
A Sound and Complete Calculus for finite Stream Circuits

Stefan Milius
Institut für Theoretische Informatik

Technische Universität Braunschweig, Germany
mail@stefan-milius.eu

Abstract—Stream circuits are a convenient graphical way
to represent streams (or stream functions) computed by finite
dimensional linear systems. We present a sound and complete
expression calculus that allows us to reason about the semantic
equivalence of finite closed stream circuits. For our proof of
the soundness and completeness we build on recent ideas of
Bonsangue, Rutten and Silva. They have provided a “Kleene
theorem” and a sound and complete expression calculus for
coalgebras for endofunctors of the category of sets. The key
ingredient of the soundness and completeness proof is a
syntactic characterization of the final locally finite coalgebra.
In the present paper we extend this approach to the category
of real vector spaces. We also prove that a final locally finite
(dimensional) coalgebra is, equivalently, an initial iterative
algebra. This makes the connection to existing work on the
semantics of recursive specifications.

Keywords-Kleene algebra, coalgebra, streams, regular ex-
pressions

I. INTRODUCTION

Regular expressions are a well-known tool to specify the
behavior of finite automata. Kleene’s classical theorem [1]
states that the semantics of every finite automaton can be
expressed by a regular expression. Furthermore, Kleene
algebras provide a sound and complete calculus for the
behavioral equivalence of finite automata, see [2]. More
precisely, putting the laws of Kleene algebras on the set of
regular expressions allows one to algebraically reason about
the equivalence of automata: two expressions are equal under
the laws iff the behavior of the two automata specified by
them is the same.

Recently, Bonsangue, Rutten and Silva [3], [4], [5] and
these authors and Bonchi [6] have provided analogs of the
classical results for a large class of systems (such as Mealy
machines, non-deterministic, weighted and probabilistic au-
tomata) in a uniform way. The idea is to express the type
of a class of systems by an endofunctor on the category
Set. The respective systems then arise as coalgebras for
that endofunctor. Then one can derive from the structure
of the given endofunctor the syntax and axioms for a
sound and complete expression calculus. The ideas for this
go back to earlier work by Bonsangue and Kurz [7]. At
the heart of the soundness and completeness proofs lies a
coalgebraic characterization of the set of expressions modulo

Supported by the German Research Foundation (DFG) under project MI
717/2–1.

axioms: this set forms the final locally finite coalgebra; for
ordinary regular expressions this elegant presentation of the
soundness and completeness for Kleene algebras is due to
Jacobs [8].

In this paper we consider a different base category than
Set—the category of VecR of real vector spaces. Our aim is
to provide a sound and complete calculus of expressions to
reason about linear systems. Such systems can be presented
in terms of stream circuits such as

1 C// // //

2
(1)

We show that every finite stream circuit that is valid, i. e.,
every loop passes through a register, can equivalently be ex-
pressed by an expression in our calculus. This is an analog of
Kleene’s theorem in our setting of stream circuits. Moreover,
our calculus allows us to reason about the equivalence of
such circuits. For example, the stream circuit in (1) defines
the stream σ whose n-th element is 2n, and the same stream
is defined by the more complicated stream circuit below:

1 C

+

1 C+C

// //

��2
1
2 //

//

??

// //
// //

(2)

Then the two expressions for the depicted circuits can be
proven to be equal using the rules of our calculus. Our main
result is that two expression can be equated iff they express
the same linear system; this is an analog of the soundness
and completeness result for Kleene algebras.

In order to establish soundness and completeness we
consider the set Exp/= of expressions of our calculus
modulo the (equivalence relation induced by) the axioms
and rules, and we establish the following universal property:
Exp/= is the final locally finite dimensional coalgebra for
the functor given by X 7→ R×X on VecR. This is analogous
to the result in [5] that the expressions modulo rules are the
final locally finite coalgebra. Our proof is simpler than the
one given in loc. cit., and in our setting of linear systems we
need to replace finite by finite dimensional systematically.
In Section III we shall see that both characterizations fit

1

into the same general framework. We provide a category-
theoretic formulation of local finiteness of coalgebras, and
we prove that a final locally finite (dimensional) coalgebra
for an endofunctor is, equivalently, an initial iterative algebra
in the sense of [9], [10] for the same endofunctor. This also
yields a precise connection of the work in [5] with the work
on iterative algebras/theories by Bloom and Ésik [11]. Then
in Section IV we introduce our calculus for linear systems,
and in Section V we prove its soundness and completeness.

We believe that the work in this paper is a first step
to obtain a uniform method to derive concrete sound and
complete expression calculi for endofunctors on a general al-
gebraic category (in lieu of VecR)—we discuss this and other
conclusions and directions for future work in Section VI a
bit more.

II. PRELIMINARIES

Here we present the basic definitions needed throughout
this paper. We shall write Set for the category of sets and
functions, and we write VecR for the category of real vectors
spaces and linear maps. In Section III we shall also consider
more general categories. In our categories of interest finite
products exist, and we denote the product of two objects
X1 and X2 by X1 ×X2 with the projection functions πi :
X1 ×X2 → Xi.

A. Coalgebras

Let A be a category, and let H : A → A be
an endofunctor. Recall that a coalgebra for H is a pair
(C, c) consisting of an object C and the structure morphism
c : C → HC. Take, for example, A = Set. Then coalgebras
can be understood as systems with a set C of states where the
functor H describes the type of transitions that the states can
perform, and the structure map c determines the transition
structure or dynamics of the system, see e. g. [12]. Concrete
examples of coalgebras for set endofunctors include various
kinds of automata (deterministic, non-deterministic, Mealy,
Moore), stream systems, probabilistic automata, weighted
ones, labelled transition systems and many others.

A coalgebra homomorphism from a H-coalgebra (C, c)
to another one (D, d) is a morphism h : C → D of A
preserving the transition structure, i. e., such that d · h =
Hh · c.

A H-coalgebra (T, t) is said to be final (or, terminal), if
for every H-coalgebra (C, c) there exists a unique coalgebra
homomorphism c† : C → T . It is easy to see that (T, t)
is, if it exists1, uniquely determined up to isomorphism.
Moreover, the structure map t : T → HT is an isomorphism
by Lambek’s Lemma [13]. For an endofunctor of Set, the
elements of a final coalgebra provide the semantics of states
of systems that are regarded as H-coalgebras.

1Existence of a final coalgebra can be assured by mild assumptions on
H , e.ġ. every bounded endofunctor of Set has a final coalgebra.

Finality also provides the basis for semantic equivalence.
Let (C, c) and (D, d) be two coalgebras for an endofunctor
H on Set with a final coalgebra (T, t). (In fact, any other
concrete2 category such as VecR is fine, too.) Then two
states x ∈ C and y ∈ D are called behavioral equivalent if
c†(x) = c†(y), and we shall write x ∼ y. If H preserves
weak pullbacks then behavioral equivalence coincides with
the well-known notion of bisimilarity. The states x and
y are called bisimilar if they are in a special relation
called a bisimulation [14]. We shall not define that concept
here as it is not needed in the present paper; for details
see [12]. Let us just remark that the coalgebraic notion
of bisimulation generalizes the concepts of the same name
known for concrete classes of systems, e. g., for deterministic
automata or labelled transition systems (where coalgebraic
bisimulation coincides with Milner’s strong bisimulation).
The requirement that H preserve weak pullbacks is not very
restrictive; many functors of interest in coalgebra theory
do indeed preserve weak pullbacks. An exception is Giry’s
probabilistic monad on the category of analytic spaces.

Finally, let (C, c) be a coalgebra for an endofunctor H .
Recall that a subcoalgebra of C is given by a subset S
carrying a coalgebra structure s : S → HS such that the
inclusion map i : S → C is a coalgebra homomorphism.
Now assume that H preserves weak pullbacks and let s ∈ C.
Then the subcoalgebra 〈s〉 ⊆ C generated by s is given
as the intersection of all subcoalgebra of C containing s.
Notice that this is true for endofunctors H of Set as well as
for those on VecR.

B. Linear Systems and Stream Circuits

We now recall some basic notions from the coalgebraic
stream calculus [15] needed in this paper.

In this paper we consider streams of reals3, i. e., infinite
sequences σ = (σ(0), σ(1), σ(2), . . .) of real numbers. We
shall also consider the following operations on the set Rω

of all streams, for all r ∈ R, σ, τ ∈ Rω and n ≥ 0:

(rσ)(n) = rσ(n) scalar product
(σ + τ)(n) = σ(n) + τ(n) sum

(σ × τ)(n) =
n∑
i=0

σ(i) · τ(n− i) convolution
product

Of course, sum and convolution product are both commuta-
tive and associative. Notice also that every stream σ has an
additive inverse

−σ = (−σ(0),−σ(1),−σ(2), . . .)

with σ + (−σ) = (0, 0, . . .). If σ is a stream with σ(0) 6= 0
then there is a unique multiplicative inverse σ−1 with σ ×
σ−1 = (1, 0, 0, 0, . . .).

2Recall that a category A is called concrete if it comes equipped with
a faithful functor U : A → Set.

3The restriction to R is not essential; in fact, our results hold more
generally for streams over an arbitrary field k.

2

An important subclass of all streams are the rational
streams, see [16]; a stream ρ is called rational if it can be
written as a convolution product ρ = σ × τ−1 where σ and
τ are so-called polynomial streams, i. e., they have finitely
many non-zero entries only.

One way to represent streams is by linear systems. A
linear system is a triple (C, 〈c0, c1〉) where C is a real vector
space (the state space of the system), c0 : C → R and
c1 : C → C are linear functions (called the output and
transition function, respectively). Equivalently, (C, 〈c0, c1〉)
is a coalgebra for the functor H given by X 7→ R×X on
the category VecR. Notice that Rω is a real vector space
with the scalar product and sum as defined above. Together
with the head and tail functions hd(σ) = σ(0) and tl(σ) =
(σ(1), σ(2), . . .) we see that Rω is a linear system. Indeed,
(Rω, 〈hd, tl〉) is the final coalgebra for H . For every linear
system (C, 〈c0, c1〉) the unique homomorphism into the final
coalgebra Rω assigns to every state s of the system C the
stream

(c0(s), c0(c1(s)), c0(c1(c1(s))), . . .)

given by the output behavior of that state. We also say
that s represents the above stream. It has been proved by
Rutten [16] that the rational streams are precisely those
streams represented by the states of finite dimensional linear
systems, i. e., linear systems where the state space is finite
dimensional.

Another, equivalent, way to represent rational streams is
by finite stream circuits. Stream circuits are a convenient
graphical way to specify (computations on) streams. They
are defined as pictorial compositions of the following basic
stream circuits

r r-multiplier + adder

C copier r register

The r-multiplier multiplies all elements in a stream by r ∈
R, the adder computes the sum of two streams, the copier
yields two copies of a stream, and the register prepends
r ∈ R to a stream σ to yield r : σ (we shall call r the
initial value of the register). The stream circuits are then
built from the basic circuits by plugging wires together, and
there may also be feedback (loops). We already saw two
examples of closed stream circuits in the introduction, and
here is a simple example of an open one (we direct the wires
to illustrate the dataflow from input to output):

σ +

1

C f(σ)// // //

oo
OO

A stream circuit is called valid if all its loops pass through
at least one register.

It turns out that finite closed valid stream circuits represent
precisely the rational streams. Rutten [16] has proved this
for a certain restricted class of stream circuits. However, it
is not difficult to prove that this holds in general.

Theorem II.1. Let σ ∈ Rω be a stream. Then the following
are equivalent:
(1) The stream σ is represented by a state of a finite
dimensional system.
(2) The stream σ is computable by a finite valid closed
stream circuit.4

Finally, let us collect some technical preliminaries that
we will need subsequently. We denote by L : Set → Set
the functor assigning to a set X the (underlying set of the)
free vector space on X . So LX consists of formal linear
combinations of elements of X . Actually, L is a monad on
Set with its unit η : Id → L given object wise by the
universal maps ηX : X → LX of the free vector spaces.
We also have a distributive law λ : LH → HL of L over
the functor HX = R×X on Set:

λX :
n∑
i=1

si(ri, xi) 7→

(
n∑
i=1

siri,
n∑
i=1

sixi

)
. (3)

Notice that we make no notational distinction between this
functor H and its lifting to the category of real vector spaces.

III. LOCALLY FINITELY PRESENTABLE COALGEBRAS

In the work of Bonsangue, Rutten and Silva [5] locally
finite coalgebras play an important rôle, and in our work in
the present paper locally finite dimensional coalgebras are
important. More precisely, expressions modulo rules form a
final locally finite (or locally finite dimensional, respectively)
coalgebra. In this section we provide a general framework
that gives a uniform explanation of this phenomenon.

Finiteness of objects is captured categorically by the no-
tion of a locally finitely presentable category, see e. g. [17].
We briefly recall the basics. A functor is called finitary if
it preserved filtered colimits. An object X of a category
A is called finitely presentable if its hom-functor A (X,−)
preserves filtered colimits. A category A is called locally
finitely presentable (lfp, for short) provided that A is
cocomplete and it has a set of finitely presentable objects
such that every object of A is a filtered colimit of objects
from that set.

Examples of lfp categories are the category Set of sets
and maps, posets and monotone maps, graphs and their
homomorphisms, the category VecR of real vector spaces
and linear maps, groups and their homomorphisms, and
more generally, every finitary variety of algebras. The corre-
sponding finitely presentable objects are as expected: finite
sets, posets or graphs, finite dimensional vector spaces, and
those groups or algebras that can be presented by finitely
many generators and equations.

The category of complete partial orders (cpos) and con-
tinuous maps is not locally finitely presentable; there are no
non-trivial finitely presentable objects.

4All the omitted proofs may be found in the appendix.

3

Assumption III.1. Throughout this section we assume that
A is a locally finitely presentable category and H : A → A
is a finitary endofunctor.

Example III.2. There two examples of interest in this paper.
(1) Every Kripke polynomial functor of Set as in [5] is
finitary.
(2) The functor H = R× (−) on VecR is finitary.

Remark III.3. It is easy to verify that an object X is
finitely presentable iff the following holds: every morphism
f : X → C, where C = colimCi is a filtered colimit with
the colimit injections ci : Ci → C, has an essentially unique
factorization through one of the colimit injections ci. More
precisely, two conditions are fulfilled: (i) there exists a Ci
and a morphism f ′ : X → Ci such that ci · f ′ = f and
(ii) for every two parallel morphisms f ′, f ′′ : X → Ci
with ci · f ′ = ci · f ′′ there exists an object Cj and a
connecting morphism cij : Ci → Cj in the diagram such
that cij · f ′ = cij · f ′′.

Remark III.4. We shall need a number of properties of lfp
categories; and we recall those from [17]:

1) every finite colimit of finitely presentable objects is
itself finitely presentable,

2) in A every morphism f can be factorized as a
strong epimorphism followed by a monomorphism.
This factorization system has the following unique di-
agonalization property: for every commutative square
m · f = g · e where m is a monomorphism and e
a strong epimorphism there exists a unique diagonal
morphism d with m · d = g and f = d · e.

In addition to the above properties we shall need the
following

Lemma III.5. Every split quotient of a finitely presentable
object is itself finitely presentable.

Notation III.6. We denote by Coalgf(H) the category of all
coalgebras p : P → HP with a finitely presentable carrier
P .

Definition III.7. A coalgebra (S, s) is called locally finitely
presentable if the following conditions are fulfilled:

(1) Every morphism f : X → S with X finitely pre-
sentable factors through a coalgebra homomorphism
where the domain has finitely presentable carrier; more
precisely, given f there exists a coalgebra (P, p) from
Coalgf(H), a homomorphism h : (P, p)→ (S, s) and
a morphism f ′ : X → P such that the triangle below
commutes:

P

h
��

X

f ′
>>

f
// S

(2) The factorization in (1) is essentially unique in the
sense that for every f ′′ : X → P with h · f ′′ = f
there exists a coalgebra (Q, q) in Coalgf(H) with a
coalgebra homomorphism h′ : (Q, q) → (S, g) and
a coalgebra homomorphism ` : (P, p) → (Q, q) with
` · f ′ = ` · f ′′.

For finitary endofunctors on Set and VecR preserving
monomorphisms, condition (2) in Definition III.7 is not
necessary. In addition, condition (1) can be weakened to hold
only for subobjects. More precisely, consider for a coalgebra
(S, s) the following condition:
(1’) for every subobject f : X → S where X is finitely

presentable there exists a subcoalgebra h : (P, p) →
(S, s) with P finitely presentable that contains X , i. e.,
there is a (mono-)morphism f ′ : X → P with h ·f ′ =
f .

Lemma III.8. Suppose that in A epimorphisms split and
that H preserves monomorphisms. Then a coalgebra is lo-
cally finitely presentable iff condition (1’) above is satisfied.

In our work below we shall make use of the following
lemma.

Lemma III.9. Under the assumptions in Lemma III.8 every
quotient of a locally finitely presentable coalgebra is itself
locally finitely presentable.

Example III.10. (1) For A = Set a coalgebra is locally
finitely presentable iff every finite subset of its carrier is
contained in a finite subcoalgebra. If, moreover, H pre-
serves weak pullbacks, a coalgebra (S, g) is locally finitely
presentable iff for every s ∈ S the subcoalgebra 〈s〉 is
finite, i. e., (S, g) is locally finite. So, in particular, for any
Kripke polynomial functor local finiteness of a coalgebra in
the sense of [5] coincides with our concept of local finite
presentability.

(2) For A = VecR and H preserving weak pullbacks, a
coalgebra (S, g) is locally finitely presentable iff for every
s ∈ S the subcoalgebra 〈s〉 is finite dimensional, i. e., (S, g)
is locally finite dimensional. In particular, this holds for H =
R× (−).

Observation III.11. (1) Every filtered colimit of coalgebras
from Coalgf(H) is obviously locally finitely presentable.

(2) Fix some H-coalgebra (S, g), and consider the category
D = Coalgf(H)/(S, g) whose objects are coalgebra homo-
morphisms f : (P, p)→ (S, g), where (P, p) is a coalgebra
from Coalgf(H) and whose morphisms are commutative tri-
angles. We have the canonical functor D : D → Coalgf(H)
mapping an object of D to its domain. This functor D
is an essentially small filtered diagram. Indeed, Coalgf(H)
has up to isomorphism only a set of objects (since A is
locally small) and there is only a set of homomorphism
f : (P, p) → (S, g). Furthermore, Coalgf(H) is finitely

4

cocomplete since A is finitely cocomplete and finitely
presentable objects are closed under finite colimits. Thus,
Coalgf(H) is a filtered category and therefore D is a filtered
category.

Theorem III.12. Every locally finitely presentable coalge-
bra (S, g) is the colimit of its canonical diagram D.

Remark. More precisely, (S, g) is the colimit of D with
the injections given by inp : (P, p)→ (S, g) for every object
((P, p), inp) of D .

Corollary III.13. A coalgebra is locally finitely presentable
iff it is a colimit of a filtered diagram of coalgebras from
Coalgf(H).

Indeed, this follows from Theorem III.12 and Observa-
tion III.11(1).

The following theorem gives us a useful technical condi-
tion to establish finality of a coalgebra in the category of all
locally finitely presentable coalgebras for H; finality only
has to be checked for all coalgebras from Coalgf(H).

Theorem III.14. A locally finitely presentable coalgebra
(R, r) is final in the category of all locally finitely pre-
sentable H-coalgebras iff for every coalgebra (P, p) in
Coalgf(H) there is a unique homomorphism from (P, p) to
(R, r).

As a consequence of the results of this section we see
that the final locally finitely presentable coalgebra exists and
can be constructed as the colimit of the inclusion functor of
Coalgf(H) into the category of all coalgebras for H .

This is exactly the construction given in [10] of the initial
iterative algebra for H . We shall not recall the notion of
iterative algebras here as this plays no rôle in the present
paper.

Corollary III.15. The final locally finitely presentable coal-
gebra for H exists and is equivalently described as the initial
iterative algebra for H .

This result makes an explicit connection of the work
here and in [5] to iterative theories of Elgot [18]. Indeed,
in [10] we have shown that the monad of free iterative
algebras for H is the free iterative monad R on H . Thus, our
Corollary V.9 below and the corresponding theorem in [5]
provide a new syntactic characterization of the closed terms
in the free iterative theory (i. e., R0, where 0 denotes the
initial object).

Example III.16. We mention a number of key examples of
final locally finitely presentable H-coalgebras R; for further
examples see e. g. [10], [19].

(1) Let H = HΣ be a polynomial endofunctor on Set
associated to a signature Σ of operation symbols with
prescribed arities. Then the final coalgebra for H consists of
all (finite and infinite) Σ-trees and R consists of all rational

Σ-trees (where recall that a Σ-tree is a rooted and ordered
tree t labelled in Σ such that a node with n children is
labelled by an n-ary operation symbol, and t is rational
if it has, up to isomorphism, only finitely many subtrees,
see [20]).

(2) For the special case HX = 2 × XA on Set, where
2 = { 0, 1 }, a coalgebra is a deterministic automaton, and
the terminal coalgebra is carried by the set of P(A∗) of all
formal languages on A. Here R is the subcoalgebra given
by all regular languages.

(3) For the functor HX = R×X on Set, R consists of all
streams σ that are eventually periodic, i. e., σ = uv where u
and v are finite words on R. However, for the lifting of H
to VecR, R is the subcoalgebra of Rω given by all rational
streams. Indeed, it follows from the work in [9] that the
initial iterative H-algebra is, equivalently, the subcoalgebra
of Rω of all streams represented by finite dimensional linear
systems.

IV. A LANGUAGE OF EXPRESSIONS FOR LINEAR
SYSTEMS

In this section we define a language of linear expressions
representing streams that are outputs of finite closed valid
stream circuits, and we show that for every linear expression
we can construct a finite dimensional linear system (S, g)
with a state s ∈ S having the same behavior. We conclude
that every stream represented by a linear expression is
rational.

We begin by defining the language of expressions.

Definition IV.1. Let X be a set of fixpoint variables ranged
over by x. The set of all linear expressions is defined by the
following BNF grammar:

E ::= µx.E | rE | E + E | r : E | r : F
F ::= x | rF | F + F

where r ∈ R.
As usual, a variable x is free in an expression A if it does

not occur within the scope of any binding operator µx, and
an expression is called closed if it does not have any free
variables.

Notation IV.2. (1) Given a mapping σ assigning to each
free variable x of an expression A an expression σ(x) we
denote by A[σ] the simultaneous substitution of σ(x) for x.
As usual, we assume (without loss of generality) that no free
variable of any σ(x) is bound in A. We also write A[B/x]
for A[σ] where σ(x) = B and σ(y) = y for y 6= x.

(2) We denote by Exp the set of all closed expressions.

Remark IV.3. (1) Notice that besides the µ-operator, our
expression syntax has two types of syntactic operators: rE
and E+E reflect the algebraic operations of sum and scalar
product of object of our base category VecR and r : E
reflects the behavior type given by the functor H . Indeed,
on the final coalgebra Rω we have semantic operations

5

given by stream sum, scalar product of streams (giving
the vector space structure) and the prefixing operations
r : σ = (r, σ0, σ1, σ2, . . .) for every r ∈ R and every
stream σ = (σ0, σ1, σ2, . . .). The prefixing operations form
the inverse of the structure 〈hd, tl〉 of the final H-coalgebra
Rω .

(2) To keep the syntax a little simpler we neither include
a constant 0 nor an inverse operation. The constant zero
stream is represented by µx.(0 : x), and the additive inverse
of an expression A is represented by (−1)A.

(3) Note that we defined the expression syntax in a way
that every every bound variable occurs guarded, i. e., in an
expression µx.A any occurrence of x is within the scope of
a prefixing operator r : (−).

(4) The above definition follows ideas in [4], [6]. However,
putting, in addition, the operations of sum and scalar product
into the syntax is new. This reflects the fact that expressions
ought to denote elements of the final coalgebra Rω of the
functor HX = R×X on the category VecR of real vector
spaces in lieu of the category Set.

In order to be able to argue by structural induction on
the syntax of expressions we define a measure function on
expressions. This function essentially measures the number
of those µ-operators in an expression that do not occur
within the scope of any r : (−)-operator.

Definition IV.4. We define a function N assigning to any
expression a natural number as follows:

N(x) = 0

N(r : A) = 0

N(rA) = N(A) + 1

N(A1 +A2) = max{N(A1), N(A2)}+ 1

N(µx.A) = N(A[µx.A/x]) + 1

Notice that N is well-defined; indeed, only the last clause
seems to be problematic here. But recall that in A every
occurrence of x is within the scope of some r : (−). Hence,
by the second line of the definition, N(A[µx.A/x]) does
not depend on N(µx.A).

In order to give a semantics to expressions in Exp we
would like to define a coalgebra structure on Exp. Then the
unique homomorphism from Exp into the final coalgebra
Rω assigns to every expression the stream it denotes. Un-
fortunately, Exp does not form a linear space. However, it
is easy define a coalgebra structure on the free real vector
space LExp instead. To this end, we first define a function
t : Exp → LHExp. Notice that LHExp is the linear space
of formal linear combinations of elements (r,A) ∈ R×Exp.

We define t(A) by induction on N(A) as follows:

t(r : A) = (r,A)

t(rA) = rt(A)

t(A1 +A2) = t(A1) + t(A2)

t(µx.A) = t(A[µx.A/x]).

Now recall the distributive law λ from (3) and form the
function

c0 = (Exp
t //LHExp

λExp
//HLExp)

whose codomain is a linear space. Hence, we can extend
this function to a linear map

c : LExp→ HLExp, (4)

i. e., c is the unique linear function such that

c · ηExp = λExp · t.

Notation IV.5. In the following we abuse notation and
simply write A for the trivial linear combination ηExp(A) ∈
LExp.

Every closed linear expression A denotes a stream JAK.
To define the semantics function J−K : Exp → Rω let ` be
the unique coalgebra homomorphism from (LExp, c) to the
final coalgebra (Rω, 〈hd, tl〉). Then we have

J−K = (Exp
ηExp
//LExp

` //Rω). (5)

We shall now show that the semantics of an expression is
always a rational stream.

Theorem IV.6. For every expression A there exists a finite
dimensional system (S, g) and a state s ∈ S with A ∼ s.

Proof: We prove that the subcoalgebra 〈A〉 of LExp is
finite dimensional. Let A be any closed linear expression.
We write B ≤ A if B is a subexpression of A.

Take any subexpression r : B of A. For every free variable
x in r : B there exists some subterm µx.Cx ≤ A with
r : B ≤ µx.Cx ≤ A such that x is bound by the µ-operator
at the head of µx.Cx. Now let σ be the map mapping every
free variable x of B to µx.Cx and consider the expression
B′ = B[σ]. This expression is closed, whence in Exp. Notice
also that whenever B is closed then we have B′ = B.

We will now prove that M = {A } ∪ {B′ | r : B ≤
A } forms a basis of a subcoalgebra of LExp. To do this it
suffices to prove for every E ∈ M by induction on N(E)
that

c0(E) = (r,

n∑
i=1

riEi) (6)

for some r, r1, . . . , rn ∈ R and some expressions
E1, . . . , En ∈M .

Suppose first that E = r : F . Then c0(E) = (r, F). If
E = A, then F is a closed subexpression of A, and so

6

we have F ∈ M . Otherwise we have some B′ ∈ M with
B′ = E = r : F and B′ = B[σ] for the corresponding
B ≤ A and the substitution σ. It follows that B = r : C for
some expression C ≤ A, and, thus, we have F = C ′ = C[σ]
which implies that F ∈M .

For E = E1 +E2 we have c0(E) = c0(E1)+c0(E2) and
so (6) follows by the induction hypothesis. Similarly, for
E = rF we have c0(E) = rc0(F). Finally, for E = µx.F
we have

c0(E) = c0(F [µx.F/x]),

and therefore (6) follows by the induction hypothesis once
more.

Corollary IV.7. The coalgebra LExp is locally finite dimen-
sional

Corollary IV.8. For every expression A, JAK is a rational
stream.

Indeed, take a finite dimensional linear system (S, g) and
s ∈ S with A ∼ s according to Theorem IV.6. Then
JAK is equal to the image of s under the unique coalgebra
homomorphism S → Rω , and this is a rational stream, see
Section II-B.

V. AXIOMATIZATION OF SEMANTIC EQUIVALENCE

In this section we will prove an analog of Kleene’s
well-known theorem for finite deterministic automata. More
precisely, we prove that for every finitely dimensional linear
system g : S → R×S and every s ∈ S there exists a linear
expressions expressing the behavior of s.

Furthermore, we are going to provide a sound and com-
plete axiomatization of semantic equivalence of expressions.
In other words, we give a syntactic characterization of the
coalgebra of all rational streams as a quotient of linear
expressions modulo the least equivalence relation = given
by appropriate axioms and rules. As in [5] soundness and
completeness follow easily from the following characteriza-
tion of Exp/= by a universal property: Exp/= is the final
locally finite dimensional coalgebra for H .

We begin by presenting the axioms and rules of the logical
calculus:

1) Vector space axioms. For each axiom of vector spaces
we have an axiom of the logical calculus. Here is a
complete list:

(A+B) + C =A+ (B + C) 1A=A
A+B =B +A r(sA) = (rs)A

A+ µx.(0 : x) =A r(A+B) = rA+ rB
A+ (−1)A= µx.(0 : x) (r + s)A= rA+ sA

2) Behavioral Differential Equations. The specification of
stream sum and scalar product yield two axioms of our
calculus:

r : A+ s : B = (r + s) : (A+B)

r(s : A) = (rs) : (rA)

(notice that on the right-hand side of the above equa-
tions the operations on the left of “:” are addition and
multiplication, respectively, of real numbers and the
operations on the right of “:” are the syntactic + and
scalar multiplication of linear expressions).

3) α-equivalence. This states that renaming of bound
variables does not matter:

µx.A = µy.A[y/x]

4) Replacement rule:

B = C

A[B/x] = A[C/x]

provided that the substitutions are free.
5) Fixpoint axiom. This states that µ-provides a fixpoint

operator:

µx.A = A[µx.A/x]

6) Uniqueness of fixed points:

A = B[A/x]

A = µx.B

Notation V.1. (1) Of course, we write = for the least
equivalence of Exp given by the above axioms and rules,
and we write q : Exp → Exp/= for the canonical quotient
map.

(2) It is obvious that Exp/= carries the structure of a
vector space with operations given by scalar multiplica-
tion and addition of expressions, and with the zero vector
µx.0 : x. Equivalently, Exp/= is an Eilenberg-Moore
algebra for the free vector space monad L, and we denote
by a : L(Exp/=) → Exp/= the corresponding algebra
structure.

Example V.2. To illustrate how our calculus works we
give expressions for the circuits in (1) and (2) and prove
them equivalent. The (output stream of) the circuit (1) is
represented by the expression A = µx.1 : 2x. For (2) we
obtain the expression

B =
1

2
(µx.1 : (x+ x) + µy.1 : 2y)

Let us write B′ = µx.1 : (x + x) and B′′ = µy.1 : 2y so
that B = 1

2 (B′ +B′′). We have B′′ = A by α-equivalence.
By the fixpoint rule we have B′ = 1 : B′ + B′ and this is
1 : 2B′ = (1 : 2x)[B′/x] by the vector space axioms. Now
an application of the uniqueness rule yields B′ = A. Thus,
we have

B =
1

2
(B′ +B′′) =

1

2
(A+A) = A,

using the replacement rule and the vector space axioms.

7

A. Soundness and Kleene’s Theorem

Our goal in this subsection is to show that the calculus
introduced above is sound. We will also prove that the
behavior of any state of a finite dimensional linear system
can, equivalently, be described by a linear expression; this
is an analog of Kleene’s theorem. Before we come to these
main results we will need to prove a number of technical
lemmas.

Lemma V.3. There is a coalgebra structure c : Exp/= →
H(Exp/=) such that a·Lq : LExp→ Exp/= is a coalgebra
homomorphism.

Lemma V.4. For every finite dimensional system (S, g) there
exists a coalgebra homomorphism h : (S, g)→ (Exp/=, c).

Our proofs of this result and Lemma V.8 below are
simpler than the corresponding proofs in [5], and we believe
that this simplification also applies to the setting of loc. cit.
We will sketch our proof here; the details are given in the
Appendix.

Sketch of Proof: Let (S, g) be a finite dimensional
linear system. Take a basis { s1, . . . , sn } for S and let

g(si) =

ri, n∑
j=1

rijsj

 , i = 1, . . . , n. (7)

We shall construct expressions 〈〈si〉〉, i = 1, . . . , n, by an
n-step process. Our expressions will involve the variables
x1, . . . , xn. For every i, let

A0
i = µxi.(ri : (ri1x1 + · · ·+ rinxn)).

Now define for k = 0, . . . , n− 1

Ak+1
i =

{
Aki {Akk+1/xk+1} if i 6= k + 1

Aki if i = k + 1

where {A/x} denotes syntactic replacement (i. e., substitu-
tion without renaming of bound variables). It is easy to see
that the set of free variables of Aki is {xk+1, . . . xn }\{xi },
and moreover, every occurrence of those variables is free.
Now let 〈〈si〉〉 = Ani and let h : S → Exp/= be the unique
linear map with h(si) = [〈〈si〉〉]. One now proves that h
is a coalgebra homomorphism; this involves using all the
axioms and rules of our expression calculus except for the
uniqueness rule.

We are ready to prove our version of Kleene’s theorem
stating that every state of a finite dimensional system can
be described by a linear expression.

Corollary V.5. For every state s of a finite dimensional
linear system (S, g) there is an expression 〈〈s〉〉 with s ∼
〈〈s〉〉.

Proof: Indeed, take a homomorphism h : S → Exp/=
and let 〈〈s〉〉 be any representative of the equivalence class
h(s) in Exp (considered as an element of the coalgebra LExp

via ηExp). We have the coalgebra homomorphism a ·Lq (see
Lemma V.3) with h(s) = a · Lq(〈〈s〉〉) in Exp/=. Thus, s
and 〈〈s〉〉 are behavioral equivalent as desired.

Theorem V.6. (Soundness) Whenever we have A = B for
two linear expressions, then JAK = JBK.

Proof: Let i : Exp/= → Rω be the unique homo-
morphism of coalgebras. We will verify that the following
diagram commutes (notice that ` is the homomorphism
from (5)):

Exp
q

//

ηExp
""

J−K
//

Exp/=

i

��

LExp

`
$$

a·Lq

::

Rω

(8)

Indeed, the lower left-hand triangle commutes by the def-
inition (5) of J−K. The lower right-hand triangle consists
of coalgebra homomorphisms, and so it commutes by the
universal property of the final coalgebra. Finally, the upper
triangle commutes using that η is a natural transformation
and the unit law a · ηExp/= = id of the Eilenberg-Moore
algebra a.

Now A = B holds iff q(A) = q(B), and this implies
JAK = JBK.

B. Completeness

In this subsection we prove the completeness of our
logical calculus. The main technical tool to establish this
result is a characterization of the coalgebra Exp/= by a
universal property: this coalgebra is the final locally finite
dimensional coalgebra for H .

We present the proof of the main results in form of a
number of technical lemmas.

Lemma V.7. The coalgebra structure c : Exp/= →
H(Exp/=) is a linear isomorphism.

Lemma V.8. Let (S, g) be a finite dimensional linear system.
Then there exists a unique coalgebra homomorphism from
(S, g) to (Exp/=, c).

Corollary V.9. The coalgebra (Exp/=, c) is the final locally
finite coalgebra for H .

Proof: That Exp/= is locally finite dimensional follows
from Corollary IV.7: for every equivalence class [A] in
Exp/= the subcoalgebra 〈[A]〉 is a quotient of the subcoal-
gebra 〈A〉 of LExp via the restriction of the homomorphism
a · Lq : LExp → Exp/=. Hence, since 〈A〉 is finite
dimensional, so is 〈[A]〉.

8

The universal property of the coalgebra Exp/= now
follows from Lemma V.8 and Theorem III.14 applied to the
case A = VecR and HX = R×X .

Lemma V.10. The coalgebra homomorphism i : Exp/=→
Rω is injective.

Sketch of Proof: Take the factorization of i into a
surjective followed by an injective linear map:

i = (Exp/=
e // //I //

m //Rω)

Observe that the functor HX = R×X preserves monomor-
phisms. By the unique diagonalization property we see that
I carries the structure of a coalgebra such that e and m are
coalgebra homomorphisms:

Exp/=

e
����

c // R× Exp/=

R×e
��

I //

m

��

R× I
��

R×m
��

Rω
〈hd,tl〉

// R×Rω

Using Theorem III.14, it is now easy to prove that (a) I is
locally finite dimensional, and (b) I is the final locally finite
dimensional H-coalgebra, see the Appendix for details.

From item (b) we now conclude that Exp/= and I are
isomorphic via the homomorphism e since final objects
are unique up to isomorphism. Thus, i = m · e is a
monomorphism as desired.

Corollary V.11. The coalgebra Exp/= is isomorphic to the
coalgebra of rational streams.

Theorem V.12. (Completeness) For any two expressions A
and B with JAK = JBK we have A = B in Exp/=.

Proof: Recall the commutative diagram (8).
Now if JAK = JBK, we have, since i is a monomorphism,

that q(A) = q(B), and equivalently A = B holds.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented an expression calculus for finite closed
valid stream circuits or, equivalently, states of finite di-
mensional linear systems. Our main results are a version
of Kleene’s theorem for finite dimensional linear systems
and the soundness and completeness of our calculus for
reasoning about the semantic equivalence of finite closed
valid stream circuits. We also gave a general category-
theoretic account of the notion of locally finite coalgebras
for set functors. We introduced the notion of a locally finitely
presentable coalgebra and we proved that these coalgebras
are precisely the filtered colimits of coalgebras with a finitely
presentable carrier. It follows that for a finitary endofunctor
H of an lfp category the final locally finitely presentable
coalgebra exists and is precisely the same as an initial

iterative algebra for H (cf. [10]). For endofunctors of Set
preserving weak pullbacks (and therefore monomorphisms)
our notion coincides with that of [5]. For weak pullback
preserving functors on VecR our notion yields locally finitely
dimensional coalgebras.

An immediate question for future work is the decidability
of the calculus of the present paper. Furthermore, it should
not be difficult to develop a general calculus which is
parametric in the endofunctor H . Analogously as in the work
of Bonsangue, Rutten and Silva [4], [5] our approach here
should provide a Kleene theorem and a sound and complete
expression calculus for various types of linear systems in a
uniform way. It will also be interesting to try and develop
a calculus for the semantic equivalence of open stream
circuits. In this respect work on the formal language of
recursion by Moschovakis et al [21] and Moss [22] and work
on iteration theories [11] may well turn out to be relevant.

Finally, it should be interesting to generalize our results
from the category of vector spaces to categories of algebras
for a monad. More detailed, we see that our calculus is a
combination of an equational presentation of vector spaces
with the behavioral differential equations for the operations
provided by HX = R×X (which are essentially captured
by the distributive law λ), and this is extended by a unique
fixed point operator.

A possible generalization of our results should start with
a finitary monad M of Set, a finitary functor H on Set and
a distributive law λ of M over H . Then H has a lifting
H to the category SetM of Eilenberg-Moore algebras and
the terminal coalgebra T for H is equipped with an M -
algebra structure such that it is the terminal coalgebra for
H . It should be interesting to see whether an equational
presentation of M and a concrete description of λ can be
combined with a unique fixed point operator to obtain a
sound and complete expression calculus for H-coalgebras
in SetM .

ACKNOWLEDGMENTS

The author wishes to thank Jiřı́ Adámek and Larry Moss
for useful discussions, and Alexandra Silva for her very
helpful comments.

REFERENCES

[1] S. C. Kleene, “Representation of events in nerve nets and fi-
nite automata,” in Automata Studies, ser. Annals of Mathemat-
ics Studies, C. E. Shannon and J. McCarthy, Eds. Princeton
University Press, 1956, no. 34, pp. 3–41.

[2] D. Kozen, “A completeness theorem for Kleene algebras and
the algebra of regular events,” Inform. and Comput., vol. 110,
no. 2, pp. 366–390, 1994.

[3] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva,
“Coalgebraic logic and synthesis of mealy machines,” in
Proc. Foundations of Software Science and Computation
Structures (FOSSACS), ser. Lecture Notes Comput. Sci., vol.
4962. Springer, 2008, pp. 231–245.

9

[4] ——, “A Kleene theorem for polynomial coalgebras,” in
Proc. Foundations of Software Science and Computation
Structures (FOSSACS), ser. Lecture Notes Comput. Sci.,
L. de Alfaro, Ed., vol. 5504. Springer, 2009.

[5] ——, “An algebra for Kripke polynomial coalgebras,” in
Proc. 24th Annual Symposium on Logic in Computer Science
(LICS’09). IEEE Computer Society, 2009, pp. 49–58.

[6] F. Bonchi, M. M. Bonsangue, J. J. M. M. Rutten, and
A. Silva, “Deriving syntax and axioms for quantitative reg-
ular behaviours,” in Proc. 20th International Conference on
Concurrency Theory (CONCUR), 2009.

[7] M. Bonsangue and A. Kurz, “Presenting functors by op-
erations and equations,” in Proc. Foundations of Software
Science and Computation Structures (FOSSACS), ser. Lecture
Notes Comput. Sci., vol. 3921. Springer, 2006.

[8] B. Jacobs, “A bialgebraic review of deterministic automata,
regular expressions and languages,” in Goguen Festschrift,
ser. Lecture Notes Comput. Sci., vol. 4060, 2006.

[9] J. Adámek, S. Milius, and J. Velebil, “Free iterative theories:
a coalgebraic view,” Math. Structures Comput. Sci., vol. 13,
no. 2, pp. 259–320, 2003.

[10] J. Adámek, S. Milius, and J. Velebil, “Iterative algebras at
work,” Math. Structures Comput. Sci., vol. 16, no. 6, pp.
1085–1131, 2006.

[11] S. L. Bloom and Z. Ésik, Iteration Theories: the equational
logic of iterative processes, ser. EATCS Monographs on
Theoretical Computer Science. Springer, 1993.

[12] J. J. M. M. Rutten, “Universal coalgebra: a theory of systems,”
Theoret. Comput. Sci., vol. 249, no. 1, pp. 3–80, 2000.

[13] J. Lambek, “A fixpoint theorem for complete categories,”
Math. Z., vol. 103, pp. 151–161, 1968.

[14] P. Aczel and N. Mendler, “A final coalgebra theorem,” in
Proc. Category Theory and Computer Science (CTCS), ser.
Lecture Notes Comput. Sci., vol. 389, 1989, pp. 357–365.

[15] J. J. M. M. Rutten, “A coinductive calculus of streams,”
Math. Structures Comput. Sci., vol. 15, no. 1, pp. 93–147,
2005.

[16] ——, “Rational streams coalgebraically,” Log. Methods Com-
put. Sci., vol. 4, no. 3:9, p. 22 pp., 2008.

[17] J. Adámek and J. Rosický, Locally presentable and accessible
categories. Cambridge University Press, 1994.

[18] C. C. Elgot, “Monadic computation and iterative algebraic
theories,” in Logic Colloquium ’73. Amsterdam: North-
Holland Publishers, 1975.

[19] J. Adámek, S. Milius, and J. Velebil, “Semantics of higher-
order recursion schemes,” in Proc. Coalgebraic and Algebraic
Methods in Computer Science (CALCO’09), ser. Lecture
Notes Comput. Sci., A. Kurz, M. Lenisa, and A. Tarlecki,
Eds., vol. 5728. Springer, 2009, pp. 49–63.

[20] S. Ginali, “Regular trees and the free iterative theory,” J. Com-
put. System Sci., vol. 18, pp. 228–242, 1979.

[21] A. J. C. Hurkens, M. McArthur, Y. N. Moschovakis, L. S.
Moss, and G. T. Whitney, “The logic of recursive equations,”
J. Symbolic Logic, vol. 63, no. 2, pp. 451–478, 1998.

[22] L. S. Moss, “Recursion and corecursion have the same
equational logic,” Theoret. Comput. Sci., vol. 294, pp. 233–
267, 2003.

10

APPENDIX

Proof of Theorem II.1: (1) ⇒ (2). Let (S, g) be a finite dimensional linear system. Pick a basis { s1, . . . , sn } of S. It
suffices to construct for every basis vector si a finite closed valid stream circuit representing the same stream as si. Suppose
that we have

g(si) = (ri,

n∑
j=1

rijsj), i = 1, . . . , n.

Using this information we construct a stream circuit as follows: take for every basis vector si a register mi with the initial
value ri; use for each i adders and r-multipliers in the obvious way to compute from the outputs of mj , j = 1, . . . , n,
the input stream of mi according to the second component of g(si). Clearly this yields a finite closed valid stream circuit
computing at the output of the register mi the stream represented by si.

(2) ⇒ (1). Suppose we are given a finite closed valid stream circuit C. Let σ be the stream computed at some output
wire o. We shall provide a finite dimensional linear system with a state representing σ. Let X be the set of registers of the
given stream circuit C. The state space of the desired linear system is LX . To provide the necessary coalgebra structure
c : LX → R × LX it suffices to provide for every x ∈ X some pair c(x) ∈ R × LX . The first component of c(x) is the
initial value of the register x. And the second component of c(x) is a formal linear combination of elements of X whose
syntax tree tx is constructed as follows: initialize tx to be empty and traverse C backwards starting at the input wire of
x; whenever an adder is met add a +-node to t and compute the two subtrees rooted at the node by recursively traversing
the input wires of the adder; for an r-multiplier add a node labelled the corresponding scalar multiplication to tx and to
compute the subtree rooted at the new node by traversing C at the input wire of the r-multiplier; if the output wire of a
copier is met during traversal of C just continue traversing at its input wire; finally, if a register y ∈ X is met add a leaf
labelled y to tx. Since C is a finite circuit where every loop passes through at least one register, it is clear that this process
stops after finitely many steps with a (syntax tree of a) finite linear combination tx. It is also easy to prove by structural
induction on tx that the stream represented by the state x in the linear system LX is the same as the stream computed as
the output of the register x. Finally, the state representing the output o is obtained by constructing an element to of LX in
the same way as tx above but by starting traversal of the circuit C at the wire o instead.

Proof of Lemma III.5: Let q : Y → X be a split epimorphism with finitely presentable domain Y . We show that X
is finitely presentable, too. Choose some morphism m : X → Y with q ·m = idX . Now suppose we have some morphism
f : Y → C where C = colimCi is a filtered colimit with injections ci : Ci → C. Since X is finitely presentable, we have
some Ci and some morphism f ′ : X → Ci such that ci · f ′ = f · q. Then we also have ci · f ′ ·m = f · q ·m = f .

For the essential uniqueness assume that f ′, f ′′ : Y → Ci are two morphisms with ci · f ′ = ci · f ′′ = f . Then also
ci ·f ′ · q = ci ·f ′′ · q. So, since X is finitely presentable, there exists some Cj and some connecting morphism cij : Ci → Cj
in the diagram such that cij · f ′ · q = cij · f ′′ · q. Hence, we also have cij · f ′ = cij · f ′′, since q is an epimorphism.

Proof of Lemma III.8: We proceed in two steps:

(i) we prove that under the current assumptions condition (1) in Definition III.7 implies condition (2), and
(ii) then we prove that conditions (1) and (1’) are equivalent.

Ad (i). Suppose that (S, s) is coalgebra satisfying condition (1) of Definition III.7. We have to prove condition (2). Let
f : X → S be a morphism with a finitely presentable domain, let h : (P, p)→ (S, g) be a coalgebra homomorphism, where
P is finitely presentable, and let f ′, f ′′ : X → P be such that h · f ′ = h · f ′′. Now take the coequalizer c : P → C of f ′

and f ′′ in A . Since both X and P are finitely presentable, so is C, see Remark III.4(1). By the universal property of C
we obtain a morphism g : C → S such that g · c = h. Now we apply condition (1) to obtain a coalgebra (P ′, p′) with P ′

finitely presentable, a morphism g′ : C → P ′ and a coalgebra homomorphism h′ : (P ′, p′) → (S, s) such that h′ · g′ = g.
Now we factorize h′ = m · e as a strong epimorphism e : P ′ → P ′′ followed by a monomorphism m : P ′′ → S. All in all
we have the following commutative diagram:

P

h

��

c // // C

g

��

g′
// P ′

h′

ww

e
����

X
f
//

f ′

??

f ′′

??

S P ′′oo
m

oo

(9)

Because epimorphisms split by hypothesis, we see that P ′′ is a finitely presentable object (see Lemma III.5). Since H
preserves monomorphisms we obtain, by the unique diagonalization property, a coalgebra structure on P ′′ such that e and

11

m are homomorphisms:

P ′
p′
//

e
����

HP ′

He
��

P ′′
p′′
//

��

m

��

HP ′′
��

Hm

��

S
s
// HS

To complete the first step of the proof we show that e · g′ · c : P ′ → P ′′ is a coalgebra homomorphism merging f ′ and f ′′.
Indeed, the latter is clear since c · f ′ = c · f ′′, and for the former consider the following diagram:

P
p
//

e·g′·c

��

HP

H(e·g′·c)
��

P ′′
p′′
//

��

m

��

HP ′′
��

Hm

��

S
s
////

h

HS oo

Hh

The outside of the diagram commutes since h is coalgebra homomorphism, the left-hand and right-hand parts commute
since h′ = m · e and by (9). Since the lower inner square commutes, we see that the upper inner square commutes when
extended by Hm. So since Hm is a monomorphism the desired upper square commutes.

Ad (ii). Let (S, s) be a coalgebra. To prove that (1) ⇒ (1′) let f : X → S be a subobject. By (1) we have the coalgebra
homomorphism h : (P, p) → (S, s) and f ′ : X → P with h · f ′ = f . Now factorize h = m · e as a strong epimorphism
followed by a monomorphism. Then the codomain is the desired subcoalgebra of S.

For the implication (1′) ⇒ (1) suppose that f : X → S is an arbitrary morphism. Take a strong epi-mono factorization
f = m · e and apply (1’) to m; so m factors through some subcoalgebra of S via some morphism m′. Then m′ · e is the
desired factorization.

Proof of Lemma III.9: Let (S, s) be a locally finitely presentable coalgebra and let e : (S, s)→ (T, t) be an epimorphic
coalgebra homomorphism, i. e., e is a coalgebra homomorphism that is an epimorphism in A . Take some morphism m :
T → S such that e ·m = idT .

Now suppose that f : X → T is a morphism with finitely presentable domain. Since S is locally finitely presentable we
have a coalgebra (P, p) with P finitely presentable, a morphism f ′ : X → P and a coalgebra homomorphism h : (P, p)→
(S, s) such that m · f = h · f ′. Then also f = e · h · f ′, i. e., we have found an appropriate factorization of f . Thus, from
the fact that under our assumptions condition (1) of Definition III.7 implies condition (2) (see the proof of Lemma III.8),
we conclude that (T, t) is locally finitely presentable.

Proof of Theorem III.12: Denote by Afp the full subcategory of A given by all finitely presentable objects. Recall that
S = colimD′ where D′ : Afp/S → A is the canonical diagram of all finitely presentable objects over S, see [17]. We shall
show that the forgetful functor U ′ : D → Afp/S given by the forgetful functor U : Coalgf(H)→ Afp is cofinal. Indeed, for
every (X, f) in Afp/S we have ((P, p), h) in D and a morphism f ′ : (X, f) → (P, h) in Afp/S by the fact that (S, g) is
locally finitely presentable (use condition (1) in Definition III.7). Now given two morphisms f ′ : (X, f) → U ′((P, p), h))
and f ′′ : (X, f) → U ′((P ′, p′), h′) in Afp/S one easily finds morphisms g′ and g′′ in D with U ′(g′) · f ′ = U ′(g′′) · f ′′
using the filteredness of D as well as condition (2) in Definition III.7.

Proof of Theorem III.14: Necessity is clear. For sufficiency let (S, g) be locally finitely presentable and take any
((P, p), inp) in D , see Observation III.11(2). Since (P, p) is a coalgebra in Coalgf(H) we have a unique homomorphism
p] : (P, p) → (R, r). Then by the uniqueness we see that all the homomorphisms p] form a cocone; indeed, for every
homomorphism k : (P, p)→ (Q, q) in Coalgf(H) we have p] = q] · k. Thus, by the universal property of the colimit (S, g)
there exists a unique homomorphism h : (S, g)→ (R, r) with

h · inp = p] for all ((P, p), inp) in D .

Since this equation must hold for every homomorphism from (S, g) to (R, r) by hypothesis we are done.

12

Proof of Lemma V.3: We first show that the map

m = (Exp
t //LHExp

λExp
//HLExp

HLq
//HL(Exp/=)

Ha //H(Exp/=))

is well-defined on equivalence classes.
(1) One first verifies this for the vector space axioms. Let A be an expression with m(A) = (r, [B]). Then one easily

checks that
m(A+ µx.0 : x) = m(r + 0, [B + µx.0 : x]) = m(r, [B]) = m(A)

For the axiom A+ (−1)A = µx.0 : x we first compute

t(A+ (−1)A) = t(A)− t(A) = 0 ∈ LHExp.

Clearly, this is mapped to (0, [µx.0 : x]) by Ha ·HLq · λExp. Hence we have

m(A+ (−1)A) = (0, [µx.0 : x]) = m(µx.0 : x).

For all the other vector space axioms, already t is well-defined: for example we have

t(r(A+B)) = r(t(A) + t(B)) = rt(A) + rt(B) = t(rA) + t(rB) = t(rA+ rB).

The verification of the other vector space axioms is immediate and left to the reader.
(2) For the first of the behavioral differential equations we have

m(r : A+ s : B) = (r, [A]) + (s, [B]) = (r + s, [A+B]) = m((r + s) : (A+B))

and similarly for the second one.
(3) For α-equivalence we have:

m(µy.A[y/x]) = m(A[y/x][µy.A[y/x]/y]) = m(A[µy.A[y/x]/x) = m(A[µx.A/x]) = m(µx.A),

where all equations except the last but one are clear. To see that the last but one equation also holds assume that

t(A) =

n∑
i=1

ri(si, Bi)

for some ri, si ∈ R and Bi ∈ Exp, i = 1, . . . , n. Since substitutions in the expression A always happen within the scope of
some r : (−) operator we obtain

t(A[µx.A/x]) =

n∑
i=1

ri(si, Bi[µx.A/x]) and t(A[µy.A[y/x]/x) =

n∑
i=1

ri(si, Bi[µy.A[y/x]/x])

Now let

k =

n∑
i=1

risi.

Then one easily computes that

m(A[µx.A/x]) =

(
k,

[
n∑
i=1

riBi[µx.A/x]

])
and m(A[µy.A[y/x]/x) =

(
k,

[
n∑
i=1

riBi[µy.A[y/x]/x]

])
(notice that the big square brackets indicate equivalence classes). So since µx.A = µy.A[y/x] by α-equivalence, we see by
applying the replacement rule that the above two equivalence classes in the right-hand components are equal.

(4) For the fixpoint axiom we see that t is well-defined by definition.
(5) For the uniqueness rule, assume that A = B[A/x] with m(A) = m(B[A/x]). Then we have

m(µx.B) = m(B[µx.B/x]) = m(B[A/x]) = m(A),

where the last but one equation follows again by replacement using a similar argument than for α-equivalence above.
(6) For the replacement rule assume that B = C in Exp/= with m(B) = m(C). Then we must prove that for every

expression A with one free variable x we have m(A[B/x]) = m(A[C/x]). This is done by induction on N(A). Indeed, for
A = x we are done. For the case A = r : A0 we have

m(A[B/x]) = (r, [A0[B/x]]) = (r, [A0[C/x]]) = m(A[C/x]).

13

Now let A = rA0 so that A[B/x] = r(A0[B/x]) and similarly for C. By the induction hypothesis we have m(A0[B/x]) =
m(A0[C/x]) and this is some pair (s, [D]), say. It is easy to calculate that

m(rA0[B/x]) = (rs, r[D]) = m(rA0[C/x]).

The case A = A1 +A2 is analogous.
Finally, let A = µy.A0. By the induction hypothesis we have

m(A0[µy.A0/y][B/x]) = m(A0[µy.A0/y][C/x]).

So we can compute

m(A[B/x]) = m(µy.A0[B/x]) since A = µy.A0

= m(A0[B/x][µy.A0[B/x]/y]) since m is well-defined for the fixpoint rule
= m(A0[µy.A0/y][B/x]) by the properties of substitution
= m(A0[µy.A0/y][C/x]) by induction hypothesis
= m(A[C/x]) similar computation backwards.

We are finished with the proof that m is well-defined. Thus, we can define a coalgebra structure c : Exp/=→ H(Exp/=)
by putting c([A]) = m(A). It now follows that a ·Lq is a coalgebra homomorphism as desired; indeed, consider the diagram
below:

Exp
λExp·t

//

ηExp
&&

q

��

HLExp

H(a·Lq)

��

LExp

c

77

Lq

��

L(Exp/=)

a

��

Exp/=

ηExp/=
99

Exp/=
c
// H(Exp/=)

(10)

This diagram commutes: the outside commutes by the definition of c, the left-hand part by the naturality of η : Id → L,
the upper triangle commutes by the definition of the linear map c and the lower left-hand triangle is the unit law of the
Eilenberg-Moore algebra (Exp/=, a) for L. This shows that the desired right-hand part commutes when precomposed with
ηExp, and since all morphisms in this part are linear maps, this part commutes by the universal property of the free vector
space LExp.

Proof of Lemma V.4: Let (S, g) be a finite dimensional linear system. Take a basis { s1, . . . , sn } for S and let

g(si) =

ri, n∑
j=1

rijsj

 , i = 1, . . . , n. (11)

We shall construct expressions 〈〈si〉〉 for every i = 1, . . . , n by an n-step process. Our expressions will involve the variables
x1, . . . , xn. For every i, let

A0
i = µxi.(ri : (ri1x1 + · · ·+ rinxn)).

Now define for k = 0, . . . , n− 1

Ak+1
i =

{
Aki {Akk+1/xk+1} if i 6= k + 1

Aki if i = k + 1

where {A/x} denotes syntactic replacement (i. e., substitution without renaming of bound variables). It is easy to see that
the set of free variables of Aki is {xk+1, . . . xn } \ {xi }, and moreover, every occurrence of those variables is free.

We also see that for every i,

Ani = A0
i {A0

1/x1}{A1
2/x2} · · · {Ai−2

i−1/xi−1}{Aii+1/xi+1} · · · {An−1
n /xn} (12)

= Ai−1
i {A

i
i+1/xi+1} · · · {An−1

n /xn}. (13)

14

Observe that Ani is a closed term. Moreover, the variable xi from A0
i is never syntactically replaced and it is bound by the

outermost µxi. All other occurrences of xi in Ani are not bound by this µ-operator (but by µ-operators further inside the
term). We define

〈〈si〉〉 = Ani .

From now on we shall abuse notation and we will denote equivalence classes [A] of expressions in Exp/= simply by
expressions A representing them.

We will now prove that the desired coalgebra homomorphism h : S → Exp/= is the linear map given by h(si) = 〈〈si〉〉.
It suffices to verify that Hh · g(si) = c · h(si) holds for all basis vectors si. We first establish that we have the provable
equalities

〈〈si〉〉 = ri : (ri1〈〈s1〉〉+ · · ·+ rin〈〈sn〉〉), i = 1, . . . , n. (14)

To see this we compute as follows (and we explain the computation steps below):

〈〈si〉〉
(i)
= Ani
(ii)
= A0

i {A0
1/x1}{A1

2/x2} · · · {Ai−2
i−1/xi−1}{Aii+1/xi+1} · · · {An−1

n /xn}
(iii)
= ri : (ri1x1 + · · ·+ rinxn){A0

1/x1}{A1
2/x2} · · · {Ai−2

i−1/xi−1}{Aii+1/xi+1} · · · {An−1
n /xn}[Ani /xi]

(iv)
= ri : (ri1x1 + · · ·+ rinxn){A0

1/x1}{A1
2/x2} · · · {Ai−2

i−1/xi−1}{Aii+1/xi+1} · · · {An−1
n /xn}{Ani /xi}

(v)
= ri : (ri1x1 + · · ·+ rinxn){A0

1/x1} · · · {An−1
n /xn}

(vi)
= ri : (

n∑
j=1

rijA
j−1
j {Ajj+1/xj+1} · · · {An−1

n /xn})

(vii)
= ri : (

n∑
j=1

rij〈〈sj〉〉)

Indeed, step (i) is the definition of 〈〈si〉〉, equation (ii) holds due to (12), for step (iii) one applies the fixpoint axiom,
equation (iv) holds since Ani has no free variables, in step (vi) we just perform the syntactic replacement, and the last
equation (vii) holds due to (13). It remains to verify equation (v). Here we use the fact that the following syntactic identity
holds

A{B/x}{C{B/x}/y} ≡ A{C/y}{B/x}. (15)

Let us write A for ri : (ri1x1 + · · ·+ rinxn), for short. Using (12), repeated application of (15) yields

A{A0
1/x1} · · · {Ai−2

i−1/xi−1}{Aii+1/xi+1} · · · {An−1
n /xn}{Ani /xi}

= A{A0
1/x1} · · · {Ai−2

i−1/xi−1}{Aii+1/xi+1} · · · {An−1
i /xi}{An−1

n /xn}
...
= A{A0

1/x1} · · · {Ai−2
i−1/xi−1}{Ai−1

i /xi}{Aii+1/xi+1} · · · {An−1
n /xn}.

We are done with the verification of (14). Finally we verify that h is a coalgebra homomorphism; indeed, for every basis
vector si we have

c · h(si) = c(〈〈si〉〉) definition of h
= c(ri : (ri1〈〈s1〉〉+ · · ·+ rin〈〈sn〉〉)) by (14)
= (ri, (ri1〈〈s1〉〉+ · · ·+ rin〈〈sn〉〉) definition of c
= (ri, (ri1h(s1) + · · ·+ rinh(sn))) definition of h
= (ri, h(ri1s1 + · · ·+ rinsn)) since h is linear
= Hh(ri, ri1s1 + · · ·+ rinsn)
= Hh · g(si)

This completes the proof.
Proof of Lemma V.10: Let us define a map d : R× Exp/=→ Exp/= by

d(r, [A]) = [r : A].

This map is well-defined by the replacement rule, and it is easy to see that d is linear. We obviously have c · d = id .
Now we verify that d · c = id , i. e., we show that for every expression A we have d · c(A) = A by induction on N(A).

Indeed, for A = r : B we compute (dropping equivalence classes as usual)

d · c(A) = d(r,B) = r : B = A.

15

For A = B + C we have

d · c(A) = d(c(B) + c(C)) = d · c(B) + d · c(C) = B + C = A,

using the induction hypothesis in the last but one step. The case A = rB is completely analogous, and we leave it to the
reader. Finally, for A = µx.B we have

d · c(A) = d · c(B[A/x]) = B[A/x] = µx.B = A,

where in the second step we use the induction hypothesis.
Proof of Lemma V.8: We only need to verify the uniqueness; the existence of a homomorphism was proved in

Lemma V.4.
So suppose we have a coalgebra homomorphism m : (S, g) → (Exp/=, c). We will prove that m is equal to the

homomorphism h from Lemma V.4. As before we fix a basis { s1, . . . , sn} of S. Then it suffices to prove for every basis
vector si ∈ S that m(si) = 〈〈si〉〉. Let us write mi for m(si), for short. Let g(si) be as in (11). Then we compute

mi = c̄−1 ·Hm · g(si) (m homomorphism and Lemma V.10)

= c̄−1 ·Hm(ri,
n∑
j=1

rijsj) (by (11))

= c̄−1(ri,
n∑
j=1

rijm(sj))

= ri : (
n∑
j=1

rijmj).

(16)

For the proof that mi = 〈〈si〉〉, we show the case n = 3 in detail; the general case is completely analogous and is left to
the reader.

We start by proving that m1 = A0
1[m2/x2][m3/x3] by an application of the uniqueness rule; indeed, from (16) we get

m1 = r1 : r11m1 + r12m2 + r13m3

= ((r1 : (r11x1 + r12x2 + r13x3)[m2/x2][m3/x3])[m1/x1]

Next, we prove that m2 = A1
2[m3/x3]. Notice that A0

1[m2/x2][m3/x3] = A0
1[m3/x3][m2/x2] since m2 and m3 are closed.

Then, applying (16), we have

m2 = r2 : (r21m1 + r22m2 + r23m3)
= r2 : (r21A

0
1[m2/x2][m3/x3] + r22m2 + r23m3)

=
(
r2 : (r21A

0
1[m3/x3] + r22x2 + r23m3)

)
[m2/x2]

and so we can apply the uniqueness rule to obtain the desired equation.
Now we are able to prove that

m1 = A0
1{A1

2/x2}[m3/x3].

Notice first that we have A0
1{A1

2/x2} = A0
1[A1

2/x2] since x1 (which is bound in A0
1) is not free in A1

2. Now we obtain

A0
1[A1

2/x2][m3/x3] = A0
1[m3/x3][A1

2[m3/x3]/x2]
= A0

1[m3/x3][m2/x2]
= m1.

Finally, we show that m3 = A2
3 by another application of the uniqueness rule; we have

m3 = r3 : (r31m1 + r32m2 + r33m3)
= r3 : (r31A

0
1{A1

2/x2}[m3/x3] + r32A
1
2[m3/x3] + r33m3)

= (r3 : (r31A
0
1{A1

2/x2}+ r32A
1
2 + r33x3))[m3/x3].

So we have proved
m3 = A2

3 = A3
3 = 〈〈s3〉〉.

This implies that
m2 = A1

2[m3/x3] = A1
2[A2

3/x3] = A1
2{A2

3/x3} = A3
2 = 〈〈s2〉〉,

where the third equation holds since the bound variables x1 and x2 of A1
2 are also bound in A2

3. Similarly, we have

m1 = A0
1{A1

2/x2}[m3/x3] = A0
1{A1

2/x2}[A2
3/x3] = A0

1{A1
2/x2}{A2

3/x3} = A3
1 = 〈〈s1〉〉.

16

This completes the proof.
Proof of Lemma V.10: Take the factorization of i into a surjective followed by an injective linear map:

i = (Exp/=
e // //I //

m //Rω)

Observe that the functor HX = R ×X preserves monomorphisms. By the unique diagonalization property we see that I
carries the structure of a coalgebra such that e and m are coalgebra homomorphisms:

Exp/=

e
����

c // R× Exp/=

R×e
��

I //

m

��

R× I
��

R×m
��

Rω
〈hd,tl〉

// R×Rω

It is now easy to show that (a) I is locally finite dimensional, and (b) I is the final locally finite dimensional H-coalgebra.
Ad (a): This follows from Lemma III.9 since Exp/= is locally finite dimensional and since HX = R × X preserves

monomorphisms.
Ad (b): for every finite dimensional coalgebra (S, g) we have the homomorphism e · h : S → I , where h is the

homomorphism obtained by Lemma V.4. This must be unique; indeed, if h′ : S → I is any other homomorphism we have
m · h′ = m · e · h by the finality of Rω . So since m is a monomorphism we also have h′ = e · h. That I is the final locally
finite dimensional coalgebra now follows from Theorem III.14.

From item (b) we now conclude that Exp/= and I are isomorphic via the homomorphism e since final objects are unique
up to isomorphism. Thus, i = m · e is a monomorphism as desired.

17

