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Abstract. Large asynchronous systems composed from synchronous compo-
nents (so called GALS—globally asynchronous, locally synchronous—systems)
pose a challenge to formal verification. We present an approach which abstracts
components with contracts capturing the behavior by a mixture of temporal logic
formulas and non-deterministic state machines. Formal verification of global sys-
tem properties is then done transforming a network of contracts to model check-
ing tools such as PROMELA/SPIN or UPPAAL. Synchronous components are
implemented in SCADE, and contract validation is done using the SCADE De-
sign Verifier for formal verification. We also discuss first experiences from an
ongoing industrial case study applying our approach.
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1 Introduction

State-of-the-art safety critical systems are often composed of other distributed (compo-
nent) systems (system of systems (SoS)). While industrial standards for the develop-
ment of safety-critical software systems highly recommend formal model-based meth-
ods, application of those methods to SoS still remains a challenge when scalability to
real industrial applications is concerned.

In this paper we report on work in progress concerning the development of an ap-
proach to modeling and verification of SoS that is innovative for the industrial practice
and addresses the scalability problem. In our approach the nodes of a distributed sys-
tem consist of controllers performing specialized tasks in hard real time by operating
cyclically and in a synchronous way. For such a controller the model-based approach
of SCADE? is an attractive solution providing code generation and good support for
model simulation and (formal) verification. But for a distributed system, a synchronous
implementation is neither realistic nor desirable. Hence, we focus on the model-based

* This work was developed during the course of the project “Verifikation von Systemen syn-
chroner Softwarekomponenten” (VerSyKo) funded by the German ministry for education and
research (BMBF).

3 SCADE is developed and distributed by Esterel Technologies:
www.esterel-technologies.com
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development and analysis of asynchronously communicating embedded control sys-
tems that are composed from components that operate synchronously; this is known as
a GALS (globally asynchronous — locally synchronous) architecture; this goes back
to Chapiro [8], and it is the preferred solution for complex safety relevant control tasks.

The main idea to address the complexity issues of GALS systems is to provide for
each synchronous component an abstract model in the form of a contract that can be
locally verified for the component (e. g. by SCADE Design Verifier, the formal veri-
fication engine of SCADE). The network of component contracts then forms an ab-
stract GALS model against which a system requirement (called system-level verifi-
cation goal) can be formally verified. This is done by a model transformation of the
abstract GALS model into an appropriate formalism/tool for model checking—we use
PROMELA/SPIN and UPPAAL, respectively, for model checking system-level verifi-
cation goals.

Integrating synchronous components within an asynchronous environment using the
GALS approach and using abstraction to handle system’s complexity are not new ideas.
What is new in our work is the combination of GALS verification with the idea of ab-
straction by contracts and its application to networks of synchronous SCADE models.
Hence, since SCADE is an industrial strength tool for synchronous controller software,
our framework contributes towards closing the methodological gap between the ap-
plicability of formal verification for single controllers and asynchronously composed
systems of such controllers in an industrial context.

In addition, the previous work on GALS systems pertains to systems whose compo-
nents were designed to interact synchronously but are later integrated asynchronously.
In our work we assume that GALS systems are designed to consist of synchronous
components that are intended to be composed asynchronously (GALS systems by de-
sign). We introduce a new specification language for GALS systems, and we design and
implement model transformations between our language and appropriate model check-
ing tools (PROMELA/SPIN, SCADE Design Verifier and UPPAAL). These are parts of
a larger framework for (formal) verification of GALS systems that also contains higher
level, user-friendly and domain specific (graphical) languages as well as methods and
tools for test automation and analysis. These other aspects of the framework cannot be
presented within the page constraints of this paper. More details on them can be found
in the technical report [33] and in [17]. We also do not discuss a systematic way to de-
rive suitable contracts for given components—this can be a challenging task in practise,
but we leave the solution of this problem for future work.

We begin in Sec. 2 with a discussion of our system level verification approach. In
Sec. 3 we introduce our modeling language for GALS systems—the GALS translation
language (GTL). Next we briefly describe the transformation algorithms used for local
and global verification of GALS systems (Sec. 4) and we provide a benchmark for the
verification back-ends using a simple example of a GALS system (Sec. 5). Finally, we
report about first experiences of our tools on an industrial case study in Sec. 6.

1.1 Related Work. Numerous publications are devoted to combining synchrony with
asynchrony and the verification of GALS systems. For example, Doucet et al. [11] de-
scribe how C-Code generated from synchronous components in SIGNAL is integrated
in PROMELA abstracting the communication framework by FIFO channels. Thivolle
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and Garavel [12] explain the basic idea of combining a synchronous language and an
asynchronous formalism, and they also show how synchronous components can be in-
tegrated into an asynchronous verification tool and demonstrate this with one simple
example. In these works components are not abstracted by contracts as in our approach
but synchronous models are directly integrated in an asynchronous formalism. How-
ever, the results from our case study clearly indicate that component abstraction is nec-
essary.

A different approach follows Milner’s result [26] that asynchrony can be encoded
in a synchronous process calculus, see e. g. [20, 22, 28], and the tool Model build [5, 6]
as well as the Polychrony workbench [25]. A disadvantage of these approaches is that
asynchrony and non-determinism are not built-in concepts in the underlying formalisms
and so verification tools may not be optimized for asynchronous verification.

Other approaches extend synchronous formalisms in order to deal with some de-
gree of asynchrony, e.g., Multiclock Esterel [29] or Communicating Reactive State
Machines [30,31]. Again, components are not abstracted in these approaches, and ac-
cording to [12]: “such extensions are not (yet) used in industry”.

Using contracts as specifications for parts of a program or system is also not a new
idea; see for example work on rely/guarantee logic [23]. Abstracting system compo-
nents by contracts appears recently, for example, in [15, 14] and in [7]. The former
work uses component contracts in the form of time-annotated UML statecharts. So this
approach does not deal directly with synchronous components or GALS systems. In ad-
dition, component contracts cannot be specified by LTL formulas as in our framework.
The latter work [7] describes a way to use contracts to specify the behaviour and inter-
actions of hardware components. The focus is on the verification of contracts while our
work also considers formal verification of system-level verification goals of composed
contract-systems.

Alur and Henzinger [3] treat the semantics of asynchronous component systems,
their reactive modules can be used to give a semantics to our GALS system specifica-
tions (see Sec. 3.2 below). Reactive modules are also the basis for the tool Mocha [1]
which uses Alternating Temporal Logic (ATL) as a specification language for system
requirements. In our approach the specification language for contracts and global ver-
ification goals is separate from the synchronous language in which components are
implemented. So our framework is more flexible—it allows to easily exchange the syn-
chronous language for components and it also allows to change the analysis tools used
for formal verification.

Clarke et al. describe an automatic approach to generating contract abstractions [9].
We did not apply this technique in our framework (yet) because we believe there are
several difficulties with this approach: it can only generate abstractions with the same
expressive power as regular languages, while our approach can also handle LTL abstrac-
tions. Also, the number of iterations needed for finding the abstraction might outweigh
the performance gains of the abstraction itself. But this still needs to be investigated
systematically in the future.

To sum up, the various ingredients (contracts for abstraction, synchronous verifica-
tion, GALS systems) of our work are well-established in the literature. However, to the
best of our knowledge these ingredients have not been brought together in this form for
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the verification of GALS systems of synchronous SCADE models, and it is this gap we
intend to fill with our work.

2 Verification of GALS systems

In this section we explain our general approach to system level verification of GALS
systems. Within our framework system verification proceeds along the following lines:

(1) System-level verification goals @ are specified as (timed) LTL formulas expressing
the desired behavior of the complete GALS system.

(2) The behavior of each synchronous component M is abstracted by its contract C'. The
contract C' contains an interface description of M, and to specify component behavior
we use a mixture of LTL formulas (“implicit modeling style”) and non-deterministic
state machines (“explicit modeling style”). Local verification then ensures that each
concrete component implements its contract which means that the traces matching the
concrete component are a subset of the traces matched by the contract, written: M =<
C.*Optionally, one may specify guaranteed behavior represented by additional LTL
formulas. Guaranteed behavior are assertions of specific behavioral situations (“use
cases”) which have already been exhaustively verified on component level. This re-
dundant information can be used during (manual) system-level validation to uncover
flaws in contract specifications or verification goals; for more details see [33].

(3) From the specification of all component contracts and their composition to a net-
work of components we derive an abstract GALS model C; this model exhibits every
possible behavior allowed by the contracts.

(4) The assertion “system satisfies ®”, i.e. Mg = @ for the network Mg of concrete
components is verified by property checking C¢; |= @ instead.

In this approach, the handling of verification failures (i. e., the formal verification of
C¢ | @ produces a failure trace ) deserves attention: Because the abstract network
has (in general) more traces than the concrete one, it follows that the failure trace 7 of
the abstract network is possibly not a trace of the concrete one. We call this a false nega-
tive and it can be uncovered by running a simulation of the concrete network, restricted
to traces where the observable behavior matches 7. If this simulation is successful, we
know that the failure trace 7 is indeed a witness to a failure in the concrete network
M. Otherwise, we can conclude that at least one of the contracts is too weak and has
to be strengthened to achieve successful verification.

Finally, notice that a false positive, i. e., the formal verification of C¢; |= & succeeds
while M¢ £ @ for the concrete network M of components, can happen because of an
inconsistency of a contract C' with its concrete model M. However, this cannot happen
if local verification of M < C in item (2) above is successful. As usual, we assume that
@ correctly formalizes its corresponding informal requirements.

4 Here we borrow notation from Alur’s and Henzinger’s reactive modules [3], cf. Sec. 3.2.

3 This is possible because the abstracted GALS model Cz operates on the complete concrete
interfaces specified for each component M, so that abstraction only introduces more general
behavior, but not abstracted data.
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3 GALS Translation Language (GTL)

In this section we present our specification language for GALS systems. We show how
to specify for each component M its contract C', how components are instantiated and
composed to a GALS system and how system-level verification goals are specified.

For illustration we use a simple mutual-exclusion specification in which three cli-
ents compete for a single resource (see Fig. 1). Each client is initially in its non-critical
section (state NC), may then want to acquire the resource (state ACQ), will then enter its
critical section (state CS) and must leave this section again after at most 5 synchronous
cycles (state REL). A server component which communicates with each client has to
ensure that only one client gets access to the resource at any time. We consider two
classic verification goals: the first one is a safety condition stating that at no point in time
more than one client is in the critical section, and the second one a liveness condition
stating that no client stays forever in its critical section.

3.1 Syntax. Each synchronous component type is introduced with a “model”-decla-
ration (lines 1 and 25 of Fig. 1). This declaration states the synchronous formalism in
which the component is implemented (in this example as SCADE models), the unique
name for reference in the GTL-file and a list of parameters which are needed to extract
the implementation (e.g., the location of the file in which the model is implemented or
its path in a library of components).

The interface of the component is declared by specifying input-, output- and local
variables (see lines 2—3 and 26-27). While the input- and output-variables must be iden-
tical to the in- and outputs of the concrete (SCADE) component, the local variables may
be different.® The GTL supports a wide range of types, including integers, booleans,
enumerations, arrays and tuples.

Initial values for the interface variables may be specified (lines 5 and 29), and for
each component type its cycle-time can be specified in (milli- or nano-)seconds.

Contracts for the model are also specified inside the model declaration. Each con-
tract can be either an automaton or an LTL formula. Automaton-contracts are a list of
states containing formulas which must hold for them and transitions into other states
(lines 6-22); the LTL formula in line 23 specifies that the critical section is left within
5 cycles, and the server component is also specified by an LTL formula. One can form
multiple instances of models (lines 38—41), and instances may add contracts to their
component type. Guaranteed behavior can be specified by LTL formulas following the
keyword guaranteed.

To enable communication between instances, a connect statement is used to link
an output variable of one component to the input of another component of the same
type (lines 42-44).

Finally, verification goals are specified as LTL formulas. These formulas can use
all in- and output variables of any component in the system (lines 45-52). It is usually
unclear which component of a composed GALS system makes a step in order for the
system to reach its successor state, so verification goals can use the temporal connec-
tives next[t] ¢, finally[t] ¢ and ¢ until[¢] ¢, where ¢ is a specified time.

® Note that it is not necessary to declare input and output variables if a SCADE component is
used as the type information can be extracted from it.
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model[scade] client(”mutex.scade”,”Mutex :: Client”) {

input bool proceed;
output enum { NC, ACQ, CS, REL } st;
cycle—time 5ms;
init st 'NC;
automaton {
init state nc {
st = 'NC or st = 'REL;
transition acq;
transition nc;
}
state acq {
st = "ACQ;
transition[proceed] cs;
transition [! proceed] acq;
}
state cs {
st = 'CS;
transition nc;
transition cs;

}
+s
always (st = CS => (st = ’CS until[5cy] st = "REL));
model[scade] server(”mutex.scade”,”Mutex :: Server”) {
input enum { NC, ACQ, CS, REL }"3 procstates;
output bool”3 procouts;
cycle—time 1ms;
init procouts [false ,false , false];
always (procstates[0] = "ACQ and procstates[1] != ’CS
and procstates[2] != °CS and procouts = [true,false ,h false])
or (procstates[1] = "ACQ and procstates[0] != °CS
and procstates[2] != °CS and procouts = [false ,true, false])
or (procstates[2] = ACQ and procstates[0] != °CS
and procstates[1] != °CS and procouts = [false,false ,true])
or (procouts = [false ,false , false]);

}

instance client cO;

instance client cl;

instance client c2;

instance server s;

connect cO.st s.procstates [0];

connect s.procouts[2] c2.proceed;

verify {
always (cO.st = CS = !(cl.st = ’CS or
always (cl.st = °CS => !(cO0.st = ’CS or

CS => !(c0.st = °CS or
"CS => finally [30ms] cO.
"CS => finally [30ms] cl.
CS => finally [30ms] c2.

always (c2.st
always (cO. st
always (cl.st
always (c2.st

c2.
c2.
cl.
st
st
st

st
st
st

= 'CS));
"CS));
= 'CS));
"REL) ;
"REL) ;
"REL) ;

Fig. 1. GTL specification of the mutual exclusion example
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3.2 Semantics of GTL specifications. Currently, the semantics of GTL specifications
is purely transformational given by the model transformations of Sec. 4. We shall now
sketch an idea how to define a formal semantics of GTL specifications using reactive
modules of Alur and Henzinger [3], and we will use notions and notation from the
theory of reactive modules to give an informal argument to substantiate our claim that
our approach to formal verification of GALS systems is correct. We leave the task of
working out the technical details of the proposed formal semantics for further work.

Our idea is to interpret every instance C' of a component in a GTL specification
as a reactive module with its input, output and local variables identical to the ones
declared in the contract of C'. The corresponding reactive module has exactly one update
block which updates every output variable of the component. To every initialization
declaration in C there is a corresponding initial action in the associated reactive module.

An automaton that is part of C"s contract is translated by converting it from a mixed
Moore/Mealy automaton to a pure Mealy-automaton and then introducing a fresh local
variable which is used to store the current state of the automaton. For each transition
from state s; to sy with the condition ¢, the following update action is added to the
corresponding reactive module: s = 51 A c — s’ = ss.

LTL contract formulas of C' are translated by converting them into Biichi automata
using the algorithm of Gastin and Oddoux [13]. To represent the resulting Biichi au-
tomaton within a reactive module one needs to add weak-fairness constraints to all tran-
sitions leading into a final state to ensure the preservation of the correct LTL-semantics.

The connect statements of the given GTL specifications are handled by using the
same name for the connected in- and outputs in the associated reactive modules.

In this way an abstract network of the contracts C', ..., C,, defined with a GTL
specification corresponds to the composition

Cg = S||C1] -+ [|Cn 3.1

on the level of reactive modules, where .S is an (automatically generated) scheduler,
i.e. a reactive module that ensures the fair synchronous execution of the C;: all com-
ponent start at the same time and then proceed according to their cycle times. Notice
here that we abuse notation and write C; for the reactive modules corresponding to the
abstract components.

Similarly, any concrete SCADE model M of a component can be interpreted as a
reactive module, and the network of the concrete components My, ..., M, then corre-
sponds to the composition

Mg = S||Myl|--- || My, 3.2)

where S is the same scheduler as above (again, abusing notation).

Of course, one can easily interpret LTL formulas over reactive modules, and since
the scheduler component S introduces a global timer variable one can also interpret
timed LTL formulas as follows: for a path m = s¢, 51, S92, . . . of an (abstract or concrete)
network of components N we have (a) m = next[t] ¢ if ¢ holds for every state s; in
7 reachable from s within time ¢, (b) 7 = finally[t] ¢ if there exists a state s; in 7
reachable within time ¢ in which ¢ holds, and (c) 7 = ¢ until[t] ¢ if 7 = ¢ until ¢ and
there exists a state s; in 7 reached within time ¢ in which v holds.
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As explained in Sec. 2, to verify Mg |= @ for a verification goal ¢ one now proceeds
as follows: (1) one verifies by local verification that each concrete model implements
its contract; in the notation of the corresponding reactive models: M; = C; for all
1 =1,...,n;(2) one verifies that the composed abstract model satisfies the verification
goal: Ci = . To see that this implies the desired result one argues as follows: firstly,
by the compositionality of < it follows that Ms < Cg, and, secondly, since the latter
essentially means that the traces of M are contained in the traces of Cy it clearly
follows that any LTL formula @ satisfied by C¢ also holds for Mg.”

Finally, note that on the level of reactive modules a false negative is a trace 7 of Cz
witnessing C; = @, whereas 7 is not a trace of M.

4 Model transformations for verification of GALS systems

In this section we show how various model transformations implement local and global
verification as outlined in the previous sections. We also explain how a method for
detection of false negatives is implemented.

4.1 Local Verification. The purpose of local verification is to show that for each
contract C' and corresponding SCADE model M we have M < C. This verification task
is done by transforming the contract into

synchronous observer nodes in SCADE (& = ' T
(cf. [19,21, 10]). Each LTL formula con- || = =] Y=
tained in the contract is first translated D> R ajﬁzb resun
to a state machine using the transla-

tion algorithm described by Gastin and wier / ;i;mpmmu/
Oddoux [13]. Due to restrictions of the ol

SCADE Design Verifier, it is only pos- (o oo

sible to use safety- or time-constrained ) \
liveness properties for this translation. )
As a result, for each abstract component

C we obtain a set of automata. Each Fig.2. Synchronous observer for client contract
of those automata is transformed into a

SCADE synchronous state machine (cf. [4]). This yields a set of observers that receive
the inputs and the outputs of M and generate boolean flows whose conjunction signifies
whether M implements its abstract component C. More precisely, the conjunction of
the outputs of the observers is true in a cycle iff the outputs produced by M on the in-
puts in that cycle are contained in the possible outputs admitted by the contract C' given
the same inputs. Fig. 2 shows the synchronous observer generated from the contract of
the client component in our mutex example.

4.2 Global Verification. In order to verify whether an abstract GALS model spec-
ified in GTL satisfies a verification goal ¢ one generates from the GTL specification

a PROMELA model C¢ that behaves like the composite model from (3.1). To this end
each contract is transformed into a set of automata as described above, and a PROMELA

7 Note that this works because LTL is defined on paths. For CTL, which works on trees, this
argument does not work.
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process for the contract is created by forming the product automaton. The different pro-
cesses asynchronously communicate via shared variables that correspond to the con-
nections of inputs and outputs of the synchronous component; for each connect
statement in the GTL model one shared variable is generated in the PROMELA model.
There is no buffering; component outputs of previous cycles are simply overwritten.
As previously explained, our model transformation also creates a scheduler for the fair
synchronous execution of the components. If the verification goal ¢ is an ordinary LTL
formula, it can simply be verified whether C¢ = @ by using SPIN. If ¢ contains
temporal connectives, timers are introduced in the PROMELA model. For example, the
formula ¢ until[t] ¢ is translated to

(c:=t)A((¢Ac>0)until (Y Ac>0));

and a timer variable c is created which is initialized with time ¢. Each time a syn-
chronous component (or rather its PROMELA process) makes a step, the timer c is
decremented by the amount of time that has passed since the last step was performed by
a (possibly different) synchronous component. For this translation to be sound, until[t]-
formulas must not be nested on the right-hand side.

The translation of the network of contracts in a GTL specification to UPPAAL
works similarly. However, it is not possible in general to translate all verification goals
since the supported logical language of UPPAAL is based on (timed) CTL [2]. However,
if we restrict ourselves to so-called safety properties, translation to CTL is both sound
and simple. While clearly inferior in the expressive power, this logical class of formulas
is sufficient for many practical purposes. Currently, translation of safety properties has
to be done manually.

4.3 Detection of False Negatives. We implemented a third transformation from GTL
that can be used to validate verification results for an abstract GALS model Cg. Sup-
pose we have C £ @ for a verification goal @ and the formal verification produces the
failure trace . If each component comes with a SCADE implementation, we can check
whether this is a real failure trace or a false negative as follows: using the GTL speci-
fication one generates the concrete GALS model M in PROMELA behaving like the
composite model in (3.2). This is done by composing the SCADE models of the com-
ponents (together with the scheduler) by integrating the C-code generated from them.
By using SPIN to simulate M on the inputs from 7 we can verify whether 7 is a trace
of M G .8

If so, we have found a real error, and one or several component implementations
need to be corrected. To support this process one can project the global failure trace m
on a local trace 7, for each component M, which can be used in the ensuing analysis:
from each s one can generate a SCADE simulator script which can be used to correct
the SCADE models of the components.

If the simulation finds that 7 is not a legal trace of the concrete GALS model M,
then our verification result is a false negative, and one needs to analyze the contracts for
weaknesses or inconsistencies.

8 Again, this simulation is possible since Cz operates on the complete concrete interfaces spec-
ified by each component M.
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For a concrete example of a false negative let us consider our mutex example. If we
omit line 23 of the client contract, which prevents clients from staying forever in their
critical section, the global verification of the second verification goal in Fig. 1 will yield
a failure trace: a client remains forever in the critical section. However, this does not
happen in the concrete model; the SCADE model of the client (not shown here) will
leave its critical section after at most 5 cycles.

5 Benchmark: The Mutex Example

To evaluate the GTL transformation to back-end formalisms, we use the mutex example
from Sec. 3 as a benchmark.

To this end a sequence of GTL files is generated by increasing the number N of
client processes that compete for the critical section. The server will (only) grant access
to the critical section to one requesting client (chosen non-deterministically), if no client
is currently in the critical section.

The state space of the system grows exponentially with increasing N. The property
that is model-checked for all instances is the previously mentioned classic safety condi-
tion: at no point in time more than one client is in the critical section. Since this is true,
the complete state space has to be analyzed.

The GTL representation is transformed to a model representation for SPIN and
UPPAAL, respectively. For SPIN, a verifier is (gcc-) compiled and executed with run-
time options —a and -m9999999k. This guarantees exhaustive and maximally deep
search. Other than that, none of the numerous optimization options of the tools are
activated. We use the newest available (64bit-)releases of the tools.

Fig. 3 displays the time and memory consumption with increasing number N of
clients. Unmapped N correspond to out-of-memory situations. After an initial offset,
the resource usage shows a steady slope on the logarithmic scale, which corresponds to
the exponential growth of the state space. Both SPIN and UPPAAL follow mainly the
same slope, but maintain roughly constant distance, which corresponds to a constant
factor. The time plot shows this better than the memory plot, since the latter operates
with a basic offset of allocated main memory (up to N = 5, due to option —m).

Surprisingly, this factor is rather large: ~ 53 for time without compiler optimiza-
tions (=~ 23 with full optimization) and ~ 87 for memory usage. Possibly, UPPAAL
profits substantially from the fact that only the reachable states have to be allocated at
all, while SPIN does provide (hash-compressed) memory for the full state space. More

details can be found in [27].
6 Case study

In the previous section we showed that our approach works on small academic exam-
ples. To see whether our method scales up to realistic systems we are currently working
on an industrial case study—a level crossing system from the railway domain.

The level crossing consists of several components (traffic lights, supervision sig-
nals, barriers etc.). An overview of the architecture is given in Fig. 4. The components
have been implemented as synchronous SCADE models, and are of medium complex-
ity: Failures, recovery and supervision aspects are implemented in each component. A
detailed informal description of the requirements of the level crossing system and its
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overall system architecture can be found in [32]. The implementation can be found at
the VerSyKo project web page.® A main global requirement of the level crossing system
is to protect the road traffic from the train traffic and vice versa. Without abstraction,
the state space of the system is too large to be handled by model checkers like SPIN:
an experiment to integrate the C-code generated from the SCADE models and using the
model checker SPIN yields a too large state space. This outcome validates our expec-
tation that it is necessary to reduce state space by providing abstractions of the local
synchronous components using contracts.

As a next step, we have formulated contracts for each of the components of the
level crossing system and used SCADE Design Verifier to prove the contracts correct.
Unfortunately, for the level crossing controller, SCADE Design Verifier did not succeed
in verifying our contract. The reason for this is yet unclear, but omitting one of the
three automata from the contract yielded a verifiable contract. We suspect that the third
automaton encodes a property that cannot be handled by the induction heuristics im-
plemented in SCADE Design Verifier. However, the Debug Strategy of SCADE Design
Verifier yielded no counterexamples unrolling the model up to depth 80. The results
of the contract verification can be seen in Table 1, which also shows the complexity
of both the SCADE model (estimated from the C-code generated from it) and the as-
sociated contract. The detection points in Fig. 4 do not appear because they are mere
sensors without controller software.

See http://www.versyko.de.
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Component Model complexity Contract complexity Verification time
(no. of states) (no. of states) (s)
traffic light 5.92 - 10%° 6 3.292
supervision signal 1.54 - 10* 4 5.054
barrier 2.46 - 10° 5 3.385
axle counter 2.88 - 103 3 4.103
level crossing controller 2.36 - 10*%® 32 543.599"

! Verified up to depth 80 using bounded model checking.
Table 1. Contract verification times

For a first experiment with global verification we have formulated the main require-
ment mentioned above as a verification goal in GTL. Since we have not completed an
automatic translation of GTL verification goals into UPPAAL’s query language, we did
not experiment with global verification using UPPAAL yet. Using SPIN resulted, as
expected from our benchmark in the previous section, in complexity problems.

7 Conclusions and Future Work

We presented a framework for the formal verification of GALS systems built from
synchronous SCADE models. Contacts are used as abstractions of concrete synchonous
components in order to handle system complexity. The goal is to obtain an approach
that can handle the formal verification of such systems in an industrial context. We also
presented first results from an ongoing industrial case study.

Let us summarize our findings sofar. First of all, our first experiments confirmed our
expectation that abstraction of components is necessary to handle the formal verification
of global verification goals.

Our experience formulating contracts for the industrial case study showed that it
can be non-trivial to define a correct and adequate abstraction that is qualified for model
checking, and leads to a diagnostically conclusive result. It may be necessary to inves-
tigate the implementation in more depth. In addition, contracts may need to be tailored
towards formal verification of a particular verification goal.

The local formal verification of contracts can be performed for small and medium
sized components using SCADE Design Verifier. But for bigger components one may
not be able to sucessfully complete formal verification. In such cases it is difficult to
analyze the reason for this as information on the details of the verification algorithm
of SCADE Design Verifier is not freely available. However, using the Debug Strategy
of SCADE Design Verifier one may still perform bounded model checking to uncover
errors in contract specifications and this way one can build trust in the correctness of
the contract. In addition, we saw that verifying contracts helps improving the compo-
nents’ quality. For example, for the traffic light controller the contract validation has
revealed a subtle error in the implementation. For two states in the SCADE model the
transition priorities were wrong—in a situation where the model must proceed to a fail-
ure state it will instead transition to a different state, this error has been corrected in the
implementation.

Our benchmark using SPIN and UPPAAL for global formal verification indicates
that those two analysis tools do not scale to real industrial applications and this is con-
firmed by our experiment with the industrial case study. Since it is necessary to gener-
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ate a scheduler component to facilitate the synchronous execution (in both SPIN and
UPPAAL) of the abstract GALS models, the timing abstraction provided by timed au-
tomata in UPPAAL does not reduce the state space enough in order for this verification
method to scale up.

Ongoing Work. To address the above mentioned complexity problems, we are now in-
vestigating a different and new approach using bounded model checking and a model
transformation for global verification from GTL to an SMT-solver. Our first experiments
using this approach indeed look promising and allow to check the absence of counterex-
amples to our global verification goals up to a fixed number of steps performed by the
abstract GALS model. Details on this new approach and a more extensive investigation
of the case study will be reported subsequently. More details on the current verification
results can be found in [16].

Directions for future work include: (a) exploring possible alternatives to SCADE
Design Verifier for local verification—an approach using bounded model checking with
an SMT-solver similar to the KIND [24] model checker for LUSTRE will be investi-
gated; (b) further investigations using bounded model checking for global verification
will be made on our case study, in particular, the formalization of other requirements as
global verification goals and the formulation of appropriate contracts for them; (c) from
the point of view of applicability of our approach a systematic methodology how to find
suitable abstractions of components and to formulate good contracts is highly desirable.
At the moment this is a creative process that needs expertise both with the system under
investigation and with the formal verification methods used in our framework. Con-
cerning this point, it should be investigated in how far tthe CEGAR approach of [9] is
applicable for automatic derivation of contracts.

Acknowledgments. We are grateful to ICS AG for providing the industrial case study,
and to Axel Zechner and Ramin Hedayati for fruitful discussions and their support to
formulate the contracts.
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