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Abstract—Branching-time temporal logics generalizing rela-
tional temporal logics such as CTL have been proposed for
various system types beyond the purely relational world. This
includes, e.g., alternating-time logics, which talk about winning
strategies over concurrent game structures, and Parikh’s game
logic, which is interpreted over monotone neighbourhood frames,
as well as probabilistic fixpoint logics. Coalgebraic logic has
emerged as a unifying semantic and algorithmic framework for
logics featuring generalized modalities of this type. Here, we
present a generic global caching algorithm for satisfiability check-
ing in the flat coalgebraic mu-calculus, which realizes known tight
exponential-time upper complexity bounds but offers potential for
heuristic optimization. It is based on a tableau system that makes
do without additional labelling of nodes beyond formulas from
the standard Fischer-Ladner closure, such as foci or termination
counters for eventualities. Moreover, the tableau system is single-
pass, i.e. avoids building an exponential-sized structure in a first
pass; to our best knowledge, optimal single-pass systems without
numeric time-outs were not previously available even for CTL.
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Temporal logics of various descriptions traditionally play a
central role in the verification of concurrent systems; typical
reasoning tasks are model checking and satisfiability checking.
Many of these logics, in particular Computation Tree Logic
(CTL), can be seen as fixpoint logics; fixpoints appear also, e.g.,
in epistemic logics of common knowledge and in logics for
knowledge representation [1]. Traditionally, logics of this type
are equipped with a relational semantics, i.e. are interpreted
over Kripke models; they can thus be seen as sublogics of
the relational µ-calculus [2]. However, there is also increasing
interest in non-relational fixpoint logics such as Alternating-
Time Temporal Logic (ATL) [3], which is interpreted over
so-called concurrent game structures, and Parikh’s game logic,
interpreted over monotone neighbourhood frames [4]. Another,
not quite as standard but sensible, example is the extension of
probabilistic modal logic [5], [6], [7] with fixpoints, interpreted
over Markov chains.

For all of the mentioned logics, satisfiability is known to
be EXPTIME-complete. However, all known tableau-based
reasoning algorithms, even for the basic case of CTL, share
the problem that they either run in suboptimal time or build
an exponential-sized data structure in a first pass [8] (or use
exponential time-outs, see the discussion of [9] below).

Coalgebraic logic serves as a unifying framework for logics
such as these, i.e. for modalities beyond the relational world:
by parametrizing the system type as a set functor, one can
give a uniform treatment of all logics mentioned above. In
the current work, we introduce a generic tableau system
for satisfiability checking in the flat (i.e. single variable)

fragment of the coalgebraic µ-calculus [10], [9]. It is well-
known that the flat relational µ-calculus [11] contains CTL as
a sublogic, e.g. AFφ = µX. (φ∨AXX). Similarly, ATL is a
sublogic of the flat alternating-time µ-calculus [3]. Like earlier
generic algorithms [10], [9], our algorithm has – typically
optimal – complexity EXPTIME under mild assumptions on
the parameters of the logic. While the theoretical complexity
bound is thus not new, our algorithm has some distinguishing
features in practical terms:
• It is single-pass, i.e. does not rely on building exponential-

sized intermediate data structures such as automata, games,
or first-pass tableaux; in other words, there is hope that good
heuristics will often allow closing the tableau before it reaches
exponential size.
• It supports sound global caching [12], [13] in the sense

that one never needs to generate different tableau nodes
with identical labels, even when these come from morally
different branches of the tableau; it thus potentially offers
comparative practical efficiency and opportunities for heuristic
optimization [14].
Moreover, our tableau system avoids annotating formulas or
tableau labels with additional data such as foci [15], [16] or
time-outs [9], and hence has shorter branches. As a side benefit,
our tableau method implies, via its completeness proof, a bound
2O(n) on the size of models, the same as for CTL [17]; for ATL ,
the best previous bound appears to be nO(n) = 2O(n logn) [18].

Related Work: The EXPTIME upper bound for CTL was
first established by Emerson and Halpern [19], using a two-pass
method where an exponential-size tableau is built in the first
pass and then pruned in the second pass. Later work includes the
focussing method introduced in game-theoretic terms by Lange
and Stirling [15] and translated into a complete and cutfree
sequent system by Brünnler and Lange [16]. The focus game
algorithm realizes the EXPTIME upper bound via alternating
depth-first search in an exponentially large (but polynomially
deep) and-or tree of plays. Tableau labels are annotated with
a focus singling out one of the eventualities. The focussing
sequent system for CTL [16] is single-pass but no claims are
made about its computational complexity. Our method owes
much to focussing in that we track how eventualities propagate
through the tableau, and use methods similar to focussing
in the model construction; however, we avoid any additional
annotations in the tableau labels themselves. An alternative to
tableau methods for CTL are resolution methods, e.g. [20].

Our algorithm works for the full flat µ-calculus, which is
strictly more expressive than CTL. Friedmann and Lange [21]
have recently described a tableau method for the full µ-calculus,
whose decision procedure constructs an exponential-sized parity



game. Dedicated tableau algorithms exploiting flatness in the
relational µ-calculus do not currently seem to exist.

For ATL, the upper bound EXPTIME has been established for
a fixed number of agents by Goranko and van Drimmelen [22],
and for a variable number of agents by Walther et al. [23]. It
has been extended to the full alternating-time µ-calculus AMC
by Schewe [18]. The methods used in [22], [18] are automata-
theoretic, and in particular will always construct an exponential-
sized automaton from the target formula. The algorithm of [23]
is by type elimination, i.e. starts from an exponential-sized set
of types. Goranko and Shkatov [24] present an improved ‘type-
free’ tableau for ATL in the spirit of [19], implemented in the
TATL prover [25], which however still begins by constructing
an exponential-sized pretableau.

Satisfiability checking in the full coalgebraic µ-calculus has
been shown to be, under mild conditions, in EXPTIME by
Cirstea et al. [26]. The algorithm combines game-theoretic
and automata-theoretic methods, and in particular will always
construct an exponential-sized game from the target formula.
A single-pass tableau-oriented algorithm that does support
global caching has been described for the flat coalgebraic µ-
calculus [9]. However, this algorithm annotates eventualities
with time-outs that are initialized to exponentially large values;
this is clearly detrimental to the practical efficiency of the
algorithm.

Global caching has been employed with considerable success
for a variety of description logics [12], [13], [14], and lifted
to the level of generality of coalgebraic logics with global
assumptions [27] and nominals [28]. A doubly exponential
global caching method for CTL has recently been described
by Goré, with the problem of finding a single-pass tableau
method for CTL that supports global caching and has optimal,
i.e. singly exponential, complexity explicitly left open [8].

I. THE FLAT COALGEBRAIC µ-CALCULUS

We recall the generic framework of coalgebraic logic [29], [30]
and its extension with flat fixpoints, i.e. the single-variable
fragment of the coalgebraic µ-calculus [10], [9]; we briefly
call single-variable µ-calculi flat. We then discuss examples,
including CTL, ATL, and probabilistic fixpoint logics.

A coalgebraic logic is given in terms of syntactic and
semantic parameters. The syntax of a flat coalgebraic µ-
calculus is determined by a (modal) similarity type Λ, i.e.
a set of modal operators with associated finite arities. For
the sake of readability, we will pretend that all operators are
unary, although nullary operators, i.e. propositional atoms, will
appear in the examples. We work with formulas in negation
normal form throughout, and therefore assume that every modal
operator ♥ ∈ Λ comes with a dual operator ♥ ∈ Λ of the
same arity, where ♥ = ♥. (For propositional atoms, dual is
negation). This determines the set F(Λ) of flat modal fixpoint
formulas φ, ψ by the grammar

φ, ψ := > | ⊥ | X | ψ ∧ φ | ψ ∨ φ | ♥ψ | νX.ψ | µX.ψ

where ♥ ∈ Λ and X is a fixed single recursion variable.
Negation is derived in the standard way, e.g. ¬♥φ = ♥̄¬φ.

The operations→,↔ are defined as usual. We use the standard
notion of free variables; a formula without free variables is
closed. Throughout, we restrict to formulas that are guarded,
i.e. have at least one modal operator between any occurrence
of the recursion variable X and its enclosing binder µ or ν.
(This is standard although not without loss of generality [21].)

We parametrize the semantics over the underlying class of
systems and the interpretation of the modal operators. The
former is determined by the choice of a type functor T :
Set→ Set, i.e. an operation T that maps sets X to sets TX
and functions f : X → Y to functions Tf : TX → TY ,
preserving identities and composition, and the latter by the
choice of a predicate lifting [[♥]] for each ♥ ∈ Λ. Here, a
predicate lifting (for T ) is a family of maps

λX : PX → PTX,

for each set X (satisfying naturality, i.e. commutation with
preimage). To enable fixpoints, we require that modal operators
are monotone, i.e. [[♥]] : P(X)→ P(TX) is monotone w.r.t.
set inclusion. Predicate liftings must respect duality of operators,
i.e. [[♥]]X(A) = TX− [[♥]]X(X−A). Models of the logic are
T -coalgebras, i.e. pairs (C, ξ) where C is a set of states and

ξ : C → TC

is the transition function; thinking of TC informally as a
parametrized datatype over C, we regard ξ as associating with
each state x a structured collection ξ(x) of successor states
and observations. E.g. for TX = P(X)×P(U), with U a set
of propositional atoms, a T -coalgebra ξ : C → P(C)×P(U)
is a Kripke model, as ξ maps a state to a set of successor states
and a set of valid propositional atoms. Our main interest here
is in examples beyond Kripke semantics, see Example 1. We
fix the data T , Λ, etc. throughout.

Given a T -coalgebra (C, ξ) and a set A ⊆ C interpreting
the variable X , the semantics of a formula φ is a subset
[[φ]](A) ⊆ C, or just [[φ]] for closed φ. We write x |= φ
for x ∈ [[φ]]. One has obvious clauses for Boolean operators,
[[X]](A) = A, and

[[♥φ]](A) = ξ−1[[[♥]]C([[φ]](A))].

As expected, the semantics of µX. φ (resp. νX. φ) is the least
(resp. greatest) fixpoint of the monotone function [[φ]]( ).

Example 1. We discuss selected examples covered by the
coalgebraic approach, starting with a more detailed exposition
of the basic example of Kripke semantics and then moving on
to non-relational examples. The range of examples is unlimited
in principle [31]; we concentrate on the main examples found
in the literature. See [32] for additional examples.

1. The relational µ-calculus: As seen above, a Kripke frame
can be viewed as a coalgebra for the powerset functor P , and a
Kripke model for a set U of propositional atoms is a coalgebra
for P × P(U). The usual semantics of the modality � (with
dual �̄ = ♦) is induced coalgebraically by the predicate lifting

J�KX(A) = {(B,P ) ∈ P(X)× P(U) | B ⊆ A},



(and that of a propositional atom p by a nullary predicate
lifting [[p]]X = {(B,P ) ∈ P(X) × P(U) | p ∈ P}; we elide
propositional atoms from now on). Multi-relational versions,
with modalities [a] indexed over atomic programs or agents a ∈
Σ, are interpreted over coalgebras for TX = P(Σ×X)×P(U).
CTL, the ∗-nesting-free fragment of PDL, and the logic of
common knowledge embed into the flat relational µ-calculus;
e.g., E[φUψ] = µX.(ψ ∨ (φ ∧ ♦X)). The flat µ-calculus is
strictly more expressive than CTL; e.g. it expresses ‘p holds
in all even states on any path’ as νX. (p ∧��X) [17], [33].

2. Probabilistic fixpoint logic extends probabilistic modal
logic [5], [6], [7] with fixpoints. It has modal operators Lp ‘with
probability at least p, the next state satisfies’ with duals L̄p =
¬Lp¬ ‘with probability more than 1−p, the next state satisfies’,
for p ∈ [0, 1] ∩ Q. These are interpreted over coalgebras for
the functor D that takes a set X to the set D(X) of discrete
probability distributions on X by predicate liftings

[[Lp]]X(A) = {µ ∈ D(X) | µ(A) ≥ p}.

Coalgebras for D are Markov chains. We intentionally refrain
from referring to this logic as the probabilistic µ-calculus,
which is standardly understood as taking truth values in [0, 1].
As a simple example, the AG-like formula

νX. (¬fail ∧ LpX)

expresses that the system will, at any point during its run time,
fail with probability less than 1− p.

3. The alternating-time µ-calculus (AMC) [3] has modal
operators 〈〈A〉〉© read ‘coalition A has a joint strategy to
enforce . . . in one step’, where a coalition is a subset of a
fixed set N of agents; in coalition logic [34], these operators
are denoted [A], and we will use the latter notation in the
AMC (but not in ATL) for brevity, writing dual operators as
〈A〉. The semantics is defined over concurrent game structures
(or the very similar game frames [34]), which are coalgebras
ξ : C → G(C) for the functor

G(X) = {(f, (ki)) | (ki) ∈ NN ; f :
∏
i∈N [ki]→ X}

where [k] = {0, . . . , k} for k ∈ N; i.e. each state x ∈ C
specifies a game (f, (ki)) in which each agent i ∈ N has
ki + 1 moves, with the next state determined by applying the
outcome function f to the moves chosen by the agents. The
operators [A] are interpreted via the liftings

J[A]KX(B) = {(f, (ki)) ∈ G(X) | ∃(si) ∈
∏
i∈A[ki].

∀(si) ∈
∏
i∈N−A[ki]. f((si)i∈N ) ∈ B},

i.e. [A]φ states that the agents in A have moves (si)i∈A such
that regardless of the moves (si)i∈N−A by the other agents,
the next state f((si)i∈N ) satisfies φ. The flat AMC contains
alternating-time temporal logic (ATL); e.g. the ATL formula
〈〈A〉〉φUψ (‘coalition A can eventually force ψ and meanwhile
maintain φ’) is the flat fixpoint formula µX. (ψ∨ (φ∧ [A]X)).

4. The serial monotone µ-calculus is the ambient fixpoint
calculus of Parikh’s game logic [35] (and its sublogic, con-
current PDL [36]). It has modal operators 〈a〉, with duals [a],

indexed over atomic games a ∈ Σ. Its semantics is defined in
terms of serial monotone neighbourhood frames, which are
coalgebras for the functor M defined by

M(X) = {A : Σ→ P̆ (P̆ (X)) | A(a) upwards closed,
∅ /∈ A(a) 3 X for all a}

with P̆ denoting contravariant powerset (i.e. P̆ (X) is powerset,
and P̆ (f) : P̆ (Y ) → P̆ (X), A 7→ f−1[A] for f : X → Y ).
That is, an M-coalgebra on X assigns to each state x ∈
X and each atomic game a a set of subsets of X , the a-
neighbourhoods of x, which designate properties of states that
angel can enforce in the atomic game a. The semantics of the
modal operators is given by the predicate liftings

[[〈a〉]]X(A) = {A ∈M(X) | A ∈ A(a)}.

The ∗-nesting-free fragment of game logic embeds into the
flat serial monotone µ-calculus. Game logic has operators 〈γ〉
‘Angel has a strategy to enforce . . . in game γ’, where γ can
be composite; e.g., γ× is (in finite frames) the game in which
the game γ is played a finite number of times, with Demon
deciding when to stop. The formula 〈γ×〉φ is equivalent to the
flat fixpoint formula νX. (φ ∧ 〈γ〉X).

Our tableau algorithm will be parametrized by an axiomatiza-
tion of the modalities by one-step (tableau) rules [32]:

Definition 2 (One-step tableau rules). We fix a set P of
(propositional) variables. We denote by Λ(P ) the set {♥b |
♥ ∈ Λ, b ∈ P} of formulas consisting of an application of
a modal operator ♥ to an element of P . Given a set U , a
U -(tableau-)sequent is a subset of U , written u1, . . . , un for
ui ∈ U and read conjunctively. We also use the comma
to denote the union of sequents. A one-step tableau rule
R = (Γ0/Γ1 . . .Γn) consists of a Λ(P )-sequent Γ0, the
premise, and P -sequents Γ1, . . . ,Γn (n ≥ 0), the conclusions,
with the additional provisos that Γ0 mentions every variable at
most once, and Γ1, . . . ,Γn mention only variables occurring in
Γ0. Given a P(C)-valuation τ : P → P(C), we define the ex-
tension [[Γ]]Cτ ⊆ C of a P -sequent Γ by [[Γ]]Cτ =

⋂
b∈Γ τ(b),

and the extension [[∆]]TC ⊆ TC of a Λ(P )-sequent ∆ by
[[∆]]TCτ =

⋂
♥b∈∆[[♥]]C(τ(b)).

A rule (Γ0/Γ1 . . .Γn) is one-step tableau sound if for all
P(C)-valuations τ : P → P(C), [[Γ0]]TCτ 6= ∅ implies that
[[Γi]]Cτ 6= ∅ for some i ∈ {1, . . . , n}.

A set of one-step tableau rules R is one-step tableau
complete if whenever Γ is a Λ(P )-sequent and τ : P → P(C)
is a P(C)-valuation such that for each rule (Γ0/Γ1 . . .Γn) ∈ R
and for each renaming σ : P → P such that Γ0σ ⊆ Γ and σ
acts injectively on Γ0, [[Γiσ]]Cτ 6= ∅ for some 1 < i ≤ n, then
[[Γ]]TCτ 6= ∅.

One-step tableau soundness captures, at the very simple level of
a semantics involving only single elements of the type functor T
rather than full-blown T -coalgebras, the intuition that, dually to
proof rules, a tableau rule is sound if satisfiability of the premise
implies that one of the conclusions is satisfiable. Similarly, one-
step tableau completeness embodies the intuition that a tableau



system is complete if a tableau sequent is satisfiable whenever
all rule instances matching it have a satisfiable conclusion (for
fixpoint logics, the actual satisfiability algorithm is necessarily
more complicated than that).

Remark 3. In the terminology of [26], our notion of one-step
tableau completeness comprises one-step tableau completeness
and closure under contraction.

We fix a one-step tableau sound and complete set R of one-step
tableau rules throughout. Such rule sets exist for all coalgebraic
logics, and concrete sets have been identified for all our example
logics [32]; they are determined by the functor and predicate
liftings alone and have been reused for coalgebraic logics of
varying expressivity, including coalgebraic hybrid logics [37]
and coalgebraic description logics [38].

Example 4. We briefly recall one-step tableau sound and
complete rule sets for our main examples [32], [26].

1. The relational µ-calculus has rules

〈a〉b0, [a]b1, . . . , [a]bn,

b0, b1, . . . , bn
(a ∈ Σ, n ≥ 0)

– i.e. the usual tableau rules for relational modalities. For atomic
propositions p with duals (i.e. negations) p̄, we have additional
rules p, p̄/⊥ with ⊥ denoting the absence of a conclusion; that
is, the usual axiom rule becomes a one-step tableau rule.

2. Probabilistic fixpoint logic has rules with multiple
conclusions (slightly rearranged in comparison to [32]): for
each choice of positive integers ri and sj , we have a rule

Lp1a1, . . . , Lpnan, L̄q1b1, . . . , L̄qmbm∑n
i=1 ri(ai − pi) A

∑m
j=1 sj(¬bj − qj)

where A is ≥ in case m = 0, and > otherwise. Here,
we read the linear inequality as Boolean function f in the
variables a1, . . . , an, b1 . . . , bm by interpreting the truth value
> as 1 and ⊥ as 0. The conclusions of the rule are then
the prime implicants of f , that is, the minimal conjunctive
clauses (i.e. conjunctions of literals) χ over P such that χ
propositionally implies f(a1, . . . , an, b1, . . . , bm) = 1. As f is
clearly monotone, its prime implicants are sequents in the sense
of Definition 2, i.e. do not contain negative literals. E.g. for the
sequent L1/2a, L̄1/2b, we have a rule match (for r1 = 1 = s1)
with conclusion a− 1/2 > ¬b− 1/2, a Boolean function that
has a ∧ b as its only prime implicant.

3. The alternating-time µ-calculus has rules

[A1]a1, . . . , [An]an, 〈D〉b, 〈N〉c1, . . . , 〈N〉cm
a1, . . . , an, b, c1, . . . , cm

[A1]a1, . . . , [An]an
a1, . . . , an

for coalitions Ai that are pairwise disjoint and, in the first rule,
contained in D. The second rule says that disjoint coalitions
can combine their abilities; to understand the first rule note
additionally that 〈D〉b implies that the Ai together cannot
prevent b, and 〈N〉ci says that ci is unavoidable altogether.

4. The serial monotone µ-calculus has rules

[a]b, 〈a〉c
b, c

[a]b

b

〈a〉b
b

capturing monotonicity and seriality.

II. TECHNICAL PRELIMINARIES

The size |φ| of a formula φ is its length over the alphabet
{>,⊥,∧,∨, X, µX, νX} ∪ Λ. We write ψ ≤ φ (ψ < φ) if ψ
is a (proper) subformula of φ. We use the metavariable η to
denote either µ or ν. A formula of the shape ♥φ is a modal
literal while a formula of the shape ηX.φ is a fixpoint literal;
formulas of the form µX. φ are also called eventualities. A
formula ψ is a free subformula of φ if ψ occurs as a subformula
in φ that is not in the scope of any fixpoint operator. An
occurrence of a subformula is unguarded if it is not in the
scope of a modality. The rank rk(φ) of a formula φ is the
maximal nesting depth of modal operators in φ. We write
φ(ψ) for the result of substituting ψ for X in φ. The obvious
substitution lemma states that, for a T -coalgebra (C, ξ) and a
subset A ⊆ C, [[φ(ψ)]](A) = [[φ]]([[ψ]](A)).

Definition 5 (Fischer-Ladner closure). The Fischer-Ladner
closure FL(φ) of a formula φ is defined as FL(φ) = FL(φ)φ,
where FL(φ)ψ is defined, for all formulas ψ, by recursion
over φ:

FL(φ1 ∧ φ2)ψ = {(φ1 ∧ φ2)(ψ)} ∪ FL(φ1)ψ ∪ FL(φ2)ψ

FL(φ1 ∨ φ2)ψ = {(φ1 ∨ φ2)(ψ)} ∪ FL(φ1)ψ ∪ FL(φ2)ψ

FL(♥φ1)ψ = {(♥φ1)(ψ)} ∪ FL(φ1)ψ

FL(ηX.φ1)ψ = {ηX.φ1} ∪ FL(φ1)ηX.φ1

FL(X)ψ = ∅

Remark 6. The above definition differs slightly from, e.g.,
the one used for CTL by Emerson and Halpern [19] in that it
retains Boolean combinations when unfolding fixpoints. We
still have |FL(φ)ψ| ≤ |φ|, by induction over φ.

Definition 7 (Propositional entailment). For a finite set Ψ of
formulas, we write

∧
Ψ for the conjunction of the elements of

Ψ. We say that Ψ propositionally entails a formula φ (written
as Ψ `PL φ) if

∧
Ψ→ φ is a propositional tautology, where

modal literals are treated as propositional atoms and fixpoint
literals ηX.φ are unfolded to φ(ηX.φ) (recall that fixpoints
are guarded). More generally, Ψ propositionally entails a finite
set Φ of formulas (written Ψ `PL Φ) if Ψ `PL

∧
Φ (so `PL

is different from the ` used in sequent calculi).

In logics like CTL and ATL, where the recursion variable
always occurs under exactly one modality in the fixpoint
operators (e.g. A[φUψ] = µX. (ψ ∨ (φ ∧ �X))), the main
problem in the design of algorithms are eventualities, such
as AU -formulas. In flat µ-calculi, we also have to take into
account (unfolded) subformulas of fixpoint formulas; e.g. when
building a tableau for the formula µX. (p∨♦♦X), which states
that p is reachable in an even number of steps, we will, in odd
steps, need to take care of the formula ♦(µX. (p∨♦♦X)). We



call such formulas deferrals, and represent them in decomposed
form – in the example, as (♦X,µX. (p∨♦♦X)). Formal details
are as follows.

Lemma 8. Let χ = ηX.ψ and α ≤ ψ. Then χ ≤ α(χ) iff X
is free subformula of α, and in this case α(χ) ≤ ψ(χ) iff α is
free subformula of ψ.

Definition 9 (Deferral). Given a fixpoint literal χ = ηX.ψ, a
χ-deferral is a pair (α, χ) such that

α ≤ ψ and χ ≤ α(χ) ≤ ψ(χ)

(equivalently, X is free in α and α is free subformula of ψ).
A modal χ-deferral is a deferral of the shape (♥β, χ). We say
that (α, χ) induces the formula α(χ). We denote the set of all
(modal) χ-deferrals by dfr(χ) (mdfr(χ)). If χ is an eventuality
(i.e. η = µ), then χ-deferrals are also called µ-deferrals.

Example 10. For the mentioned formula e = µX.(p∨♦♦X),
we have dfr(e) = {(p ∨ ♦♦X, e), (♦♦X, e), (♦X, e), (X, e)}
with induced formulas p ∨ ♦♦e, ♦♦e, ♦e and e.

III. THE GLOBAL CACHING ALGORITHM

We next describe our tableau method for the flat coalgebraic
µ-calculus, which as advertised in the introduction is generic,
single-pass, and optimal. In the following, we fix a closed
formula φ0; we put F = FL(φ0) and evs = {µX.ψ ∈ F}.

Definition 11 (Nodes). A node is an F -sequent. A state node
is a node that consists only of modal literals; we denote the
set of nodes by S, and the set of state nodes by V.

The next definitions capture how eventualities are discharged
(finished) or deferred, respectively.

Definition 12 (Sufficiency). Given an eventuality e = µX.ψ,
we say that a set D of deferrals is sufficient for an e-deferral
(α, e) at a node s, and write D `s α(e), if

{β(e) | (β, e) ∈ D} ∪N (s, e) `PL α(e)

where N (s, e) is the subset of s of formulas not induced by
an e-deferral. We write `s α(e) for ∅ `s α(e). For a set
D′ of deferrals, we write D `s D′ if D `s α(e) for each
(α, e) ∈ D′.

Definition 13 (Finishing nodes). Let e = µX.ψ, and let (α, e)
be an e-deferral. The set of finishing nodes for (α, e) is defined
as

F (α, e) = {s ∈ S | s `PL α(e)⇒ `s α(e)}.

For a node s we denote by D(s) the set of µ-deferrals (α, e)
for which s is not finishing, i.e. s `PL α(e) but 6`s α(e).

Example 14. In CTL, the above notions are simple and as
expected. E.g. for e = AFφ = µX. (φ ∨�X), a node s such
that s `PL e is finishing for the e-deferral (X, e) iff s `PL φ,
and otherwise (�X, e) ∈ D(s).

For a more complex example, consider eventualities e1 =
µX.ψ1 and e2 = µX.ψ2 in the flat relational µ-calculus, where

ψ1 = p ∨�♦X and ψ2 = q ∨ ♦X.

Take state nodes v1 = {p, q} and v2 = {�♦e1, ♦e2}. We
have `v1 ψ1(e1) and `v1 ψ2(e2) so that v1 ∈ F (ψ1, e1) and
v1 ∈ F (ψ2, e2), and hence D(v1) = ∅. On the other hand, v2 /∈
F (ψ1, e1) since N(v2, e1) = {♦e2} 6`PL ψ1(e1). Similarly,
v2 /∈ F (ψ2, e2), i.e. D(v2) = {(�♦X, e1), (♦X, e2)}.

We proceed to describe the rules of the calculus, where we
distinguish between rules and their instances.

Definition 15 (Rule instance). A rule instance is a tuple
(Γ0/Γ1 . . .Γn) consisting of a premise Γ0 and conclusions
Γ1, . . . ,Γn, where the Γi are F(Λ)-sequents.

The rules of our calculus are the modal rules in the given
set R of one-step tableau rules (Section I), and additionally
the non-modal rules Rp = {(∧), (∨), (η)} (the axiom rule
is a modal rule; cf. Example 4). The rule instances of the
non-modal rules are of the form

(∧)
Γ, φ ∧ ψ
Γ, φ, ψ

(∨)
Γ, φ ∨ ψ

Γ, φ Γ, ψ
(η)

Γ, ηX.φ

Γ, φ(ηX.φ)
(η ∈ {ν, µ})

(the formulation of the non-modal rules themselves is immate-
rial). The rule instances of a modal rule (Γ0/Γ1 . . .Γn) are

∆,Γ0σ

Γ1σ . . . Γnσ

where σ is a substitution and ∆ a sequent; that is, the rule
instances have a weakening context ∆ built in. We abuse R
and Rp to denote also the respective sets of rule instances.

The following notions govern the expansion step of the
global caching algorithm.

Definition 16 (Conclusions). For a node s ∈ S and a set S of
rule instances, the set of conclusions of s under S is

Cn(S, s) = {{Γ1, . . . ,Γn} ∈ P(S) | (s/Γ1 . . .Γn) ∈ S}.

We define Cn(s) as Cn(R, s) if s is a state node and
Cn(Rp, s) otherwise. A set S ⊆ S of nodes S is fully expanded
if for each s ∈ S,

⋃
Cn(s) ⊆ S.

The salient point of our algorithm is that it tracks how
eventualities and more generally deferrals are propagated by
applications of rules (similarly to traces in tableaux for the
full µ-calculus). This is formally captured as follows.

Definition 17 (Recreation). A node w recreates α from (♥α, v)
for a state node v ∈ V if w is a conclusion of a modal rule
instance (∆,Γ0σ/Γ1σ . . .Γnσ) with ∆,Γ0σ = v such that
♥b ∈ Γ0, b ∈ Γi and σ(b) = α for some variable b ∈ P . For
a non-state node s ∈ S, α ∈ w, and β ∈ s, w recreates α
from (β, s) if w is the conclusion of a non-modal rule instance
(s/Γ1 . . .Γn) and either β has one of the forms α, α∨γ, γ∨α,
α ∧ γ, γ ∧ α, or β = ηX.ψ and α = ψ[X 7→ β]. We put

Recm(α,♥α, v) = {t ∈ S | t recreates α from (♥α, v)}
Recp(α, β, s) = {t ∈ S | t recreates α from (β, s)}.

For the propagation step of our algorithm, we consider two
types of monotone functionals that we call proof transitionals,
one that captures the standard intuition that a node is satisfiable



if every rule that applies to it has a satisfiable conclusion, and,
building on the first, a more sophisticated one that additionally
tracks recreation of formulas by rule applications.

Definition 18 (Proof transitionals). Let S ⊆ S be a set of
nodes. The proof transitionals f : P(S) → P(S) and g :
P(S)→ P(S) are defined by

f(S′) = {s ∈ S | ∀Σ ∈ Cn(s).∃Γ ∈ Σ.Γ ∈ S′}
g(S′) = {s ∈ S | ∃Σ ∈ Cn(s).∀Γ ∈ Σ.Γ ∈ S′}

for S′ ⊆ S. We refer to S as the base set of f and g.

Definition 19 (Tracking proof transitionals). Given a set D of
µ-deferrals and nodes s, t ∈ S, if s is a state, we put

K(D, s, t) = {(α, e) ∈ D(t) | ∃(♥α, e) ∈ D.
t ∈ Recm(α(e),♥α(e), s)}

and if s is not a state, we put

K(D, s, t) = {(α, e) ∈ D(t) | ∃(β, e) ∈ D.
t ∈ Recp(α(e), β(e), s)}.

In words, K(D, s, t) is the set of µ-deferrals that originate
from D and that t recreates from s but does not finish.

For S ⊆ S, n ≥ 0 and a nonempty set D of µ-deferrals, we
then define the tracking transitionals f̂nD : P(S)→ P(S) and
ĝnD : P(S)→ P(S) (with base set S) by

f̂0
D(S′) =∅

f̂n+1
D (S′) ={s ∈ S | ∀Σ ∈ Cn(s).∃Γ ∈ Σ.

Γ ∈ S′ ∩ f̂nK(D,s,Γ)(S
′)}

for S′ ⊆ S, and

ĝ0
D(S′) =S

ĝn+1
D (S′) ={s ∈ S | ∃Σ ∈ Cn(s).∀Γ ∈ Σ.

Γ ∈ S′ ∪ ĝnK(D,s,Γ)(S
′)}

For D = ∅, we put f̂n∅ (S′) = f(S′) and ĝn∅ (S′) = g(S′).

In game-theoretic terms, the set f̂nD(S′) can be understood
as the set of nodes at which Eloise (who tries to establish
satisfiability) has a strategy to finish all deferrals from D
within at most n steps while staying in S′ throughout.

Fact 20. For sets D′ ⊆ D of µ-deferrals, S′ ⊆ S, and n ≥ 0,
1) f̂nD(S′) ⊆ f̂nD′(S′) and ĝnD(S′) ⊇ ĝnD′(S′).
2) f̂nD(S′) ⊆ f̂n+1

D (S′) and ĝnD(S′) ⊇ ĝn+1
D (S′).

Example 21. Take eventualities e1 = µX.(p ∨ ��X)
and e2 = µX.(q ∨ ♦X) in the flat relational µ-
calculus, and a state node v = {q,��e1,♦e2}; note that
D(v) = {(��X, e1), (♦X, e2)}. Recall that R has rules
{♦b0,�b1, . . . ,�bn/b0, b1, . . . , bn} (Example 4). One instance
of the rule for n = 1 matches v: it takes b1 to be �e1 and
b0 to be e2. We obtain as conclusion the node s = {�e1, e2};
observe that s ∈ Recm(�e1,��e1, v) ∩ Recm(e2,♦e2, v)

and D(s) = {(�X, e1), (X, e2)}. Then K(D(v), v, s) =
{(�X, e1), (X, e2)} (which in this case equals D(s)).

Notation 22. Let D be a set of µ-deferrals, and let S′ ⊆ S.
By Fact 20.2 there exist (minimal) n, m such that f̂n+1

D (S′) =

f̂nD(S′) and ĝm+1
D (S′) = ĝmD (S′). We put

f̂D(S′) = f̂nD(S′) and ĝD(S′) = ĝmD (S′).

Definition 23 (Propagation). Given a base set S ⊆ S, we
define E,A : P(S)→ P(S) by

E(S′) = {s ∈ S | s ∈ f̂D(s)(S
′)}

A(S′) = {s ∈ S | s ∈ ĝD(s)(S
′)}

for S′ ⊆ S. We define ES and AS (or just E, A) as

E = νE and A = µA.

Fact 24. If S1 ⊆ S2, then ES1 ⊆ ES2 and AS1 ⊆ AS2 .

Fact 25. Let S ⊆ S be fully expanded. Then ES = AS .

Following the standard setup of global caching, our algorithm
maintains as global variables a set G of nodes and a subset
U of unexpanded nodes. Along the way, it computes sets EG
of satisfiable nodes, and AG of unsatisfiable nodes as per
Definition 23. These grow monotonically and hence can be
maintained in an incremental fashion in implementations.

Algorithm 26 (Global caching). Decide satisfiability of a
closed formula φ0.

1) (Initialization) Let G := {{φ0}}, U := G.
2) (Expansion) Choose t ∈ U and put H =

⋃
Cn(t). Let

G := G ∪ {t}, U := (U − {t}) ∪ (H −G).
3) (Intermediate propagation) Optional: Compute EG, AG.

If {φ0} ∈ EG, return ‘Yes’. If {φ0} ∈ AG, return ‘No’.
4) If U 6= ∅, continue with Step 2.
5) (Final propagation) Compute EG. If {φ0} ∈ EG, return

‘Yes’, else return ‘No’.

As with every global caching algorithm, the potential for closing
the tableau early is realized by combining good choices of
nodes for expansion in Step 2 with judicious intermediate
propagation in Step 3. Here, the non-determinism works in our
favour, i.e. affords maneuvering space for heuristic optimization:
the algorithm delivers correct results regardless of the order
in which nodes are expanded and of how often propagation is
triggered. If no intermediate propagation steps are performed,
then the algorithm will build a fully expanded set of nodes
that is independent of the order in which nodes are expanded,
and then calculate the subset of successful nodes in the final
propagation step. For purposes of the soundness proof, we note
as an immediate consequence of Facts 24 and 25

Fact 27. If a run of Algorithm 26 without intermediate
propagation steps is successful for some input formula φ0,
then any run of the algorithm with input φ0 is successful.

Example 28. To illustrate the potential avoidance of full
expansion enabled by single-pass tableau systems, consider the



CTL formula (shortly writing � for AX)

φ =
∧
i≤n�

iq ∧AG(q → ψ) ∧ E[q U χ],

interpreted, as usual, over serial frames, where ψ ∧ χ is
unsatisfiable for reasons that a typical two-pass algorithm will
detect only in the second pass, e.g. because ψ forces infinite
deferral of an eventuality in χ. A simple example of this kind
is ψ = EG¬p, χ = AFp but of course there are much more
complicated (and harder to detect) examples. The left part of
φ dooms any attempt to finish the eventuality E[q U χ] before
the n+ 1-st step. In a two-pass tableau one would nevertheless
need to create, in every step, a disjunctive branch attempting
just that, possibly at high computational cost. Contrastingly,
given the right heuristics, the global caching algorithm can
instead opt to defer E[q U χ] for n steps (e.g. on the basis of
noticing that things will become easier after the boxes run out)
and only then satisfy χ.

IV. SOUNDNESS

We now show that the global caching algorithm is sound, i.e.
answers ‘yes’ if the input formula is satisfiable. To this end,
we consider the set of nodes constructed by the algorithm
when run on a satisfiable formula. We show that every node
that is contained in the theory of a state in the given model
is successful, by induction over the number of modal steps
that are required in the model to satisfy all eventualities in a
state node. We require satisfaction of the target formula in a
coalgebra that needs only finite unfoldings of deferrals:

Definition 29. For a formula ψ, we define ψ0 = X and
ψn+1 = ψ(ψn).

Definition 30. We say that a coalgebra C is stabilizing if for
each state x in C and each µ-deferral (α, e) such that x |= α(e),
with e = µX.ψ, there is n ≥ 0 such that x |= α(ψn(⊥)).

Remark 31. If the coalgebraic type functor T is finitary, i.e.
imposes finite branching, then every T -coalgebra is stabilizing.
For the general case, we import the finite model property of
the coalgebraic µ-calculus [26]: finite coalgebras are clearly
stabilizing, so every satisfiable formula is satisfiable in a
stabilizing coalgebra. Note we import only finiteness, not the
bound on the size of models.

For the rest of the section, fix (by the previous remark, w.l.o.g.)
a stabilizing coalgebra C = (C, ξ) satisfying the target formula
φ0 in some state. To show that every run of the algorithm with
input φ0 is successful, it suffices by Fact 27 to show that a run
without intermediate propagation is successful. Let S ⊆ S be
the fully expanded set of nodes constructed by all such runs
(i.e. the smallest fully expanded set containing the node {φ0}).

Definition 32 (Unfolding). Given a state x ∈ C, an eventuality
e = µX.ψ, and an e-deferral (α, e) with x |= α(e), we define
the unfolding unf (α(e), x) of (α, e) at x as

unf (α(e), x) = α(ψn)

for the least n such that x |= α(ψn(⊥)) (which exists by
stabilization).

Definition 33 (Realization). The set of C-realized nodes is

M = {s ∈ S | ∃x ∈ C.∀φ ∈ s. x |=C φ}.

Definition 34 (Rank). Given a set D of µ-deferrals and a state
x ∈ C such that x |= α(e) for each (α, e) ∈ D, we put

rk(D,x) = max{rk(unf (α(e), x)) | (α, e) ∈ D}.

For s ∈M and a set D ⊆ D(s) of deferrals, we put

rk(D, s) = min{rk(D,x) | ∀φ ∈ s. x |= φ}.

Theorem 35 (Soundness). If φ0 is satisfiable, then Algo-
rithm 26 returns ‘Yes’ on input φ0.

Proof: It suffices to show that C-realized nodes are
successful, i.e. M ⊆ ES = νE. We use coinduction, i.e. show
that M is a postfixpoint of E, i.e. s ∈ f̂D(s)(M) for all s ∈M .
This is by induction over the triple (rk(D(s), s), uf (s), up(s))
in lexicographic order where uf (s) and up(s) denote the
number of unguarded occurrences of fixpoint and propositional
operators in s, respectively.

V. COMPLETENESS

We next show completeness, i.e. that a formula is satisfiable
if the algorithm answers ‘yes’. We build our model by first
extracting an enriched structure, a tableau, whose states are
copies of the successful state nodes constructed in a run of
the algorithm. We then show, roughly, that one can build a
coalgebraic transition structure on the tableau nodes in such a
way that the transitions at each node involve only (copies of)
states that contributed to the underlying state being successful
under the tracking proof transitionals, i.e. bring all deferrals
closer to being finished. In the model construction, we combine
focussing [15], [16], time-outs [11], [9], and an array-of-dags
construction similar in spirit to the original model construction
for CTL [19], [17]. Note that all this happens only in the
model construction; the algorithm itself uses neither foci nor
time-outs.

We fix the set S of nodes constructed in a successful run
of the algorithm, and put V = ES ∩V, i.e. V is the set of
successful state nodes. The carrier of our model will consist
of state nodes from V annotated with foci (sets of deferrals).
We next fix the properties required of a graph structure L on a
carrier labelled with formulas, in the notion of a tableau. We
show that we can extract a tableau from a successful run of
the algorithm and then establish that every tableau supports a
model, which together will imply completeness.

Definition 36 (Tableau). Let U be a set of nodes with a
labelling function l : U → V , and let L ⊆ U × U . We denote
the set of L-successors of v ∈ U by L(v) = {w | (v, w) ∈ L}.
Let D be a set of modal deferrals. We define tp(D,n) = U
for all n if D = ∅ and tp(D, 0) = ∅ if D 6= ∅. If D 6= ∅, then
tp(D,m+1) is the set of those nodes v ∈ U such that, writing
Cn(v) = {Σ1, . . . ,Σn}, we have L(v) = {w1, . . . , wn} where
for each i there exists Γ ∈ Σi such that
• l(wi) `PL Γ and



• wi ∈ tp(D′,m) for some D′ ⊆ D(wi) with D′ `wi

K(D, v,Γ).
If for each node v ∈ U there is a number m such that v ∈
tp(D(v),m), then L is a tableau.

Roughly, tp(D,m) can be understood as the set of all nodes
in U that finish all deferrals in D within m modal steps.

Lemma 37 (Tableau existence). There exists a tableau L over
a carrier W of size at most |φ0| · 4|φ0|.

Proof (sketch): In a first step, we define a notion of
focussed timed-out DAGs GeN = (W e

N, L
e
N) for eventuali-

ties e ∈ evs . The set W e
N consists of nodes of the form

(v,D,m) where D ⊆ D(v) is a set of e-deferrals, the focus,
and v ∈ V ∩ f̂mD (ES); the number m is called the time-
out. The successor relation LeN relates (v,D,m) to nodes
(w1, D

′
1,m−1), . . . , (wn, D

′
n,m−1) essentially ensuring that

(v,D,m) ∈ tp(D,m) in notation as in Definition 36. Nodes
with empty focus are frontier nodes. We show that for each
e ∈ evs , a focussed timed-out DAG GeN can be extracted
from V .

We next eliminate the time-outs by picking, for each (v,D),
the node (v,D,m) with the smallest time-out, i.e. finishing its
focus as quickly as possible. We thus obtain for each e ∈ evs a
focussed DAG Ge = (W e, Le), with nodes of the form (v,D).

We combine the focussed DAGs into a tableau (of the
claimed size) by fixing a cyclic ordering of evs , and attach-
ing in place of each frontier node (w, ∅) in Ge the node
(w,D(w) ∩mdfr(e′)) in Ge

′
for the next eventuality e′; this

is similar to the original construction for CTL [19], [17].

Example 38. Consider the CTL-formula ψ = G1 ∧G2 ∧G3

(writing �,♦ for AX,EX for brevity) where

G1 = AGF1 G2 = AGF2 G3 = AGφ

F1 = AF (p ∧�]) F2 = AF (q ∧�])
φ = ¬(] ∧ p) ∧ ¬(] ∧ q) ∧ ¬(p ∧ q),

interpreted as usual over serial frames (i.e. coalgebras for the
non-empty powerset functor), which means that we regard
every sequent as implicitly containing ♦> (causing additional
matches to Rule (1)). The algorithm constructs the following
circular satisfiability proof, where Γ := �G1,�G2,�G3, φ
and where we indicate several consecutive applications of rules
from a set R by writing (R)∗:

G1 ∧G2 ∧G3
(∧, ν, µ)∗

Γ, (p ∧�]) ∨�F1, (q ∧�]) ∨�F2 := Γψ
(∨,∧)∗

Γ, p,�],�F2 := Γp
(♦)

ψ, ], F2
(∧, ν, µ)∗

Γ, ],�F1,�F2 := Γ]
(♦)

ψ, F1, F2
(∧, ν)∗

Γψ

Γ, q,�],�F1 := Γq
(♦)

ψ, ], F1
(∧, ν, µ)∗

Γ]
(♦)

...

Let S denote the set of labels of this proof and note that
ES = S. For instance, Γψ ∈ f̂n{F1,F2}(ES) for some n (namely,
n = 24): Starting from Γψ , it is possible to first reach Γ] via

Γp (while finishing F1), pass Γψ a second time and then finally
branch right at the disjunction to reach Γq (and finish F2).

We represent the relevant structure of the satisfiability proof
in abstracted form as follows (where Γp,Γq and Γ] are state
nodes):

Γψ

Γp Γq

Γ]

(∨) (∨)

(♦) (♦)

(♦)

We write deferrals in abbreviated form for the remainder of
this example, e.g. �F1 denotes the deferral (�X,F1). The
timed-out focussed DAG GF1

N is extracted from this structure
as follows. The set WF1

N consists of nodes (Γt, ∅, i) for t ∈
{p, q, ]}, i ∈ N, as well as (Γq, {�F1}, i) where Γq ∈ f̂ i{�F1}
and (Γ], {�F1}, j) where Γ] ∈ f̂ j{�F1}. The structure LF1

N
contains transitions from (Γq, {�F1}, k) via (Γ], {�F1}, l) to
(Γp, ∅,m) for suitable k > l > m. The focussed DAG GF1

is obtained by selecting the nodes with the minimal time-out
from V F1

N , and has the shape

(Γq, {�F1})→ (Γ], {�F1})→ (Γp, ∅).

Similarly, GF2 has the shape

(Γp, {�F2})→ (Γ], {�F2})→ (Γq, ∅).

Finally we combine the two DAGs to obtain a tableau. Transi-
tions to nodes with empty focus are replaced by transitions to
nodes with the same label but a new focus, i.e. the transitions
(Γ], {�F1}) → (Γp, ∅) and (Γ], {�F2}) → (Γq, ∅) are
replaced by (Γ], {�F1})→ (Γp, {�F2}) and (Γ], {�F2})→
(Γq, {�F1}), respectively, as indicated by the dashed arrows
in the depiction of the tableau.

(Γq, {�F1})

(Γ], {�F1})

(Γp, {�F2})

(Γ], {�F2})

This is indeed a tableau; e.g. for the node u = (Γ], {�F2})
we have u ∈ tp(D(u), n) = tp({�F1,�F2}, n) for n = 3:
We have a transition from u to v = (Γq, {�F1}); note
that Γq propositionally entails the conclusion of the single
rule application to Γ] and moreover finishes F2, so it re-
mains to show v ∈ tp({�F1}, 2). We continue with two
transitions via (Γ], {�F1}) (omitting details for this node)
to w = (Γp, {�F2}), where the last node finishes also F2; that
is, we end up having to show w ∈ tp(∅, 0), which holds by
definition of tp.

We fix a tableau L ⊆W×W , and proceed to build a coalgebra
over W . We intend that every state in this coalgebra satisfies



the formulas from its label, so we define a notion of intended
extension of formulas:

Definition 39 (Pseudo-extension). The pseudo-extension [̂[φ]]
of φ in W is

[̂[φ]] = {v ∈W | l(v) `PL φ}.

We extend this to sets Ψ of formulas by [̂[Ψ]] =
⋂
ψ∈Ψ [̂[ψ]].

The key condition bridging between tableaux and models is a
strengthened form of coherence w.r.t. modal operators [32]:

Definition 40 (Strong coherence). A T -coalgebra (W, ξ) is
strongly coherent if for all ♥φ ∈ F , v ∈W , with Cn(l(v)) =
{Σ1, . . . ,Σm} and L(v) = {w1, . . . , wm} as in Definition 36,

♥φ ∈ l(v) implies ξ(v) ∈ [[♥]]([̂[φ]] ∩ L(v)♥φ)

where

L(v)♥φ = {wi | ∃Γ ∈ Σi. wi ∈ [̂[Γ]],Γ ∈ Recm(φ,♥φ, v)}.

(Plain coherence requires only ξ(v) ∈ [[♥]][̂[φ]].)

Lemma 41 (Strong existence lemma). Let L be a tableau.
Then there exists a strongly coherent coalgebra over L.

The proof of the strong existence lemma relies on one-step
tableau completeness.

We fix a strongly coherent coalgebra C = (W, ξ), and show
that in C every state satisfies the fixpoint literals that it claims
to satisfy. This is easy for greatest fixpoints, and uses induction
over the construction of the tracking proof transitionals for
least fixpoints.

Definition 42 (Respect). A formula ψ is respected if ̂[[ηX.ψ]] ⊆
[[ηX.ψ]] for each fixpoint literal ηX.φ ≤ ψ.

Lemma 43. Let ψ ∈ F be respected. Then [̂[ψ]] ⊆ [[ψ]],
̂[[νX.ψ]] ⊆ [[νX.ψ]], and ̂[[µX.ψ]] ⊆ [[µX.ψ]].

Proposition 44. Every fixpoint literal is respected.

From this, the truth lemma is immediate:

Lemma 45 (Truth lemma). [̂[ψ]] ⊆ [[ψ]] for each ψ ∈ F .

Corollary 46 (Completeness). If a run of Algorithm 26 with
input φ0 returns ‘Yes’, then φ0 is satisfiable.

The model construction moreover implies a bound 2O(n) on
model size, the same as for CTL [17]:

Corollary 47. Every satisfiable flat fixpoint formula φ0 has a
model of size at most |φ0| · 4|φ0|.

The best previous bound known for ATL was nO(n) =
2O(n logn) [18].

VI. COMPLEXITY

As the global caching algorithm constructs only subsets of
the Fischer-Ladner closure FL(φ0), it runs only through at
most exponentially many iterations. Similarly, the propagation
steps involve only exponentially many iterations in fixpoint

computations. The algorithm therefore runs in EXPTIME under
mild assumptions on the set of modal rules – in fact, the
same assumptions as used in previous work on reasoning in
EXPTIME-complete coalgebraic logics [26], [27] (and very
similar ones as in work on reasoning in PSPACE-complete
ones [32], [37]). We assume a reasonable size measure on
Λ inducing a representation size of formulas and sets of
formulas for purposes of measuring the input size for the
satisfiability problem. In particular we assume that numbers in
probabilistic operators are coded in binary (the more stringent
assumption compared to unary coding, as we are aiming for
upper complexity bounds). The key requirement on the rule
set is, then, that all rule matches to a given sequent can be
represented by polynomially large codes, formally (rewording
the exact conditions slightly in comparison to previous work):

Definition 48. The set R of modal rules is EXPTIME-
tractable if there exists a coding c of rules (Γ0/Γ1 . . .Γn) as
strings c(Γ0/Γ1 . . .Γn) over some alphabet with the following
properties. First, there exists a polynomial p such that for
all P -sequents Γ, all rules (Γ0/Γ1 . . .Γn), and all injective
renamings σ such that Γ0σ ⊆ Γ,

|c(Γ0/Γ1 . . .Γn)| ≤ p(|Γ|)

(where | · | denotes string length on the left). Moreover,
we can extract rules from codes in exponential time, and
given (Γ0/Γ1 . . .Γn) and a P -sequent Γ, we can compute,
in exponential time, all injective σ such that Γ0σ ⊆ Γ.

For all of our examples, EXPTIME tractability has been
established in previous work [32]; in most cases, it is a purely
bureaucratic condition. E.g. for the relational µ-calculus, we
can just code Rule (1) as itself. The only case in which
tractability of the rule set is an actual issue is probabilistic
fixpoint logic (Example 4.2); here, tractability relies on size
bounds on solutions of linear inequalities [32].

Theorem 49. If R is EXPTIME-tractable, then Algorithm 26
decides the satisfiability problem of the associated flat coalge-
braic µ-calculus in EXPTIME.

This bound is tight in all our example logics, i.e. the global
caching algorithm has optimal complexity.

VII. CONCLUSION

We have presented a generic tableau method for flat coalgebraic
µ-calculi that is single-pass and optimal, and supports global
caching. Its main benefit is that it offers the chance of closing
tableaux early, avoiding exponential run time in good cases.
Our generic results instantiate to new algorithms for the flat
fragments of the relational µ-calculus, probabilistic fixpoint
logic, the alternating-time µ-calculus, and the monotone µ-
calculus. Even for fragments of these such as CTL and
alternating-time temporal logic ATL, our algorithm yields, to
our best knowledge, the first time-out-free optimal single-pass
decision procedure.



Future work concerns proof-theoretic consequences of our
results in a dual sequent calculus, as well as the implementation
of the algorithm within the coalgebraic reasoner COOL [40].
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Foundations of Software Science and Computation Structures, FoSSaCS
2009, ser. LNCS, vol. 5504. Springer, 2009, pp. 137–151.
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