
First Results of a Formal Analysis
of the Network Time Security Specification

Kristof Teichel1(B), Dieter Sibold1, and Stefan Milius2

1 Physikalisch-Technische Bundesanstalt, Bundesallee 100,
38116 Braunschweig, Germany

{kristof.teichel,dieter.sibold}@ptb.de
2 Chair for Theoretical Computer Science, Friedrich-Alexander Universität

Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany
stefan.milius@fau.de

Abstract. This paper presents a first formal analysis of parts of a draft
version of the Network Time Security specification. It presents the proto-
col model on which we based our analysis, discusses the decision for using
the model checker ProVerif and describes how it is applied to analyze
the protocol model. The analysis uncovers two possible attacks on the
protocol. We present those attacks and show measures that can be taken
in order to mitigate them and that have meanwhile been incorporated
in the current draft specification.
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1 Introduction

In networked infrastructures, time synchronization protocols are often used to
synchronize clocks. Many technical infrastructures require reliable time synchro-
nization. Therefore, it is essential to be able to secure time synchronization
from malicious attacks. One approach in this area is the Network Time Security
(NTS) specification [29], which aims to provide sufficiently generic mechanisms
to secure two of the most important time synchronization protocols: the Network
Time Protocol (NTP) [21] and the Precision Time Protocol (PTP) [14]. Since
the NTS specification is still under development, it is beneficial to apply some
form of formal protocol analysis. This might serve to find weaknesses which still
exist, as well as to establish which of its components can already be considered
secure.

It has been asserted that the difficulty of the formal analysis of a security
protocol increases with its dependence on timing [3,4,12]. This is even more
the case for NTS, which not only depends on timing, but it additionally distin-
guishes itself from other timing-dependent security protocols because the under-
lying secured time synchronization protocol actively influences the clocks of its
participants. A thorough analysis has to take into account the impact of timing
on the security properties of the specification.
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In this paper, we limit the scope and present the first steps in the analysis
of NTS, namely an evaluation of parts of the specification with timing aspects
abstracted away. For the analysis, we apply the model checker ProVerif [6] to
analyze version 03 of the NTS specification. This unveils two possible attacks.
The corresponding vulnerabilities have been removed in the next version of the
NTS specification.

The paper is organized as follows. Section 2 provides an overview of the role
of timing in the context of secure time synchronization. Furthermore it discusses
criteria for different stages of analysis of secure time synchronization specifica-
tions, explaining our chosen scope, and it illuminates the choice of the model
checker ProVerif as the formal analysis tool for the particular context of this
paper. In Sect. 3, we introduce the notation and modeling assumptions that
are required for the rest of the paper. Section 4 provides some background on
the NTS specification, and presents the protocol steps that are modeled for
our analysis. Section 5 describes the resulting model for ProVerif. The obtained
results (attacks and countermeasures) are discussed in Sect. 6, and Sect. 7 con-
cludes the paper.

2 Security for Packet-Based Time Synchronization

2.1 Time Synchronization Methods

Figure 1 displays a two-way time transfer message exchange that a client (Alice)
and a server (Bob) can use to achieve clock synchronization. At time t1, Alice
initiates a time request message (a) to Bob, where it arrives, after a delay of ξδ,
at time t2. At time t3, Bob sends his time response (b) back to Alice, where it
arrives after a delay of (1− ξ)δ, at time t4. The timestamps T1, . . . , T4 are added
to the exchanged messages by Alice and Bob respectively.1 Upon arrival of the
time response, Alice can calculate her time offset Δ with respect to Bob and the
network round-trip delay δ to

Δ =
(T1 + T4) − (T2 + T3)

2
+

(

ξ − 1
2

)

δ, 0 < ξ < 1 , (1)

δ = (T4 − T1) − (T3 − T2) , (2)

where δ denotes the round-trip travel time and the asymmetry parameter ξ
quantifies the degree of asymmetry in the travel time between the time request
and time response messages [16]. Without specific knowledge about the network
infrastructure components on the path between Alice and Bob the asymmetry
parameter is a priori unknown. Hence, in most cases symmetric message delays
are assumed, i. e. ξ = 0.5. In this case, the second term in the right-hand side
of (1) vanishes and Alice can calculate the time offset Δ. Since the ratio between
the message delays is important for the time offset calculation, the cryptographic
means employed by any security specification must not unduly influence the
asymmetry parameter ξ [22].
1 Timestamp Ti corresponds to the reading of the respective system clock at time ti.
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Fig. 1. This is a schematic depiction of a two-way time transfer message exchange that
is used for unicast time synchronization between two participants. In the depiction, δ
denotes the round-trip time of the complete message exchange and ξ, with 0 < ξ < 1,
quantifies its asymmetry.

There is also a necessity of considering attacks on the timeliness of the
exchanged messages, most importantly delay attacks (also called “pulse delay
attacks”) [11,22]. This kind of attack is characterized by the fact that an adver-
sary can delay the delivery of a message, by first preventing it from being deliv-
ered and later replaying it. Such an attack degrades the performance of the time
synchronization, it is very simple to perform, and it is not preventable by purely
cryptographic means since the content of the exchanged messages does not have
to be modified by the adversary [22].

2.2 Criteria for Different Stages of Analysis

We first discuss the criteria underlying the choice of methods and tools for our
analysis. It is highly desirable that a full evaluation of a secure time synchroniza-
tion protocol such as NTS-secured NTP take into account clocks and time as well
as properties of cryptographic security protocols. Not only does the information
transmitted by the time synchronization protocol concern time data, but the
protocol’s purpose is to achieve time synchronization. Consequently, the amount
of time that it takes for messages to be transmitted is important. Furthermore,
time and clock information is relevant for the TESLA protocol [25], which is
employed in the NTS specification for broadcast/multicast messages to ensure
integrity protection. As a consequence, there is complex interaction between the
synchronization operations that the time synchronization protocol performs and
the security measures that it uses. All this indicates that the methods and tools
used for the analysis of a specification like NTS should ideally be able to con-
sider the notion of time and clocks. Also, the model for time and clocks should
be as detailed as possible, without compromising the automated analysis of the
model.

stefan.milius@fau.de



First Results of a Formal Analysis of the Network Time Security 221

However, for parts of the NTS specification, a clean distinction between
timing and security-related properties is possible. Specifically, the majority of
goals for the unicast mode of NTS, including server authentication, secure key
exchange, and integrity protection of time synchronization messages, can be
evaluated without considering time or clocks as a part of the model. An analysis
using this self-contained scope can already be regarded as a substantial step in
the analysis of the whole protocol.

The analysis in this paper was performed at an early stage of the specification
process of NTS [29, version 03]. At such a stage, an important criterion is that
the methods and tools used for the analysis can find existing weaknesses quickly
and point them out clearly. In this case, the specification efforts can benefit from
the results of a formal analysis, if the analysis unveils security vulnerabilities
in the specification which subsequently can be communicated and considered for
the next redrafting of the specification.

These considerations lead us to present an analysis of the unicast mode of
NTS, with all of its timing and clock aspects abstracted away, matching the
above-mentioned self-contained scope. Since this scope does not require consid-
eration of timing or clocks, the ability to do so can be neglected as a require-
ment in the choice of methods and tools. We are aware that with this scope,
the detection of delay attacks is not possible. The more intricate interactions
between cryptographic security and timing would have to be included for a full
evaluation of NTS. For such a full evaluation, one could also include an analysis
of the broadcast mode of NTS. Further research in that direction is in progress
and will be published at a later time [19].

2.3 Choice of Tool for the Analysis

Several approaches are available to perform a formal analysis of a security pro-
tocol, the most established being theorem proving and model checking [1]. We
first applied Paulson’s Inductive Approach [24] for our analysis of NTS. This
approach is based on theorem proving and works with the theorem proving tool
Isabelle [23]. Using it was motivated, inter alia, by developments which permit
physical properties to be considered, especially timing and clocks [4]. Being based
on theorem proving, the approach has the drawback that failure to construct a
security proof is inconclusive. The reason might either be that the proof is too
difficult to find, although the investigated specification is secure, or it might
be that the specification is simply not secure. Although counterexample finders
exist for Isabelle [7], we were unable to obtain any attack traces for our analy-
sis with the help of such tools. This potential ambiguity is not suitable if the
analysis shall support the ongoing drafting process of the considered security
specification. Moreover, we found that the pace at which this approach delivers
results is slow, at least for non-experts in theorem proving.

The model checking approach offers faster and easier ways to identify vul-
nerabilities in protocol specifications. With regard to the scope discussed in
Subsect. 2.2, we base our formal analysis in this paper on model checking by
applying the designated protocol verifer ProVerif [6], which applies a variant of
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the applied π-calculus with support of types [2,27] as its input language. Note
that ProVerif does not support consideration of time and clocks for modeling:
although there are time and clock related extensions of the π-calculus [28], none
of them are applicable within ProVerif. Note also that it is impossible to simply
reproduce the timing-related extension of the Inductive Approach for use with
ProVerif. Its lack of support for time and clock consideration would constitute
a serious disadvantage of using ProVerif for a full evaluation of NTS. However,
for the scope as described in Sect. 2.2 this is negligible, especially since ProVerif
fulfills the other criterion very well: it is tailored to be a verification tool for
security protocols and offers help in the detection of attack scenarios. Since our
results could readily be obtained with ProVerif, we did not investigate the use
of other protocol verifiers such as Scyther [8] and Tamarin [18].

3 Basic Assumptions and Protocol Notation

In this section we establish assumptions to simplify the considered model and
introduce the essential notation.

Assumption 1. There is exactly one trusted entity, called Trent. Every agent
knows Trent’s identity, as well as his public key KT . Every honest agent trusts
Trent completely. Certificates (see the list of cryptographic operators below)
signed by Trent are assumed to authenticate agents beyond any doubt. In short
form, Trent is denoted as T .

Remark 2. For the model, it is a helpful simplification to leave out any inter-
mediate certificates. Therefore, certificate chains that certify an agent X and
have Trent as their root authority are seen as equivalent to a certificate for X
signed directly by Trent.

Assumption 3. There is exactly one attacker, called Mallory.2 She complies
with the Dolev-Yao attacker model [9], which means that she “controls the net-
work.” Explicitly, this means that the attacker has the following capabilities:

– She overhears and intercepts any message sent on the network. In particu-
lar, this also means that she can choose to prevent any message from being
delivered in its original form.

– She can send messages to any agent on the network, claiming to possess any
identity she chooses.

– She can synthesize messages by:
• inventing new values (it is, however, out of her power to guess secret values

like keys or nonces),
• assembling multiple values known to her into a tuple value,

2 The assumption that there is only one attacker is made for simplification. The
assumed situation is equivalent to a situation where several attackers are cooper-
ating, or to a situation where one attacker is being helped by one or more dishonest
agents, see Reference [32].
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• disassembling any tuple value that she knows into its single component
values,

• applying any operator to any value known to her, possibly using any keys,
as long as they are also in her knowledge.

In short form, Mallory is denoted as M .

Remark 4. Note that the Dolev-Yao model assumes cryptographic operations
to be unbreakable. Thus, although the attacker can claim any chosen identity
on a network level, it is still possible to verify authorship of a message by cryp-
tographic means, through appropriate use of secrets.

Notation 5. For convenience and readability, we often use the following “box
notation”. Concatenation in box notation is displayed by writing the concate-
nated messages below each other in one box, separated by a dashed line; for

example, the concatenation of values x1 and x2 is expressed as
x1

x2
. The box nota-

tion displays use of cryptographic operators as follows. The expression Op
〈

x
evaluates to Op(x), where Op can be any one of the cryptographic operators
presented below, and where x is usually a concatenated term.

Notation 6. We now provide some notation on cryptographic operators as used
in the further presentation of the protocol. Note that a term inside square brack-
ets [ ] generally denotes a key.

– The expression Enc[K](m) stands for the ciphertext that results from using
asymmetric cryptography to encrypt the message m with the key K.

– Following the notion of asymmetric cryptography, it is assumed that for
every key K, there exists an inverse key K−1, such that both of the equa-
tions Enc[K−1]

(

Enc[K](m)
)

= m and Enc[K]
(

Enc[K−1](m)
)

= m are
satisfied.

– The expression Sign[K](m) evaluates to Sign[K](m) = Enc[K−1](m), which
describes the signature of the message m created in such a way that it can be
validated with the key K.

– The expression CertX evaluates to CertX = Sign[KT ]
〈 X

KX
, which represents

the certificate for X’s public key KX , issued by Trent.
– It is assumed that all participants have agreed to use a fixed cryptographic

hash function h.3 For a given key value K and message m, the expres-
sion HMAC[K](m) stands for the keyed-hash message authentication code
computed over m, with K as key and h as the cryptographic hash function,
as defined in RFC 2104 [15].

3 Note that the NTS specification includes negotiation of hash functions as part of the
protocol. However, as stated under Assumption 3, all cryptography is assumed to be
unbreakable. Therefore, algorithm negotiation has been ignored for our analysis. It
might be interesting to include these steps in future analysis, to look for downgrade
attacks.
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– The expression SeedX represents an agent X’s seed, a random secret value
that is known only to X.

– The expression CookX(v) evaluates to CookX(v) = HMAC[SeedX ](v), which
represents the cookie that agent X generates, using its own secret seed as well
as the given input value v.

4 The Protocol Steps Under Analysis

4.1 The Network Time Security Project

The Network Time Security (NTS) specification aims at secure time synchroniza-
tion over networks like the Internet. It is motivated by the fact that neither of
the predominant time synchronization protocols, in particular the Network Time
Protocol (NTP) [21] and the Precision Time Protocol (PTP) [14] currently pro-
vide adequate security mechanisms (see, e.g., Reference [26] for an analysis of the
NTP’s most current security measure, the Autokey protocol [20]). It has the goal of
being usable to secure at least those two protocols [29]. Currently the specification
is in the standardization process in the Internet Engineering Task Force (IETF).

Time synchronization in NTP unicast mode is secured via a secret value
(called “cookie”) which is unique for each client-server association. The nature
of this cookie is such that the server can always deterministically re-generate it
from an input value given by the client, while the client simply memorizes it. It is
used as a key for generating a keyed-hash message authentication code (MAC) for
each time synchronization response message going from the server to the client.
Under the requirement that the cookie has been exchanged securely (its secrecy
and authenticity need to be guaranteed), this procedure shall give authenticity
and integrity guarantees for the time synchronization response messages. Having
cookie and MAC generation based on keyed-hash mechanisms shall keep these
steps fast enough to not significantly influence the quality of time synchroniza-
tion [29].

4.2 Overview of the Protocol Sequence

We now describe the protocol messages and the protocol sequence. We present
the protocol steps as specified in the NTS draft version 03, which constitutes
the basis for the verification described in this paper. We only present those
messages that are relevant for the scope of our analysis here. Furthermore, as
discussed in Sect. 2.2, we abstract away any timing and clock aspects of the
message exchanges that are presented.

The certification message exchange serves to supply the client Alice with
the server Bob’s certificate. The message exchange proceeds according to the
protocol steps depicted in Table 1.

After the message exchange, Alice performs two checks. First, she verifies
the validity of CertB . Second, she verifies the validity of the included signature.
If all of this is successful, Alice trusts any subsequent message if it contains a
signature that she is able to verify as originating from Bob.
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Table 1. (Certification) These are the two message formats used for transmitting
the certificate for server Bob (B) to client Alice (A) according to protocol version 0.3.0.

Name Direction Contents

client cert A → B : A

server cert B → A :
Sign[KB ](A)

CertB

The cookie establishment message exchange establishes the shared secret
called the cookie, which is calculated by the server (deterministically and based
on data supplied by the client) and then securely transmitted back to the client.
The message exchange is performed according to the steps visible in Table 2.

After the message exchange, Alice decrypts the received response, and then
performs two checks on the encrypted data. First, she validates that the nonce
included in the response is the same one that she included in her request. Second,
she confirms the validity of the signature included in the response. If all of this is
successful, Alice trusts any subsequent message if it contains a MAC calculated
with the cookie she received via this message exchange.

The purpose of the unicast time synchronization message exchange is
to perform the actual time synchronization. Security is based on the secret
cookie, which must be exchanged prior to this message exchange (via a cookie
establishment exchange). The time synchronization message exchange follows the
steps listed in Table 3, where SA and SB denote the time synchronization data
transmitted by the client and the server, respectively. Note that with respect to
the unicast time synchronization procedure described in Sect. 2 (see Fig. 1), SA

includes a timestamp of t1, whereas SB includes timestamps of t1, t2 and t3.
After the message exchange, Alice performs two checks on the response. First,

she validates that the nonce included in the response is the same one that she
included in her request. Second, she confirms the validity of the MAC included
in the response. If all of this is sucessful, Alice uses the received time data SB

for time synchronization.

5 Performing the Analysis

In order to use ProVerif for analysis of the NTS protocol, we model its par-
ticipant roles (client and server) as processes in ProVerif’s input language. The
resulting specification is fed into ProVerif, which is able to analyze the protocol
and prove reachability properties, correspondence assertions, as well as observa-
tional equivalence [6]. Note that having ProVerif check any single goal and, if
applicable, generate an attack trace took merely a few seconds on a standard
laptop computer.4

4 The computer was running a 64 bit version of Windows 7 on an Intel i5 dual core
at 2.6 GHz, with 8GB of RAM.
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Table 2. (Cookie Exchange) These are the two message formats used for the
cookie exchange between client Alice (A) and server Bob (B) according to protocol
version 0.3.0.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A : Enc[KA]

N

CookB(h(KA))

Sign[KB ]
N

CookB(h(KA))

Table 3. (Unicast Time Synchronization) These are the two message formats used
for synchronizing the clock of client Alice (A) with that of server Bob (B) according
to protocol version 0.3.0.

Name Direction Contents

time request A → B :

SA

N

h(KA)

time response B → A :

SB

N

HMAC[CookB(h(KA))]
SB

N

ProVerif allows the user to specify so-called “queries”, which can be used
to specify the required protocol goals (Reference [6, Sect. 2] provides a short
introduction to how ProVerif interprets queries). When a goal has been specified
in this way, ProVerif can look for a protocol state which violates the condition
corresponding to that goal. It can then return one of three possible results:

– There is no state which violates the goal condition.
– A state could be constructed which violates the given goal condition. In this

case, ProVerif shows a trace of events leading to that state. The violation of
the given condition might represent a viable attack on the protocol but it
might also uncover an error in the model underlying the ProVerif code.

– ProVerif cannot prove that the goal is correct but it cannot construct a state
violating the goal condition either.
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The last case can occur because ProVerif works on an over-approximation of the
state space of the input specification. Thus, ProVerif may find a state that vio-
lates the goal condition but that is not part of the state space of the input specifi-
cation. Over-approximation is unavoidable since the decision problem underlying
ProVerif is known to be undecidable [10] (however, it is of course semi-decidable).
See Reference [6, Sect. 3.3.1] for some more details on the different possible results
and how to interpret them, in particular for the third of the above cases.

We now provide an overview of how client and server are modeled in ProVerif.
The ProVerif code relevant to the model of the originally analyzed version can
be seen in AppendixA). Alternatively, the full code for use with ProVerif can
be downloaded under https://www8.cs.fau.de/staff/milius/ProVerif-NTS.rar. The
client is modeled via two ProVerif processes:

– The inner client process performs, exactly once, the message exchange of
the time synchronization phase.

– The outer client process runs through the appropriate message exchanges
for certificate exchange and cookie establishment exchange in chronological
order. When this is done, it ultimately starts a bulk of “infinitely many”
iterations5 of the inner client process running in parallel.

Accurately modeling the server is more complex than modeling the client.
This is a consequence of the fact that the server is required to be stateless (except
for the global server seed which is client independent). Nevertheless, the server
must be able to reply at any time to any of the specified protocol messages,
for an arbitrary number of clients. In the model, this is achieved by having one
process type for each possible message exchange and running all of these process
types in parallel, each with “infinitely many” iterations.

Consequently, the server is modeled via the following ProVerif Processes:

– There are three inner server processes, which perform the respective mes-
sage exchanges for certification, cookie exchange, and time synchronization.

– The outer server process just starts “infinitely many” iterations of each of
the inner processes, all running in parallel.

6 Results of the First Analysis

In the course of the analysis, two attacks were discovered by checking the protocol
goals, listed below as Goals 7–9, with ProVerif. The first discovery is an attack
detected by ProVerif mostly due to imprecision in the model underlying the
code version c030ut, which was used at the time. This version does not support
enough types to distinguish between a single hostname, on the one hand, and a
complex structure of arbitrarily many arbitrary data types, on the other hand.
The second (and more practically relevant) discovery is a Man-in-the-Middle
attack. It exploits the fact that in NTS, as specified in reference [29, version 03],
5 Having “infinitely many” iterations is what is modeled for the analysis. In practice,

this will obviously be a finite number.
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a client Alice is given no indication as to whether a cookie has been generated
based on her own public key or someone else’s.

The goals for this analysis were derived during development of the specifi-
cation of the protocol, an unusual situation which is due to the fact that the
analysis was performed by people who were also authors of the specification. The
analysis with ProVerif also involved checks for protocol sanity goals, e. g. that
it is possible for the protocol to finish successfully, i. e. with the client accepting
some time synchronization data. It additionally involved a weak authenticity
goal for the cookie exchange (a weaker version of Goal 9 listed below), but this
was only helpful to the extent that it pointed toward the improtance of Goal 8.
The ProVerif source code for the queries associated with all of the mentioned
goals can be inspected in AppendixA.8. We do not discuss the sanity goals or the
weak authenticity goal in more detail, as they do not contribute essential results
for the analysis. Instead, we now present the specific security goals directly rel-
evant for this analysis. The first of these goals is the one that represents the full
extent of positive security affirmation that our analysis can provide. Both of the
attacks that were found lead to a violation of this goal.

Goal 7 (Time Synchronization Authenticity). If Alice accepts the data
from a time response message as authentic from Bob, then Bob has indeed sent
a time response message with the same time data and the same nonce, secured
with the correct cookie for the association between Alice and Bob.

We now present two intermediary security goals which aid with getting more
specific information about the nature of the attacks. Both of these goals are
necessary preconditions for Goal 7, since the integrity of time synchronization
messages depends on the cookie being shared securely between Alice and Bob.

Goal 8 (Cookie Secrecy). If Alice accepts a cookie C from a server cook
message as being legitimate, then C is unknown to Mallory.

Goal 9 (Cookie Authenticity). If Alice accepts a cookie C from a server cook
message as being legitimate for her association with Bob, then Bob has indeed
sent a server cook message in which he has transmitted C and which he has
intended for Alice.

We now describe the first of the two attacks that were discovered. This attack
violates even the very specific Goal 9, which gives a hint about the underlying
weakness: this is not an attack where a legitimate cookie is spied upon, but where
a completely new cookie is invented and Alice is deceived into accepting it.

Attack 10. ProVerif discovered an event trace which violated Goal 9 as well as
Goal 8. From that trace, the following attack scenario could be derived:

– Mallory intercepts a client cook message CC1 containing a nonce N .
– She memorizes both values and prevents the message from being delivered in

its original form.
– She invents some cookie value X and concatenates it with N .
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– She sends a client cert message to the server Bob, which instead of her
name M (see the appropriate message diagram for client cert in Sect. 4) con-

tains the concatenated value
N
X

.

– The server sends the appropriate server cert message back to Mallory. It con-
tains two values: Bob’s certificate, which is irrelevant, and additionally a sig-

nature Sign[KB ]
〈

N

X
, which Mallory memorizes.

– Mallory then employs concatenation of values known to her as well as encryp-
tion under Alice’s public key to create a server cook message SC3 which reads

Enc[KA]

〈

N

X

Sign[KB ]
〈

N

X

.

– She sends SC3 back to Alice, who decrypts it, validates the nonce and sig-
nature, and finally accepts the cookie X as the legitimate cookie sent to her
from Bob.

As mentioned before, this attack works only if Bob does not recognize when
a client cert message contains the concatenation of a nonce and a cookie-length
value instead of a hostname. Under this assumption, anyone can get a signature
from an arbitrary server for an arbitrary message by abusing the certification
message exchange. However, this is unlikely in any practical implementation.

Countermeasure 11. The introduction of proper identifiers for the different
message components completely defeats this attack. Successful ProVerif verifi-
cation, performed on a more strongly typed model, supports this, as at least
Goal 9 has been shown to hold there.6

In the following we describe the second of the two revealed attacks.

Attack 12. ProVerif discovered an event trace in which Goal 8 (Cookie Secrecy)
was violated. From this trace, the following attack scenario could be deduced:

– Mallory intercepts a client cook message CC1 containing a nonce N and
Alice’s public key KA.

– She memorizes both values and prevents the message from being delivered in
its original form.

– She creates a new client cook message CC2 by concatenating the received
nonce N with her own public key KM .

– She sends this newly created client cook message CC2 to the server Bob.
6 The reason why Goals 7 and 8 do not hold for this model is that Countermeasure 11

only defends against Attack 10, not against Attack 12.

stefan.milius@fau.de



230 K. Teichel et al.

– Bob sends back the server cook message SC1, which has the format

Enc[KM ]

〈

N

CookB(h(KM ))

Sign[KB ]
〈

N

CookB(h(KM ))

,

which can hence be decrypted by Mallory and which contains a cookie and
a valid signature confirming that Bob has created and sent this cookie as an
answer to the request with nonce N .

– Mallory intercepts SC1 and may prevent it from being delivered in its original
form. She decrypts it and then instantly re-encrypts it with Alice’s public
key KA, resulting in a new server cook message SC2.

– She sends SC2 to Alice, who decrypts it, validates the nonce and signature,
and finally accepts the cookie CookB(KM ) as the legitimate cookie sent to
her from Bob.

As mentioned above, the given attack is only viable due to the following two
reasons:

1. On receipt of a server cook message, it is impossible for anyone to know
which public key was used as input value for the generation of the given
cookie (because of the one-way property of HMAC and the secrecy of the
server seed).

2. On receipt of such a message, it is also impossible for anyone to know for
whom the message was originally encrypted (since decrypting and then re-
encrypting a message leaves no trace).

The reasons above are interdependent, because an honest server like Bob
will always encrypt a server cook message with exactly the same public key
upon which the generation of the cookie included in that message is based.
We provide two possible countermeasures against Attack 12, both supported by
ProVerif validations.

Countermeasure 13. The simple addition of the input value used for the
cookie generation into the set of values covered by the signature prevents the
described attack. This measure was taken for model version 0.3.1 of the proto-
col. The resulting message format for server cook can be seen in Table 4. With
the ProVerif model updated accordingly, Goal 8 and even Goal 7 can be verified
to hold.

Countermeasure 14. An alternate countermeasure is to switch the order of
encrypting and signing for the server cook message to encrypting first, then
signing. This measure was taken for model version 0.3.2 of the protocol. The
resulting message format for server cook can be seen in Table 5. Goal 8 and also
Goal 7 can then be verified to hold for an accordingly updated model of the
protocol.
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Table 4. These are the two updated message formats used for the cookie exchange
between client Alice (A) and server Bob (B) according to protocol version 0.3.1.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A : Enc[KA]

N

CookB(h(KA))

Sign[KB ]

N

CookB(h(KA))

KA

Table 5. These are the two message formats used for the cookie exchange between
client Alice (A) and server Bob (B) according to protocol version 0.3.2.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A :

Enc[KA]
N

CookB(h(KA))

Sign[KB ] Enc[KA]
N

CookB(h(KA))

Countermeasure 14 has some small advantages over Countermeasure 13: it is
simpler to include in a specification, and it also has the benefit that an invalid
signature can be detected at a slightly lower computational cost, because no
decryption operation is necessary in order to obtain the signature value.

7 Conclusion

We have used ProVerif for the analysis of an early version of the NTS specifica-
tion. We were able to discover considerable weaknesses in draft version 03 of the
specification. Those discoveries were considered in the further development NTS
and by version 04, the specification was updated [29, Version 04, Sect. 6.3.2]
with a measure conforming to Countermeasure 13, which mitigates Attack 12.
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In version 05, the usage of the Cryptographic Message Syntax (CMS) [13] was
introduced [29, Version 05, Sect. 6] and a new separate document was created
for details on how to use this [30, Version 00]. The usage of the CMS conforms
to Countermeasure 11 and provides sufficient data type information to help pre-
vent Attack 10. Moreover, the specification has adapted changes in the cookie
exchange that match what is described under Countermeasure 14 [29, Version 05,
Sect. 6.2.2], [30, Version 00, Sects. 2 and 4.2.2.2]. Overall, these changes pre-
vent both of the attacks presented in Sect. 6, and therefore represent important
improvements.

The discoveries are quite common (and, for experts, perhaps obvious) attacks.
An important lesson learned in the course of this analysis is: when designing a
new security protocol, it is sensible to check its basic structure with a formal
tool, even if this tool may not be sophisticated enough to analyze the finer
details. A rough formal analysis may already yield valuable results, as even
very basic weaknesses may be overlooked when just considering a protocol on
paper. Therefore, it can be useful for the analysis to use abstraction in order
to dismiss a complex aspect (like timing in our case), as long as the remaining
aspects enable a self-contained examination. Furthermore, a question that one
might deduce from the analysis is: to what extent could attacks like Attack 10,
which are preventable through the use of well defined data types, be relevant
in practice? Do protocol developers need to sufficiently consider the question of
data types, or is this a matter that should be left to the implementers? It is also
noteworthy that we skipped over a deeper evaluation of different model checkers
in the course of this analysis, which leaves room for further research comparing
the relative merits of different protocol verifiers for the analysis of protocols and
draft standards.

For a complete analysis of the full NTS specification, timing and clocks need
to be considered (see Sect. 2). Therefore, further work is necessary to properly
consider the timing aspect in interaction with security. To this end, ProVerif is
not the suitable tool, because it is unable to consider timing and clocks. Model-
checkers other than ProVerif (specifically UPPAAL [5] and TAuth [17]) are being
considered, but it is yet unclear if they indeed support the considerations of all
necessary aspects for a thorough analysis of secure time synchronization tech-
niques. In particular, finding the right approach and tool is important to analyze
the security aspects of broadcast time synchronization with NTS, where TESLA
is used for authenticity and integrity protection. Using TESLA to secure time
synchronization is especially tricky, since TESLA requires rough time synchro-
nization not only initially, but continuously. Hence, successfully disturbing time
synchronization just by a small amount might endanger the security of the whole
protocol.

We have started a detailed analysis [19] focusing on an intricate attack using
delay techniques to compromise time synchronization when it is secured with
TESLA-like mechanisms. A draft version of this work is available under https://

www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf.
An automated (or semi-automated) formal analysis of the full NTS spec-

ification would be beneficial because it could be re-used for other time
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synchronization protocols which employ TESLA-like mechanisms, for example
the TinySeRSync protocol [31] for wireless sensor networks.

A ProVerif Source Code

In this appendix, we present some of the relevant ProVerif source code used for
the preparation of this paper. There have been different code versions involved
in the analysis:

– Code version c030ut: It models protocol version 0.3.0 but has no dedicated
type for hostnames.

– Code version c030: It models protocol version 0.3.0 and does have a dedi-
cated hostname type.

– Code version c031: It models protocol version 0.3.1.
– Code version c032: It models protocol version 0.3.2.

All of the code below is taken from code version c030, which formed the basis
of the analysis. Presenting the other versions in full would take up a lot of space,
whereas presenting only the differences is difficult. This is because although
the changes between the different code versions are minor, they still include
numerous lines that are spread far apart. Some comment lines and structuring
have been left out for the presentation.

For any reader who is interested in access to the complete code (all code
versions, ready for use with ProVerif), it is available under https://www8.cs.fau.

de/staff/milius/ProVerif-NTS.rar.

A.1 Cryptographic Primitives

The first lines of the ProVerif source code form the cryptographic primitives that
are needed.

(* Basics: Keys and Hostnames *)

type key.

type hostname.

(* Symmetric Encryption *)

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key;

sdec(senc(m,k),k) = m.

(* Asymmetric Encryption *)

type skey.

type pkey.

fun sk_of(hostname): skey [private].

fun pk(skey): pkey.

letfun pk_of(X: hostname) = pk(sk_of(X)).
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fun aenc(bitstring, pkey): bitstring.

reduc forall m: bitstring, k: skey;

adec(aenc(m, pk(k)), k) = m.

(* Asymmetric Signatures *)

type sskey.

type spkey.

fun ssk_of(hostname): sskey [private].

fun spk(sskey): spkey.

letfun spk_of(X: hostname) = spk(ssk_of(X)).

fun sign(bitstring, sskey): bitstring.

reduc forall m: bitstring, k: sskey;

getmess(sign(m,k)) = m.

reduc forall m: bitstring, k: sskey;

checksign(sign(m,k), spk(k)) = m.

letfun signed_message(m: bitstring, k: sskey)

= (m, sign(m, k)).

(* Hash and HMAC Functions *)

fun hash(bitstring): bitstring.

fun keyhash(pkey): bitstring.

fun seed_of(hostname): bitstring [private].

fun cookie_gen(bitstring, bitstring): key.

fun hmac(key, bitstring): bitstring.

A.2 Global Variables and Constants

Next we have the declarations of channels and other global variables and con-
stants.

(* The Channel for All"Network" Protocol Communications *)

free c: channel.

(* The Channel and Hostname for Communication with the TA *)

free ta: channel.

free TA: hostname.

(* Two Possible Version Identifiers *)

free version_1: bitstring.

free version_2: bitstring.

A.3 Events

The declarations of ProVerif “events” follow that are used for better traceability
of what is happening in what order.
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(* Server Side Events *)

event serverError().

event serverHasOwnCert(hostname, pkey, spkey).

event serverRespondsTime(bitstring, bitstring,

bitstring).

event serverSaysCookie(key, pkey, hostname).

event serverGeneratesCookie(key, hostname).

event serverAcceptsCert(hostname).

event serverRejectsCert().

(* Client Side Events *)

event clientError().

event clientHasOwnCert(hostname, pkey, spkey).

event clientAcceptsCookie(key, hostname, hostname).

event clientAcceptsSomeCookie().

event clientRejectsCookie(key, hostname, hostname).

event clientRejectsSomeCookie().

event cookieCompromised(key).

event clientAcceptsCert(hostname, spkey).

event clientRejectsCert().

event client_timereq(bitstring).

event clientAcceptsTime(bitstring, bitstring,

bitstring).

event clientDiscards(bitstring).

(* Authority Side Event(s) *)

event authorityGivesCert(hostname, pkey, spkey).

A.4 The Trusted Authority Process

The code then moves on to the processes by which the participants are modeled.
We first present the process that models the trusted authority. Its only purpose
is to generate and distribute certificates for server and client type participants.

(* [Process] ::: TRUSTED AUTHORITY ::: [NTS v0.3.0]

|: Issues certificates on request. *)

let authority() =

let skTA = ssk_of(TA) in

(* The authority receives a certificate request. *)

in(ta, H: hostname);
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(* The authority determines the correct public keys

for the requester. *)

let pkH = pk(sk_of(H)) in

let spkH = spk(ssk_of(H)) in

(* From that information, the authority assembles

and signs the appropriate certificate. *)

let certificate = (H, pkH, spkH) in

let signature = sign(certificate, skTA) in

let certificate_sig = (certificate, signature) in

(* The authority sends the response back to the

requesting participant. *)

event authorityGivesCert(H, pkH, spkH);

out(ta, certificate_sig).

A.5 The Server Side Processes

Inner Server Processes. Next are those processes that make up the model of
the server. The first process represents the server module which deals with the
certification message exchange.

(* [Process] ::: SERVER CERTIFIER MODULE ::: [NTS v0.3.0]

|: Replies to a client_cert message with a server_cert

|: message as specified. *)

let server_certifier(B: hostname, pkB: spkey,

skB: sskey) =

(* The server acquires the TA’s public key. *)

let pkTA = spk(ssk_of(TA)) in

(* The server receives a client’s certification request. *)

in(c, X_client_cert: bitstring);

(* The server extracts the necessary information. *)

let (version_x: bitstring, A_x: hostname)

= X_client_cert in

(* The server requests its certificate chain from the

trusted authority and performs a validity check on

the response that it receives. *)

out(ta, B);

in(ta, Z_certificate: bitstring);

let (=B, some_key: pkey, =pkB,

Z_cert_signature: bitstring)

= Z_certificate in

if (B, some_key, pkB)

<> checksign(Z_cert_signature, pkTA)

then event serverError()
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else event serverHasOwnCert(B, some_key, pkB);

(* The server creates a server_cert response

as specified. *)

let msg_server_cert = (A_x, Z_certificate) in

let msg_server_cert_sign

= (msg_server_cert,

sign(msg_server_cert, skB))

in

(* The server sends the composed response to the

requesting client. *)

out(c, msg_server_cert_sign).

The next process involves the server module whose purpose it is to execute the
cookie message exchange as well as the required calculations.

(* [Process] ::: SERVER COOKIE MODULE ::: [NTS v0.3.0]

|: Takes a client_cook request, generates the appropriate cookie

|: and replies with a server_cook message as specified. *)

let server_cookie(B: hostname, pkB: spkey, skB: sskey,

seed: bitstring) =

(* The server acquires the TA’s public key. *)

let pkTA = spk(ssk_of(TA)) in

(* The server receives a client’s cookie request. *)

in(c, X_cook: bitstring);

(* The server matches it to the specified message

pattern and extracts the necessary information. *)

let (n_x: bitstring, pkA_x: pkey) = X_cook in

(* The server builds the cookie for the received client

(identified via its public [encryption] key pkA. *)

let cookie = cookie_gen(keyhash(pkA_x), seed) in

(* It builds the appropriate response *)

let response = (cookie, n_x) in

(* It constructs its signature and attaches it to the response. *)

let signature = sign(response, skB) in

let response_sig = (response, signature) in

(* It encrypts it. *)

let response_sig_enc = aenc(response_sig, pkA_x) in

(* It sends it back to the client. *)

event serverGeneratesCookie(cookie, B);

event serverSaysCookie(cookie, pkA_x, B);
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out(c, response_sig_enc).

Then the server module follows that takes care of the time synchronization mes-
sage exchange.

(* [Process] ::: SERVER TIMESYNC MODULE ::: [NTS v0.3]

|: Replies to a time_request message with a time_response message as

|: specified. *)

let server_time_response(B: hostname, pkB: spkey,

skB: sskey, seed: bitstring) =

(* The server receives a time_request message from a client. *)

in(c, Y: bitstring);

(* It extracts the necessary data. *)

let (t1_y: bitstring, n_y: bitstring,

pkA_hash_y: bitstring) = Y in

(* It creates the appropriate time sync data for its response. *)

new t2: bitstring;

(* It re-computes the cookie. *)

let cookie = cookie_gen(pkA_hash_y, seed) in

(* It composes its response. *)

let response = (n_y, t1_y, t2,

hmac(cookie, (n_y, t1_y, t2)))

in

(* It sends its response back to the requesting client. *)

event serverRespondsTime(n_y, t1_y, t2);

out(c, response).

Outer Server Process. We then see the “outer” server process whose purpose
is simply to execute iterations of all the “inner” processes (the modules listed
above in AppendixA.5).

(* [Process] ::: SERVER GLOBAL PROCESS ::: [NTS v0.3.0]

|: Executes all server modules at once, running arbitrarily many

|: instantiations of each of them in parallel. *)

let server(B: hostname) =

(* Before running any modules, the server generates an

unpredictable seed value and remembers its own key pair. *)

let seed = seed_of(B) in

let skB = ssk_of(B) in

let pkB = spk(skB) in

(* The server then runs all modules. *)
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!server_certifier(B, pkB, skB)

| !server_cookie(B, pkB, skB, seed)

| !server_time_response(B, pkB, skB, seed).

A.6 The Client Side Processes

Inner Client Process. Moving on to the client side processes, there is first the
“inner” process which takes care of the time synchronization message exchange,
including the necessary checks on the MAC.

(* [Process] ::: CLIENT TIMESYNC MODULE ::: [NTS v0.3.0]

|: Generates time_request messages as specified and sends them to a

|: time server. It then awaits a time_response message on which it

|: performs the necessary checks as specified. *)

let client_time_request(A: hostname, pkA: pkey,

B: hostname, cookie: key) =

(* The client generates time data and a nonce. *)

new t1: bitstring;

new n1: bitstring;

event client_timereq(t1);

(* The client constructs its time_request message and sends it. *)

let request = (t1, n1, keyhash(pkA)) in

out(c, request);

(* It receives a time_response message and extracts the necessary

information. *)

in(c, X: bitstring);

let (=n1, =t1, t2x: bitstring, hmacx: bitstring)

= X in

(* Depending on the result of validity checks, it either accepts

the response as authentic or discards it. *)

if hmacx = hmac(cookie, (n1, t1, t2x))

then event clientAcceptsTime(n1, t1, t2x)

else event clientDiscards(X).

Outer Client Process. The “outer” client side process follows, which performs
the initial message exchanges (server certification and cookie exchange) and then
executes instantiations of the inner process.

(* [Process] ::: CLIENT GLOBAL PROCESS ::: [NTS v0.3.0]

|: Executes the steps for association, certification and cookie

|: exchange, one of each, sequentially. Then it runs arbitrarily

|: many instances of the client timesync module in parallel. *)

let client(A: hostname, B: hostname) =
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let skA = sk_of(A) in

let pkA = pk(skA) in

let pkTA = spk(ssk_of(TA)) in

(* CERTIFICATE PHASE -----------------------------*)

(* The client sends a client_cert message as specified *)

let msg_client_cert = (version_1, A) in

out(c, msg_client_cert);

(* The client receives a response of type server_cert. *)

in(c, X_server_cert: bitstring);

(* The client extracts data from the response. *)

let (=A, certificate_x: bitstring,

signature_x: bitstring)

= X_server_cert in

(* The client reads the certificate. *)

let (=B, other_key: pkey, spkB_x: spkey,

cert_signature: bitstring)

= certificate_x in

(* The client performs the necessary test. On failure, it

exits with an error. On success, the client accepts the

key given in the certificate as B’s public key. *)

event check();

if ((B, other_key, spkB_x)

<> checksign(cert_signature, pkTA))

|| ((A, certificate_x)

<> checksign(signature_x, spkB_x))

then event clientRejectsCert()

else event clientAcceptsCert(B, spkB_x);

(* COOKIE PHASE ------------------------*)

let pkB = spkB_x in

(* The client sends a client_cook message as specified. *)

new n_cook: bitstring;

let msg_client_cook = (n_cook, pkA)

in

out(c, msg_client_cook);

(* The client receives a response of type server_cook. *)

in(c, X_server_cook: bitstring);

(* It decodes the response and extracts the data from it. *)
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let X_dec = adec(X_server_cook, skA)

in

let ((cookie_x: key, =n_cook),

signature_x: bitstring) = X_dec

in

(* It performs the necessary checks as specified. On success,

it starts sending time_request messages as specified.*)

if (cookie_x, n_cook)

= checksign(signature_x, pkB)

then event

clientAcceptsCookie(cookie_x, A, B)

(* TIMESYNC PHASE ------------------*)

| !client_time_request(A, pkA,

B, cookie_x)

| ( in(c, =cookie_x);

event cookieCompromised(cookie_x)

else event

clientRejectsCookie(cookie_x, A, B)).

Note that the first else-branch includes all the code below it. Note also the
dedicated listener process given by

| ( in(c, =cookie_x);

event cookieCompromised(cookie_x)

which is started when the client accepts a cookie and does not really repre-
sent client behavior according to the protocol, but only listens for the cookie
on an open channel. This enables us to check for the loss of a cookie by
querying whether the event cookieCompromised() is ever executed at all (see
AppendixA.8).

A.7 The Environment Process

Here, we present the global ProVerif process which takes care of instantiating
all participants.

(* [Process] MAIN OVERALL PROCESS ::: [NTS v0.3.0]

|: Runs everything that needs to be run. *)

process

(* More strongly typed version with hostnames,

would otherwise be"bitstring" type variables *)

new B: hostname;

new A: hostname;

(* There are arbitrarily many clients running, but only one server,

for simplification in the earlier phase of this analysis. *)

!server(B) | !client(A, B) | !authority()

| out(c, A) | out(c, B) )
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A.8 ProVerif Queries

Now we present the ProVerif queries. We first consider those queries that concern
the cookie exchange.

Sanity – Cookie Exchange. This query makes sure that there is some cookie x
which is accepted by the honest client A as coming from the honest server B,
i. e. the cookie exchange can be completed successfully.

query x: key;

event(clientAcceptsCookie(x, new A, new B)).

This query holds for all four code versions.

Weak Authenticity – Cookie. This query ensures that if the honest client A
accepts a cookie x for communication with the honest server B, then B has
in fact generated x and released it into the network (note that this gives no
guarantee that B intended x for communication with A in particular).

query x: key;

event(clientAcceptsCookie(x, new A, new B))

==> event(serverGeneratesCookie(x, new B)).

Applying this query to the different ProVerif code versions yields the following
results:

– It does not hold for code version c030ut. The attack that ProVerif discovers
is the first one described in Sect. 6.

– It holds for the code versions c030, c031, and c032.

Authenticity – Cookie. This query strengthens the guarantee acquired with
the previous query: it ensures that if the honest client A accepts a cookie x
for communication with the honest server B, then B has in fact issued x based
on A’s public key, and has also encrypted the appropriate message with said
public key. This is the query that corresponds to Goal 9.

query x: key;

event(clientAcceptsCookie(x, new A, new B))

==> event(serverSaysCookie(x, pk(sk_of(new A)), new B)).

The results for this query are as follows:

– It does not hold for code version c030ut. Authenticity for the cookie would
require weak authenticity for it, which is not given (see above). Also, the
Man-in-the-Middle attack described in Sect. 6 works on this version.

– It does not hold for code version c030. Again, the corresponding attack is the
Man-in-the-Middle attack described in Sect. 6.

– It holds for the code versions c031, and c032
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Secrecy – Cookie. This query asserts that if the honest client A accepts
a cookie x, then the attacker does not know x. This is realized via the
event cookieCompromised() from the dedicated listener process as described
in AppendixA.6. This query corresponds to Goal 8.

query x: key;

event(cookieCompromised(x)).

– This query does not hold for code version c030ut and neither does it hold
for c030: Both of the possible attacks enable Mallory to make Alice accept
a cookie that Mallory knows. In the case of the Blind-signature attack she
manufactures said cookie herself; in the case of the Man-in-the-Middle attack
she maliciously re-distributes a valid key, signed by Bob.

– This query holds for the code versions c031 and c032.

Next, we take a look at some queries that concern the time synchronization
message exchange.

Sanity – Time Synchronization. This query checks whether it is possible
for the protocol to be run such that the honest client A successfully accepts a
timesync response as valid and authentic from the honest server B.

query nonce: bitstring, x: bitstring, y: bitstring;

event(clientAcceptsTime(new A, new B, nonce, x, y)).

This query holds for all four code versions.

Authenticity – Time Synchronization. This query ensures that if a time-
sync message t is accepted by the honest client A as authentic from an honest
server B, then B has really issued a message with the exact time data as in t
and secured it with the cookie which is generated based on A’s public key. This
query corresponds to Goal 7.

query nonce: bitstring, x: bitstring, y: bitstring;

event(clientAcceptsTime(new A, new B, nonce, x, y))

==> event(serverRespondsTime(keyhash(pk(sk_of(new A))),

new B, nonce, x, y)).

– As might be expected due to the lack of cookie secrecy, this query also does
not hold for code version c030ut and neither does it hold for c030. Since for
these code versions Mallory can gain access to cookies that Alice accepts as
valid, she can use those cookies to generate time synchronization packets with
maliciously manufactured synchronization information that Alice will accept.

– This query holds for the code versions c031 and c032.
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