clause (iii))

= (�(T ba [id, inr])� (T baπ)g)†

= (�(T ba [id, inr])(T baπ)g)† (A.10)

= ((T ba [id, inr])g)†

and we are done.

It remains to prove (A.10):

� T ba [id, inr] out-1T (inl+ id)((Tπ) out g)†

= out-1T (inl+ id)((Tπ) outT ba [id, inr] out-1T (inl+ id)((Tπ) out g)†)†

Let us transform the part after out-1T (inl+ id) further:

((Tπ)T ([id, inr] + T ba [id, inr]ba)T (inl+ id)((Tπ) out g)†)†

= ((Tπ)T (id+T ba [id, inr]ba)((Tπ) out g)†)†

= (([T inlπη(id+T ba [id, inr]ba), η inr]
?(Tπ) out g)†)† (naturality)

= ([(Tπ)η(id+T ba [id, inr]ba), (Tπ)η inl inr]?(Tπ) out g)† (codiagonal)

= ((Tπ)[[η inl, η inl inr], η inr T ba [id, inr]ba]
? out g)†

31

Goncharov, Rauch and Schröder

= ((Tπ)[out(ην [id, inr]), η inr T ba [id, inr]ba]
? out g)†

= ((Tπ) out(T ba [id, inr])g)†

Therefore,

� T ba [id, inr] out-1T (inl+ id)((Tπ) out g)†

= out-1T (inl+ id)((Tπ) out(T ba [id, inr])g)†

= � T ba [id, inr]g.

• Uniformity. First, show uniformity under the assumption that g is guarded.

Suppose fh = T ba(id+h)g. It is then sufficient to verify that f †h satisfies the

unfolding identity for g. Indeed,

f †h = [ην , f †]§fh

= [ην , f †]§T ba(id+h)g

= [ην , f †h]§g.

Now consider the general case. Suppose, again we have fh = T ba(id+h)g. We

prove the following auxiliary identity:

((Tπ) out f)†h = T
Ä
id+T ba(id+h)ba

ä
((Tπ) out g)†. (A.13)

Observe that

((Tπ) out f)h = (Tπ) outT ba(id+h)g

= (Tπ)T (id+h+ T ba(id+h)ba) out g

= T (id+h)T ((id+T ba(id+h)ba) + id)((Tπ) out g),

from which by uniformity of the iteration operator of T, we obtain

((Tπ) out f)†h =
Ä
T ((id+T ba(id+h)ba) + id)((Tπ) out g)

ä†
.

After transforming the right hand side by naturality of the iteration operator

of T we arrive at (A.13).

Next we prove that (�f)h = T ba(id+h)� g.

(�f)h = out−1 T (inl+ id)((Tπ) out f)†h (definition of �)

= out−1 T (inl+ id)T (id+T ba(id+h)ba)((Tπ) out g)† (A.13)

= out−1 T ((id+h) + T ba(id+h)ba)T (inl+ id)((Tπ) out g)†

= T ba(id+h) out−1 T (inl+ id)((Tπ) out g)† (Lemma A.1)

= T ba(id+h)� g. (definition of �)

As we have shown before, for guarded g uniformity holds, and therefore f †h =

(�f)†h = (�g)† = g†.

• Compatibility of strength with iteration, i.e. τν(id×f †) = ((T ba dist)τ
ν(id×f))†.

Let f be guarded with out f = T (inl+ id)u. Then, f ′ = (T ba dist)τ
ν(id×f) is

32

Goncharov, Rauch and Schröder

also guarded with out f ′ = T (inl+ id)T (id+((T ba dist)τ
ν)ba)(Tδ)τ(id×u) where

δ is as in Lemma 4.1 (besides guardedness of f , the proof of this equation uses

naturality of out and the definitions of τ and dist). The following calculation

shows that τν(id×f †) satisfies the unfolding property for ((T ba dist)τ
ν(id×f)))†:

τν(id×f †)
= τν(id×[ην , f †]§f)

= τν(id×[ην , f †]§)(id×f)

= (τν(id×[ην , f †]))§τν(id×f) (str4)

= ([ην , τν(id×f †)] dist)§τν(id×f) (dst)

= [ην , τν(id×f †)]§(T ba dist)τν(id×f)

= [ην , τν(id×f †)]§ � (T ba dist)τ
ν(id×f),

and hence τν(id×f †) and ((T ba dist)τ
ν(id×f))† are equal.

The general case (when f is not necessarily guarded) reduces to the consid-

ered one by means of equation

(T ba dist)τ
ν(id×� f) = �((T ba dist)τ

ν(id×f)), (A.14)

as follows:

τν(id×f †) = τν(id×(�f)†) (definition of †)

= ((T dist)τν(id×� f))†

= (�(T ba dist τ
ν(id×f)))† (A.14)

= (T ba dist τ
ν(id×f))†. (definition of †)

We show (A.14) by establishing commutativity of the following diagram

where Q = C ×B + C ×A:

C ×A
id×((Tπ) out f)†

**

((Tπ) out(T ba dist)τν(id×f))†

uu

T (C ×B + (T baQ)ba)

T (inl+ id)

��

C × T (B + (T ba(B +A))ba)

id×T (inl+ id)

��

T (id+(T ba dist)ba)T (id+(τν)ba)(Tδ)τ
oo

T (Q+ (T baQ)ba)

out-1
))

C × T ((B +A) + (T ba(B +A))ba)

(T ba dist)τν(id× out-1)
tt

T (dist+(T ba dist)ba)T (id+(τν)ba)(Tδ)τ
oo

T baQ

The bottom triangle commutes as follows:

(T ba dist)τ
ν(id× out-1)

= (T ba dist) out
-1T (id+(τν)ba)(Tδ)τ(id× out)(id× out-1)

33

Goncharov, Rauch and Schröder

= out-1out(T ba dist) out
-1T (id+(τν)ba)(Tδ)τ

= out-1T (dist+(T ba dist)
b
a)T (id+(τν)ba)Tδτ.

The middle square commutes by properties of strength and the morphisms dist
and δ:

T (dist+(T ba dist τ
ν)ba)(Tδ)τ(id×T (inl+ id))

= T (dist+(T ba dist τ
ν)ba)(Tδ)T (id×(inl+ id))τ (str4, str3)

= T (dist+(T ba dist τ
ν)ba)T ((id× inl) + id)(Tδ)τ

= T (dist(id× inl) + id)T (id+(T ba dist τ
ν)ba)(Tδ)τ

= T (inl+ id)T (id+(T ba dist τ
ν)ba)(Tδ)τ.

This leaves us with the top triangle. Let ρ = (id+(T ba dist τ
ν)ba)δ.

(Tρ)τ(id×((Tπ) out f)†)

= (Tρ)(T dist τ(id×((Tπ) out f)))† ([)

= (T (ρ+ id)(T dist)τ(id×((Tπ) out f)))† (naturality)

= (T (ρ+ id)(T dist)T (id×π)τ(id× out)(id×f))† (str4)

= ((Tπ)T (dist+ id)(Tρ)τ(id× out)(id×f))†

= ((Tπ)T (dist+(T ba dist)
b
a) out τ

ν(id×f))†

= ((Tπ) outT ba dist τ
ν(id×f))†.

In ([), we used compatibility of strength with iteration for T. This concludes

the proof of the existence part of Claim i.

It remains to show uniqueness. The proof proceeds as follows. We first show that

any morphism f : X → T ba(Y +X) can be decomposed by means of two morphisms

g : X → T ba(Z +X) and h : Z → T ba(Y +X), where Z = Y + T ba(Y +X)ba, as

f = [h, ην inr]§g (A.15)

with g completely unguarded, i.e. out g = (T inl)g′ for some g′. Next we show that

f † = (h§g†)† (A.16)

and that

h§g† = �f. (A.17)

In summary, we obtain that f † = (h§g†)† = (�f)†. The following proofs of (A.16)

and (A.17) do not depend on the concrete definition of † on Tba but only use

its abstract properties as an iteration operator of a complete Elgot monad and

compatibility with the underlying iteration operator for T. Hence, the identity

f † = (�f)† would be valid for any other such operator, but since (�f)† is uniquely

defined all of them must be unique.

Let g = out-1(T inl)((Tπ) out f), which is, by definition, completely unguarded,

and let h = out-1η(inl+ id).

34

Goncharov, Rauch and Schröder

Then the proof of (A.15) runs as follows:

[h, ην inr]§g

= [out-1η(inl+ id), ην inr]§g

= [out-1η(inl+ id), out-1η inl inr]§g (Lemma 4.1)

= (out-1η[(inl+ id), inl inr])§g

= (out-1ηπ)§g

= out-1[ηπ, η inr((out-1ηπ)§)ba]
? out g (Lemma 4.1)

= out-1(η[π, inr((out-1ηπ)?)ba])
?(T inl)(Tπ) out f

= out-1(ηπ)?(Tπ) out f

= out-1(Tπ) (Tπ) out f

= f.

where π = [[inl inl, inr], inl inr]. Equation (A.16) can be shown as follows:

(h§g†)†

=
Ä
(T ba inl h, η

ν inr]§g)†
ä†

(naturality)

=
Ä
T ba [id, inr][(T ba inl)h, η

ν inr]§g
ä†

(codiagonal)

=
Ä
[h, T ba [id, inr]ην inr]§g

ä†
=
Ä
[h, ην inr]§g

ä†
= f †.

Finally, we prove (A.17):

h§g†

= (out-1η(inl+ id))§g† (definition of §)

= out-1[η(inl+ id), η inr(h§)ba]
? out g†

= out-1[η(inl+ id), η inr(h§)ba]
?(T inl)((Tπ) out f)† (g compl. ung.)

= out-1T (inl+ id)((Tπ) out f)†

= �f.

This finishes the proof. 2

Lemma A.2 Kleisli composition of a complete Elgot monad T can be characterized

in terms of iteration as follows:

g?f = [T (inr inr)f, T (inl) g]† inl (A.18)

Proof.

[T (inr inr)f, T (inl)g]† inl

= [η, [T (inr inr)f, T (inl)g]†]?T (inr inr)f

= ([η, [T (inr inr)f, T (inl)g]†] inr inr)?f

35

Goncharov, Rauch and Schröder

= ([T (inr inr)f, T (inl)g]† inr)?f

= ([η, [T (inr inr)f, T (inl) g]†]?T (inl) g)?f

= g?f

2

Proof of Lemma 4.7

Proof. Let us verify the identities (A.21) from left to right.

• Compatibility of ext with unit is a straightforward consequence of Lemma 4.1:

ext η = out-1(T∆inl)η = out-1η inl = ην .

• In order to show compatibility of ext with Kleisli star we call the definition of

the latter from Lemma 4.1:

(ext g)§ ext = (out-1(T inl)g)§ out-1(T inl)

= out-1
î
out out-1(T inl)g, η inr((ext g)§)ba

ó?
(T inl)

= out-1((T inl)g)?

= out-1(T inl)g?

= ext g?.

• Recall the distributivity transformation δ : A× (B +Cba)→ A×B + (A×C)ba
from Lemma 4.1. Then by the corresponding definition of τν ,

τν(id× ext) = out-1T (id+(τν)ba)(Tδ)τ(id× out ext)

= out-1T (id+(τν)ba)(Tδ)τ(id×T inl)
= out-1T (id+(τν)ba)(T inl)τ

= out-1(T inl)τ

= ext τ.

• Since out(ext g) = (T ba inl)g, then by Theorem 4.5, out(ext g)† = (T inl)g†, from

which the last identity in (A.21) follows by composition with out-1 on the left.

2

Proof of Lemma 4.9

Let ξ = ζ†. Suppose u : a → Sb and ρ : T → S induce ξ as in the state-

ment of the lemma, assume for the time being that ξ is indeed a complete El-

got monads morphism, and let us verify that ξb out
-1η inr〈id, λ . η〉 = u. Let

w = [η inl, λ〈x, f〉. S(inr f)u(x)]?ρ. Then

ξb out
-1η inr〈id, λ . η〉

= (w out)† out-1η inr〈id, λ . η〉
= [η, (w out)†]?w out out-1η inr〈id, λ . η〉
= [η, (w out)†]?[η inl, λ〈x, f〉. S(inr f)u(x)]?ρη inr〈id, λ . η〉

36

Goncharov, Rauch and Schröder

= [η, (w out)†]?[η inl, λ〈x, f〉. S(inr f)u(x)] inr〈id, λ . η〉
= [η, (w out)†]?(λ〈x, f〉. S(inr f)u(x))〈id, λ . η〉
= [η, ξb]

?S(inr η)u

= (ξbη)?u

= η?u

= u.

Suppose now that ξ : Tba → S is a morphism of complete Elgot monads. Let

ρ = ξ ext (which is a complete Elgot monad morphism by Lemma 4.7) and let

u = ξb out
-1 η inr〈id, λ . η〉. ThenÄ

[η inl, λ〈x, f〉. S(inr f)u(x)]?ρ out
ä†

=
Ä
[η inl, λ〈x, f〉. S(inr f)ξb out

-1 inl η〈x, η〉]?ρ out
ä†

=
Ä
[η inl, λ〈x, f〉. ξT ba(inr f) out-1 η inr〈x, η〉]?ρ out

ä†
=
Ä
[η inl, λ〈x, f〉. ξ out-1 T (inr f + (T ba(inr f))ba)η inr〈x, η〉]?ρ out

ä†
=
Ä
[η inl, λ〈x, f〉. ξ out-1 η inr(T ba(inr f))ba〈x, η〉]?ρ out

ä†
=
Ä
[η inl, λ〈x, f〉. ξ out-1 η inr〈x, T ba(inr f)η〉]?ρ out

ä†
=
Ä
[η inl, λ〈x, f〉. ξ out-1 η inr〈x, η inr f〉]?ρ out

ä†
=
Ä
[η inl, ξ out-1 η inr(id×η inr)]?ρ out

ä†
=
Ä
(ξ[η inl, out-1 η inr(id×η inr)])?ξ ext out

ä†
=
Ä
ξ[η inl, out-1 η inr(id×η inr)]§ ext out

ä†
= ξ
Ä
[η inl, out-1 η inr(id×η inr)]§ ext out

ä†
.

To finish the calculation we have to verify that the latter iteration term is equal to

the identity. Note that the term under the iteration operator is guarded. Hence,

it suffices to show that id satisfies the corresponding characteristic equation for

iteration, i.e. that

[η, id]§[η inl, out-1 η inr(id×η inr)]§ ext out = id .

Note that we can rephrase the description of Kleisli binding in Tba (Lemma 4.1) to

f § out-1 = out-1
î
out f, η inr(f §)ba

ó?
(A.19)

for f : X → T baY . We have

[η, id]§[η inl, out-1 η inr(id×η inr)]§ ext out
= [η, [η, id]§ out-1 η inr(id×η inr)]§ ext out

= [η, out-1[out[η, id], η inr ([η, id]§)
b

a]
?η inr(id×η inr)]§ ext out

= [η, out-1η inr(id× id)]§ ext out

= [η, out-1η inr]§ out-1T inl out

37

Goncharov, Rauch and Schröder

= out-1
î
out[η, out-1η inr], η inr([η, out-1η inr]§)ba

ó?
T inl out (by (A.19))

= out-1(out[η, out-1η inr])? out

= out-1([out η, η inr])? out

= out-1([η inl, η inr])? out

= out-1out

= id .

We are left to show that any ξX : T baX → SX induced by u : a→ Sb and ρ : T→ S
is a morphism of complete Elgot monads, that is, ξX is natural in X and satisfies

identities (A.21).

Let us first argue naturality of ξ. Let ξ = w†. We have

wT baf = [η inl, λ〈x, g〉.S(inr g)u(x)]ρ outT baf

= [η inl, λ〈x, g〉.S(inr g)u(x)]ρT (f + (T baf)ba) out

= [η inl f, λ〈x, g〉.S(inr T bafg)u(x)]ρ out

= S(f + T baf)w

and thus

T baX

T baf��

w // S(X + T baX)
S(f+ id)

//

S(f+T baf)
��

S(Y + T baX)

S(id+T baf)uu

T baY
w // S(Y + T baY)

commutes. Therefore, the lower triangle in the following diagram commutes by

uniformity of the iteration operator:

T baX

T baf
��

ξ
//

(S(f+ id)w)†

((

SX

Sf
��

T baY
ξ

// SY

The upper triangle commutes by naturality of the iteration operator:

Sfξ = (ηf)?w†

= ([S inl ηf, η inr]?w)†

= ([η inl f, η inr]?w)†

= (S(f + id)w)†

The equation ξη = η can be shown as follows:

ξη

= [η, ξ]?[η inl, λ〈x, f〉 . S(inr f)(u(x))]?ρ out η

= [η, ξ]?[η inl, λ〈x, f〉 . S(inr f)(u(x))]?ρ out out-1η inl

= [η, ξ]?η inl

38

Goncharov, Rauch and Schröder

= η.

Compatibility of ξ with Kleisli star follows from Lemma A.2 and compatibility of ξ

with iteration, which we argue later:

ξg§f = ξ[T ba(inr inr)f, T ba inlg]† inl

= [S(inr inr)ξf, Sinlξg]† inl

= (ξg)?(ξf).

To show compatibility of ξ with strength, consider the following diagram:

A× T baX

τ
��

id×ρ out
// A× S(X + (T baX)ba)

Sδτ
��

T ba(A×X)

vρ out
��

S((A×X) + (A× T baX)ba)

v
��

S((A×X) + T ba(A×X)) S((A×X) + (A× T baX))
S(id+τ)

oo

where v = [η inl, λ〈x, f〉. S(inr f)u(x)]?, i.e. ξ = (vρ out)†. It is easy to show that this

commutes by expanding out τ , using the fact that ρ is a complete monad morphism

and observing that

S(id+τ)v = [η inl, S(id+τ)λ〈x, h〉 . S(inr h)(u(x))]?

= [η inl, λ〈x, h〉 . S(inr τh)(u(x))]?

= [η inl, λ〈x, h〉 . S(inr h)(u(x))(id×τ b)]?

= vS(id+τ ba).

Thus, by uniformity,

ξτ = (v(Sδ)τ(id×ρ out))†.
On the other hand, by compatibility of strength with iteration, we have

τ(id×ξ)
= ((Sdist)τ(id×v ρ out))†

= (Sdist)(τ(id×v))?τ(id×ρ out)

where v = [η inl, λ〈x, f〉. S(inr f)u(x)], i.e. v? = v. Therefore, to prove the identity

in question, we need to show that the following diagram commutes:

S(A× (X + (T baX)ba))

(τ(id×v))?
��

Sδ // S((A×X) + (A× T baX)ba)

v
��

S(A× (X + T baX)) Sdist // S((A×X) + (A× T baX)),

or, differently put, v δ = (Sdist)τ(id×v), which, as a morphism out of a coproduct,

decomposes into two equations:

39

Goncharov, Rauch and Schröder

On the one hand,

(Sdist)τ(id×v)(id× inl)

= (Sdist)τ(id×η inl)
= (Sdist)η inl

= η inl

= v inl

= v δ(id× inl).

On the other hand, after simplifying, we get

((Sdist)τ(id×v)(id× inr))(x, (z, c))

= (Sinr)τ(id×λ〈x, f〉.Sf(u(x)))(x, (z, c))

= Sinr(τ(x, (Sc)(u(z))))

as well as

v(δ(x, inr(z, c)))

= v(inr(z, λv.(x, c(v))))

= S(inr(λv.(x, c(v))))(u(z))

(for the first step, recall the explicit lambda-expression for δ). Identity of these

expressions follows by the fact that we are working in a bicartesian closed base

category, which allows us to give an explicit lambda-expression for the strength,

namely τ = λ〈a, b〉.S(λc.(a, c))(b).

Finally, we are left to show that

ξf † = (ξf)† (A.20)

for any f : X → T ba(Y +X). For the sake of brevity let us denote λ〈x, f〉. (Sf)(u(x))

by evu. Then ξ = ([η inl, S(inr) evu]?ρ out)†.

First, we argue that w.l.o.g. f may be taken to be guarded. Assuming that

ξ(�f)† = (ξ�f)†, since by definition ξ(�f)† = ξf †, we can deduce (A.20) from the

equality (ξ � f)† = (ξf)†. To show the latter, consider the morphism w given by

the composition

X
out f−−−→ T ((Y +X) + T ba(Y +X)ba)

[η[inl inl,inr],(S inl)ξ? evu]?ρ−−−−−−−−−−−−−−−−→ S((Y +X) +X).

Now, on the one hand

(S[id, inr]w)† = ([η[inl, inr], ξ? evu]?ρ out f)†

= ([η, ξ? evu]?ρ out f)†

= ([η, ξ]?[η inl, S(inr) evu]?ρ out f)†

= (ξf)†

40

Goncharov, Rauch and Schröder

and on the other hand, by naturality of †,

(w†)† =
Ä
([[η inl inl, η inr], S inl ξ? evu]?ρ out f)†

ä†
=
Ä
([(S inl)[η inl, ξ? evu], η inr]?[[η inl inl, η inr], η inl inr]?ρ out f)†

ä†
=
Ä
[η inl, ξ? evu]?(ρ(Tπ) out f)†

ä†
=
Ä
[η, ξ? evu]?S(inl+ id)(ρ(Tπ) out f)†

ä†
=
Ä
[η, ξ? evu]?ρT (inl+ id)((Tπ) out f)†

ä†
=
Ä
[η, ξ? evu]?ρ out�f

ä†
= ([η, ξ]?[η inl, S(inr) evu]?ρ out�f)†

= (ξ � f)†.

Therefore, we obtain the equality of (ξf)† and (ξ�f)† by the codiagonal property of
†. We thus proceed under the assumption that f is guarded, i.e. out f = T (inl+ id)g

for some g : X → T (Y + T ba(Y +X)ba).

We introduce the following morphism w,

T ba(Y +X)
out−−→ T ((Y +X) + T ba(Y +X)ba)

ρ[[η inl inl,[η inl inl,(T inl inr) evu]?g],(T inr) evu]?−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S((Y + T ba(Y +X)) + T ba(Y +X)).

Then, on the one hand, using dinaturality,

(w†)† = ((ρ[η inl inl, [η inl inl, (T inl inr) evu]?g, (T inr) evu]? out)†)†

= ([η inl, [η inl, (S inr) evu]?ρg]?([η inl, (S inr) evu]?ρ out)†)†

= ([η inl, [η inl, (S inr) evu]?ρg]?ξ)†

= [η, ([η inl, ξ]?[η inl, (S inr) evu]?ρg)†]?ξ

= [η, ([η, ξ]?[η inl inl, (S inr) evu]?ρg)†]?ξ

= [η, ([η, ξ]?[η inl, (S inr) evu]?ρ out f)†]?ξ

= [η, (ξf)†]?ξ

and hence (w†)†ην inr = (ξf)†. Let us furthermore introduce the following morphism

t:

T ba(Y +X)
out−−→ T ((Y +X) + T ba(Y +X)ba)

[[η inl,g],η inr]?−−−−−−−−→ T (Y + T ba(Y +X)ba)

T (inl+(ην inr)ba)−−−−−−−−−−→ T ((Y + T ba(Y +X)) + T ba(Y + T ba(Y +X))ba)

out-1−−→ T ba(Y + T ba(Y +X)).

Recall that guardedness of f means that out f factors through X → T (Y + T ba(Y +

X)ba). Observe that t satisfies a stronger assumption. Let us call f strongly guarded

if there is h : X → T (Y +Xb
a) such that out f = T (inl+(ην inr)ba)h. The morphism

41

Goncharov, Rauch and Schröder

t is strongly guarded by definition. Furthermore,

ξt = [η, ξ]?[η inl, (S inr) evu]?ρ[[η inl inl, T (inl+(ην inr)ba)g], η inr(ην inr)ba]
? out

= [η, ξ]?[η inl, (S inr) evu]?[[η inl inl, S(inl+(ην inr)ba)ρg], η inr(ην inr)ba]
?ρ out

= [η, ξ]?[[η inl inl, [η inl, (S inr) evu]?S(inl+(ην inr)ba)ρg], S(inr ην inr) evu]?ρ out

= [η, ξ]?[[η inl inl, [η inl inl, S(inr ην inr) evu]?ρg], S(inr ην inr) evu]?ρ out

= [[η inl, [η inl, ξ?S(ην inr) evu]?ρg], ξ?S(ην inr) evu]?ρ out

= [[η inl, [η inl, (S inr) evu]?ρg], (S inr) evu]?ρ out

=S[id, inr]w

Let us assume for the moment that ξt† = (ξt)† for strongly guarded t. Then, by

the above calculations, (ξf)† = (w†)†ην inr = (S[id, inr]w)†ην inr = (ξt)†ην inr =

ξt†(ην inr). In order to show that the right-hand side is equal to ξf † we prove that

t† = [ην , f †]§, for then ξt†(ην inr) = ξ[ην , f †]§(ην inr) = ξf †. Since t is guarded, it

suffices to show that [ην , f †]§ satisfies the unfolding law for t†. It is easy to verify

that out f † = T (id+([ην , f †]§)ba)g. Then we have

out[ην , f †]§ = [out[ην , f †], η inr([ην , f †]§)ba]
? out

= [[η inl, out f †], η inr([ην , f †]§)ba]
? out

= [[η inl, T (id+([ην , f †]§)ba)g], η inr([ην , f †]§)ba]
? out

while, on the other hand,

t† = [ην , t†]§ out-1[[η inl inl, T (inl+(ην inr)ba)g], η inr(ην inr)ba]
? out

= out-1[out[ην , t†], η inr([ην , t†]§)ba]
?

[[η inl inl, T (inl+(ην inr)ba)g], η inr(ην inr)ba]
? out

= out-1[η inl, T (id+(t†)ba)g, η inr(t
†)ba]

? out .

Hence, indeed, [ην , f †]§ = t†.

Finally, let us show (A.20) with strongly guarded f . Suppose, h is such that

out f = T (inl+(ην inr)ba)h. Recall that ξ = ([η inl, S(inr) evu]?ρ out)†. By uniformity,

it suffices to show that

[η inl, S(inr) evu]?ρ out f † = S(id+f †)ξf.

On the one hand,

[η inl, S(inr) evu]?ρ out f †

= [η inl, S(inr) evu]?ρ out[ην , f †]§f

= [η inl, S(inr) evu]?[out[ην , f †], η inr([ην , f †]§)ba]
?ρ out f

= [η inl, S(inr) evu]?[out[ην , f †], η inr([ην , f †]§)ba]
?S(inl+(ην inr)ba)ρh

= [η inl, S(inr) evu]?[η inl, η inr(f †)ba]
?ρh

= [η inl, S(inr f †) evu]?ρh.

42

Goncharov, Rauch and Schröder

And on the other hand,

S(id+f †)ξf =S(id+f †)[η, ξ]?[η inl, S(inr) evu]?ρ out f

=S(id+f †)[η, ξ]?[η inl, S(inr) evu]?ρT (inl+(ην inr)ba)h

=S(id+f †)[η, ξ]?[η inl, S(inr) evu]?S(inl+(ην inr)ba)ρh

=S(id+f †)[η, ξ]?[η inl inl, S(inr ην inr) evu]?ρh

=S(id+f †)[η inl, ξ?S(ην inr) evu]?ρh

=S(id+f †)[η inl, (S inr) evu]?ρh

= [η inl, S(inr f †) evu]?ρh.

This finishes the proof of Lemma 4.9. 2

Proof of Theorem 4.8

The (overlarge) category of complete Elgot monads if formed by (strong) complete

Elgot monads and (strong) complete Elgot monad morphisms. The latter are the

usual (strong) monad morphisms [16] preserving iteration. Summarized, a com-

plete Elgot monad morphism is a natural transformation ξ : T → S satisfying the

following identities:

ξη = η ξf? = (ξf)?ξ ξτ = τ(id×ξ) (ξg)† = ξg† (A.21)

with f : X → TY and g : X → T (Y +X).

The proof of the theorem relies crucially on Lemma 4.9. Additionally, we need

the following.

Lemma A.3 Let f : X → T (Y +X). Then [η, f †]? = (T (id+f))†.

Proof. Consider the following trivially commuting diagram

X

f
��

f
// T (Y +X)

T (id+f)
��

T (Y +X)
T (id+f)

// T (Y + T (Y +X))

By uniformity, this implies f † = (T (id+f))†f . Therefore [η, f †]? =

[η, (T (id+f))†f]? = [η, (T (id+f))†]?T (id+f) = (T (id+f))† and we are done. 2

We proceed with the proof of Theorem 4.8.

• The fact that Lba is a complete Elgot monad follows from the assumption and

Theorem 4.5. We have to show that for any complete Elgot monad S equipped

with an algebraic operation α : Sb → Sa there is a unique monad morphism

ξ : Lba → S compatible with the corresponding algebraic operation β : (Lba)
b →

(Lba)
a, i.e. ξaβ = αξb where

βX(f : b→ LbaX)(x : A) = out-1inr〈x, f〉.

43

Goncharov, Rauch and Schröder

Recall that algebraic operations dually correspond to generic effects [22], i.e. α

induces a Kleisli morphism u : a→ Sb. By Lemma 4.9, u induces a monad mor-

phism ξ : Lba → S. According to Lemma 4.9, u : a → Sb is now representable

as the composition

a
out-1 inl inr〈id,λ . η〉−−−−−−−−−−−−→ Lbab

ξb−−−→ Sb,

which exactly means the ξ takes β to α. On the other hand, any other mor-

phism θ : Lba → S for which u decomposes as above with ξ replaced by θ,

corresponds to u under the bijection of Lemma 4.9, and hence such θ is iden-

tically ξ.

• By Lemma 4.9 (with S = Tba, T = L), the Kleisli morphism

a
out-1 η inr〈id,λ . η〉−−−−−−−−−−−→ T bab

induces a monad morphism ξ : Lba → Tba. We next show that Tba is the coprod-

uct of T and Lba with ξ and ext : T→ Tba being coproduct injections. Let R be

a complete Elgot monad and let ρ : T→ R, θ : Lba → R be two complete Elgot

monad morphisms. We have to prove that that there is a unique κ : Tba → R
such that

ρ = κ ext θ = κξ. (A.22)

By Lemma 4.9, there is a Kleisli morphism u : a → Rb induced by θ. Again,

by Lemma 4.9, the pair u, ρ induces a monad morphism Tba → R which we

take as κ. Let us show the left part of (A.22):

κ ext =
Ä
[η inl, λ〈x, f〉. S(inr f)u(x)]?ρ out

ä†
ext

= [η, κ]?[η inl, λ〈x, f〉. S(inr f)u(x)]?ρ out out-1T inl

= [η, κ]?[η inl, λ〈x, f〉. S(inr f)u(x)]?ρ T inl

= [η, κ]?[η inl, λ〈x, f〉. S(inr f)u(x)]?(R inl)ρ

= [η, κ]?(R inl)ρ

= ρ.

In order to show the right-hand side of (A.22), observe that by Lemma 4.9 both

side of the equation in question are completely identified by the corresponding

Kleisli morphism a → Rb. For ρ, such morphism is by definition u. Let us

calculate the corresponding morphism for the right hand-side to prove that it

is also u:

κbξb out
-1η inr〈id, λ . η〉 = κb out

-1 η inr〈id, λ . η〉 = u.

Finally, we show that κ satisfying (A.22) is unique. Suppose, κ′ is another

such. By Lemma 4.9, κ′ induces u′ : a → Rb and ρ′ : T → R. We will be

done once we show that u = u′ and ρ = ρ′. On the one hand, by definition,

44

Goncharov, Rauch and Schröder

ρ′ = κ′ ext = ρ. One the other hand,

u = θb out
-1η inr〈id, λ . η〉

= κ′bξb out
-1 η inr〈id, λ . η〉

= κ′b out
-1 η inr〈id, λ . η〉

= u

and thus we are done. 2

45

