
Formal Safety Analysis in Industrial Practice

Ilyas Daskaya1, Michaela Huhn2, and Stefan Milius1

1 Institut für Theoretische Informatik, Technische Universität Braunschweig
Braunschweig, Germany

{I.Daskaya|S.Milius}@tu-braunschweig.de
2 Department of Informatics, Clausthal University of Technology

Clausthal-Zellerfeld, Germany
Michaela.Huhn@tu-clausthal.de

Abstract. We report on a comparative study on formal verification of two level
crossing controllers that were developed using SCADE by a rail automation man-
ufacturer. Deductive Cause-Consequence Analysis of Ortmeier et al. is applied
for formal safety analysis and in addition, safety requirements are proven. Even
with these medium size industrial case studies we observed intense complexity
problems that could not be overcome by employing different heuristics like ab-
straction and compositional verification. In particular, we failed to prove a crucial
liveness property within the SCADE framework stating that an unsafe state will
not be persistent. We finally succeeded to prove this property by combining ab-
straction and model transformation from SCADE to UPPAAL timed automata. In
addition, we found that the modeling style has a significant impact on the com-
plexity of the verification task.

Keywords: model-based development, SCADE, Deductive Cause-Consequence
Analysis

1 Introduction

A key issue in the development of safety-critical systems is safety analysis, i. e., a thor-
ough analysis how components may fail and cause a system hazard. From the safety
analysis, the safety requirements for components are derived and the design is proven
correct w.r.t. functional safety in the verification and validation phase.

For developing software for safety-critical systems, formal methods are considered
an adequate means because they provide correctness results at a level of strict mathe-
matical rigor. Standards like the IEC 61508 part 3 [15] and its railway-specific derivative
CENELEC 50128 [6] highly recommend them for the software development according
to higher safety integrity levels (SIL). Nevertheless, seamless usage of formal methods
is still a future challenge for industries. Frequently heard arguments trying to explain
industries’ indecision towards the proliferation of formal methods are a lack of integra-
tion and coverage in the development process and poor scalability for larger designs.

In this paper we report on our experiences on a seamless, tool supported, formal
approach that covers design, safety analysis and formal verification: We compare two
medium-sized design variants of a level crossing controller. Both were developed using



2 I. Daskaya, M. Huhn, S. Milius

the SCADE Suite3 by a manufacturer for rail automation equipment. The two models are
different in their modeling style, namely one is state-based and built based on safe state
machines [4], whereas the other one is strictly data-flow oriented. Both implement the
same functionality and have exactly the same interfaces, but the models were originally
thought as a comparative basis to evaluate model qualities relevant for application devel-
opers such as understandability, maintainability etc. This was a purely design-oriented
comparison that we have expanded to safety analysis and formal verification.

So the starting point for our investigation is the question whether the modeling style
has an impact on formal safety analysis and verification. By using the built-in state-
of-the-art SAT-based model checker of SCADE we also strive for a good showcase for
seamless formal support of the safety process. A precondition for an authentic showcase
is to take the original design models without tailoring them beforehand to the needs of
some particular formal analysis technique at hand.

We apply Deductive Cause-Consequence Analysis (DCCA) by Ortmeier et al. [19]
as a formal generalization of the well accepted safety analysis techniques FMEA (Fail-
ure Mode and Effect Analysis) and FTA (Fault Tree Analysis). Moreover, we are able to
formally verify a number of safety requirements, i.e. functional correctness properties
imposed by the safety analysis. However, we have to cope with severe complexity prob-
lems even with these medium sized designs that prevent us from completing both, the
DCCA and the verification of safety requirements. We try several abstraction techniques
to reduce complexity of the verification problems within the SCADE Design Verifier, but
without success. We illustrate our attempts on data abstraction, cone of influence, and
symmetry reduction as well as decomposition using the example of a liveness property
that arises from the safety requirements. Finally, we transform the state-based model
into UPPAAL timed automata4 and succeed with the verification of that liveness prop-
erty easily. What we technically realize as a model transformation between two formal
frameworks, namely SCADE and UPPAAL, is methodically an abstraction of time: In
the SCADE model time is handled in multiple steps in each of which an external timer
is compared to internal variables modeling timeouts. In contrast, the real-time zones of
UPPAAL only take one transition to the next relevant point in time. Hence the resulting
state space is significantly smaller.

Overall, the state-based model of the level crossing control can be considered slightly
better suited for formal analysis. However, to be able to generalize this result, a clear
and application-oriented notion of model elements with major impact on the verifica-
tion complexity has to be developed.

The paper is structured as follows: In Sec. 2 we recall safety analysis using FMEA
and DCCA as a formal approach to it and SCADE suite as a model-based development
environment featuring formal verification. Liveness analysis, a number of heuristics we
have tried in order to deal with the intrinsic complexity problems, and, notably, the
transformation of SCADE models to UPPAAL timed automata are described in Sec. 3.
In Sec. 4, safety analysis and verification results of the two model variants of a level
crossing controller are presented in detail. Sec. 5 concludes with lessons learned.

3 SCADE is a product of Esterel Technologies, see www.esterel-technologies.com.
4 UPPAAL is an integrated tool for modeling and verification of real-time systems, see
www.uppaal.com.



Formal Safety Analysis in Industrial Practice 3

2 Safety Analysis and DCCA

The development of safety-critical systems and their software is regulated by standards.
In the railway domain the CENELEC standards EN 50126, 50128, and 50129 [9, 6, 10]
apply. Since software is intangible, it is commonly agreed that system failures caused
by software malfunction stem from systematic errors that are introduced during the soft-
ware development and are not recognized in the safety process. Consequently, software
safety engineering aims at (1) a complete and consistent specification of functional and
safety aspects for a software component, (2) the correct implementation of the specifi-
cation and (3) providing evidence that the safety objectives are met.

2.1 Safety Analysis

In the architectural design phase, the intended functionality is modularized. For safety-
critical systems, a hazard analysis is performed to identify potential failures, hazards,
and the causal chains between them. Classical inductive methods for hazard analysis
are Failure Mode and Effect Analysis (FMEA) and its extension Failure Mode, Effects
and Criticality Analysis as standardized in IEC 60812 [14]: FMEA classifies failures
according to the severity of their effects, the occurrence frequency, and the detection
rate. Starting from a definition of the system and its boundaries, a functional viewpoint
is taken and each subfunction is analyzed with respect to potential fault modes. For
functionality implemented in software, fault identification is supported by generic fault
types like omission, commission, untimely reaction and value fault [18]. Local effects
can be directly deduced from the component faults. In order to determine the system
level effects, fault propagation is analyzed based on the functional architecture by using
a formal deduction method (see Section 2.4). A fault is called critical if it has severe
effects and an unacceptably high occurrence frequency. Safety measures are taken to
eliminate the faults or at least mitigate the effects, to decrease their occurrence proba-
bility, or to actively detect them. Findings and actions to be taken are usually summa-
rized in an FMEA table. Often a Fault Tree Analysis (FTA) is conducted to complement
FMEA. FTA proceeds deductively by starting from potential hazards and then investi-
gates which combination of faults or operational modes in the components may cause
them.

FMEA is a structured but semi-formal technique. In an iterative design process, an
FMEA is conducted and refined with each iteration cycle or change in the design or
operational constraints. As FMEA is an inductive method, common cause faults and
their effects are analyzed in a separate step.

2.2 Safety-Oriented Software Design

For the development of safety-related software in the rail domain, the standard CEN-
ELEC 50128 [6] prescribes the activities for design, validation, and verification with
their input and output artifacts. As faults due to software are traced back to systematic
development errors, the standard recommends measures that are considered appropri-
ate to avoid such errors or to reveal them in a validation or verification step. Hence,
development activities have to be performed with an adequate degree of rigor such that



4 I. Daskaya, M. Huhn, S. Milius

functional correctness and fulfillment of safety requirements can be proven with sub-
stantial evidence.

The SCADE tool suite (Safety-Critical Application Development Environment) is
a model-based development framework for safety-critical software that supports cer-
tification due to EN 50128 up to SIL 3 and 4. The SCADE modeling language is a
synchronous and dataflow-oriented language based on LUSTRE [12], and was extended
by safe state machines [4]. SCADE provides certified automated code generation and
immediate simulation of the model. It supports testing, in particular model coverage is
recorded, and the SCADE Design Verifier (SCADE DV) allows for SAT-based formal
verification5.

Here, SCADE was chosen as design framework for the level crossing control (LC)
from our industrial partner. The reason was the seamless design flow from the require-
ments via the model executing on a hardware abstraction layer (HAL) to the C code
generated for the real target processor. Back then, validation, verification and safety
assessment were performed with traditional methods. With a broader usage of SCADE,
different modeling styles came up and also the desire to benefit from the Design Verifier.

2.3 Formal Verification Using SCADE DV

The behavior of a SCADE design model can be given as a transition system on which
SAT-based model checking can be performed in order to verify reachability properties6,
see [1].

In contrast to other approaches, the SCADE DV does not offer a temporal logic
but properties have to be modeled as synchronous observers using the same language
operators as for the design. Nevertheless, we will use CTL as a succinct notation for
reachability properties to be verified, but the reader should keep in mind that they are
encoded as observer nodes at the SCADE level (cf. Figures 1 and 5). Notice, however,
that more general temporal properties, notably unbounded liveness, cannot be automat-
ically verified using this SAT-based approach.

2.4 Deductive Cause Consequence Analysis

An important step in safety analysis concerns determining the causal relationship be-
tween component fault modes and hazards. There are various techniques that exploit
formal methods, notably model checking, for identifying the desired cause-consequence
relation [1, 16, 5]. Here we consider DCCA by Ortmeier et al. [19, 11], which is a for-
mal approach to safety analysis that generalizes FTA and FMEA. In DCCA, a hazardH
is specified as a state predicate. Primary component fault modes are modeled by adding
simple fault automata that are triggered by a Boolean input indicating the occurrence
of this particular fault. The immediate effect of a fault on a component is specified in
a so-called fault node within the component model. The hazard is implemented as an

5 SCADE uses the SAT solver developed by Prover Technologies, see www.prover.com
6 In the area of model checking, reachability properties are often called safety properties, be-

cause they express that the system always stays in a good or ”safe” state. In contrast, for us a
safety property is any constraint to ensure dependable behaviour.



Formal Safety Analysis in Industrial Practice 5

observer node that takes signals from the system and evaluates them according to the
negation of the hazard predicate H , i.e., returning false whenever the hazard occurs.
Figure 1 gives a schematic picture of the integration of DCCA with SCADE.

          Design

Hazard 

Node

System-Inputs System-Outputs

Fault 

Node 1

...

Fail-input 1

Fail-input n
Fault 

Node n

...

Fig. 1. Integration of DCCA with SCADE

A core notion of FTA is that of a critical cut set of faults for a hazard, i.e. a subset
of primary faults for which some operational condition and occurrence sequence exist
such that the hazard occurs without further influence. This was formalized in DCCA
to the notion of a critical set. According to [11], critical sets can be formalized for the
SCADE semantics as follows:

Definition 2.1. Let Γ be a subset of the set of primary component faults ∆ of a system
Sys. Sys〉Γ denotes that behavior of Sys where no fault from ∆ \Γ ever occurs. Now Γ
is called critical for a hazard described by the state predicate H iff Sys〉Γ 6|= AG¬H .
A critical set Γ is called minimal iff no proper subset of Γ is critical.

If the analysis reveals a singleton as minimal critical set, this indicates that there exists
a single-point-of-failure in the system, which has to be eliminated by further safety
measures. A DCCA is called complete iff all minimal critical sets have been identified.

Theorem 2.2 (Minimal-Critical-Set Theorem [19, 11]). If a complete DCCA has been
conducted for a hazard H then for each minimal critical set, preventing one fault from
occurrence will prevent the hazard H .

In order to determine the minimal critical sets we use an iterative approach similar
to [1]: Suppose that ∆ is the set of all component fault modes identified during the
FMEA and that H is a hazard. We iterate over all subsets Γ ⊆ ∆ starting with Γ = ∅
and increasing Γ stepwise (singletons, doubletons etc.). We use the SCADE DV to prove
whether Γ is critical forH: all trigger inputs for fault modes in Γ become system inputs,
and the inputs of all other fault mode nodes are constantly false. Whenever SCADE DV
returns a counterexample, i. e. a situation in which the hazard node expressing ¬H
is false, we have identified a minimal critical set Γ , and due to the monotonicity of
criticality no super set of Γ needs to be considered.

3 Liveness and Abstraction Techniques

In this section we describe the general steps we took in our case study. Here we assume
that we are given a design model of the system Sys in a formalism providing support
for formal verification. Our steps were as follows:



6 I. Daskaya, M. Huhn, S. Milius

(1) Given the system model we performed a safety analysis identifying hazards and
component fault modes, cf. Section 2.1.

(2) We used DCCA to determine the cause-consequence relationship between compo-
nent fault modes and hazards. For this we use the SCADE DV to obtain minimal critical
sets of fault modes, cf. Section 2.4.

(3) We performed an analysis of a liveness property arising from the safety requirements
of the system.

(4) We applied several strategies in order to deal with complexity issues arising in con-
nection with the model checking performed in steps (2) and (3).

We already explained methodological details of steps (1) and (2) in Section 2. In the
remainder of this section we will describe steps (3) and (4) in more detail.

3.1 Liveness Analysis

This step of our case study concerns the analysis of a safety related liveness prop-
erty derived from a system requirement, see Section 4.3 for the concrete formulation.
Roughly, this requirement states that a certain non-safe state of the system may occur,
but this state must not be permanent, and it must be left within a certain time interval
that depends on the system’s configuration. Indeed, our analysis in step (2) revealed
that this non-safe state of the system will occur under a certain fault mode. This is still
in accordance with the requirement. However, it has to be verified that the system will
leave this non-safe state in time.

If ϕ is a propositional formula describing the non-safe state then this property might
be formulated in a temporal logic like CTL as AG(ϕ→ AF¬ϕ). However, SCADE does
not provide a direct way to express a liveness property with an unbounded quantifier
like AF. A concrete time limit – and hence a bound for the number of cycles – is not
specified, but it is individually set for each configuration.

Fig. 2. Observer node for the liveness analysis with n = 4.

Thus, we explore the model and try to establish a lower bound on the number n of
cycles after which the non-safe state is left: It is clear that once in the non-safe state the
system will remain there for at least one cycle, and so we verify whether the non-safe
state is left after n = 2, 3, . . .. This can be modeled as a SCADE observer by using the
operator ImpliesWithinNTicks from the design verifier library, see Figure 2 for n = 4.



Formal Safety Analysis in Industrial Practice 7

3.2 Dealing with Complexity within SCADE DV

Unfortunately, we failed to complete our analysis just using SCADE DV even with small
numbers n due to complexity problems, see Section 4 for details. We will now mention
the strategies we have applied in order to deal with this problem.

Abstraction. First we generated an abstract version of the design model in SCADE. For
this we applied three different techniques: data abstraction, cone of influence reduction
and symmetry reduction (see e. g. [7] for an introduction) – the way in which these are
applied is detailed in Section 4. However, even for the abstracted model the liveness
verification could not be completed using SCADE DV.

Compositional verification. In a further attempt to cope with complexity of the live-
ness analysis we manually broke down the given liveness property into proof obli-
gations for each component of the model. We then argued that the liveness property
holds for the whole model if the components satisfy their respective proof obligations.
This divide-and-conquer strategy allowed us to complete the verification for all but one
model component with the SCADE DV.

3.3 Model Transformation to UPPAAL

In order to complete the analysis for this remaining system component we decided to
transform this component to another formalism. Manual inspection of the component
revealed that its behavior is to a large extent governed by 14 timers that are external
to the SCADE model and are provided from the runtime environment in form of an
integer input. For this reason we consider it promising to transform that component to a
modeling formalism that also takes time into account. We have therefore chosen timed
automata [3] with UPPAAL as modeling and analysis tool.

We will briefly describe the principles of the model transformation: We assume that
the given SCADE node comes as a flat safe state machine. That means that there are
no hierarchical states and no memory within states (such as fby operators). Outputs are
assigned within the states. We also assume that all transitions in the safe state machine
are strong, i. e., in a cycle where the transition guard holds the target state of the transi-
tion is active (see [4]). These restrictions hold for the model in our case study. For other
models, preprocessing steps like flattening of hierarchical states have to be applied.

In contrast to SCADE’s deterministic behavior, UPPAAL models may also behave
non-deterministically. Thus, the transformation should ensure the deterministic behav-
ior of the model in UPPAAL. The following points are important:

Activation conditions and output variables. The activation condition of a transition in
SCADE gets mapped to the guard of the corresponding edge in UPPAAL. If an output
flow of a SCADE node changes when taking a transition, we add the corresponding
assignment along the translated transition in UPPAAL.

Firing transitions. When a transition guard holds, the corresponding transition in the
translated UPPAAL model must fire immediately to faithfully reflect the transition
behavior in the SCADE model. For this purpose we use UPPAAL urgent channels. Each
translated transition synchronizes on an urgent channel that can always be activated so
that no delay occurs along the transition, see Figure 8, where this urgent channel is go2.



8 I. Daskaya, M. Huhn, S. Milius

Transition priorities. We must make sure no two transition guards are true simulta-
neously. SCADE uses explicit transition priorities to prevent this. Suppose that we have
two transitions with the same source state and with guards ϕ and ψ, respectively, such
that the ϕ transition has higher priority. Then in the transformed UPPAAL model the
first transition has guard ϕ and the second one the guard ψ ∧ ¬ϕ.

Timers. As already mentioned, our SCADE model is partly governed by external timers
that are started by certain model outputs and that trigger transitions. In the translated
UPPAAL model these timers are explicitly modeled as shown in Figure 3. The timeouts
are taken from the SCADE model. The edge between S0 and S1 will reset

Fig. 3. Modelling a timeout in UPPAAL.

the clock variable x. During the urgent
state S1 clock x does not progress. So
any output assignment that may happen
together with the start of the timer will
be performed as a variable assignment
at the edge from S0 to S1. The invari-

ant x ≤ 10 makes sure that the state S1 is left before x reaches 10. Upon timeout
(x == 10) we progress to S3 and perform any output assignment associated with the
timeout along the edge from S2 to S3.

This part of the model abstraction realizes the time abstraction mentioned in the
introduction. A situation where the SCADE model is waiting for a timeout, i.e., the inte-
ger input corresponding to system time increases for a (possibly large) number of cycles
where no reaction of the model happens and no model output changes, corresponds to
only one transition in the transformed UPPAAL model. This fact leads to a significant
reduction in the size of the state space of the transformed model, and we believe this
makes formal verification feasible.

3.4 Correctness of the Model Transformation

Although the transformation from SCADE to UPPAAL can be automated in principle,
we manually performed it in our case study. We also did not provide a formal proof of
the semantic correctness of our transformation. Both tasks were out of the scope of our
current project, and so we leave them for future work.

However, in order to establish confidence in the correctness of our transformation
we followed an approach based on testing that we will now describe. From the require-
ments specification we created a test suite. By using the SCADE model test coverage
facility this test suite was shown to yield 90% decision coverage of the original SCADE
model. The same test suite was used on the translated UPPAAL model. For each test
case we recorded the traces (i.e., the list of input and output values in each step) of the
simulation of both models.

Now in order to establish the equivalence of the two models we need an appropriate
notion of equivalence for the traces. Due to the different timing concepts of the two
underlying formalisms, the traces of the SCADE model do not correspond one-to-one
to the traces of the translated UPPAAL model. Instead we use a version of stuttering
equivalence, see e. g. [17, 7]. We write (~v1, . . . ~vn) for a trace of length n produced by a
model simulation running some test case. We say that this trace is stuttering equivalent



Formal Safety Analysis in Industrial Practice 9

to some other trace (~w1, . . . , ~wm) if there are sequences 1 = i1 < i2 · · · < ik−1 <
ik = n and 1 = j1 < j2 · · · < jk−1 < jk = m with k ≤ n,m and such that

~vir = ~vir+1 = · · · = ~vir+1−1 = ~wjr = ~wjr+1 = · · · = ~wjr+1−1 and ~vn = ~wm,

where 1 ≤ r ≤ k− 1. In other words, two lists containing the same input/output values
in the same order (but possibly repeating certain list elements a different number of
times) are equivalent. Example: Suppose we have a model with one integer input and
one Boolean output. Then the two lists ((1, true), (1, true), (42, false), (42, true)) and
((1, true), (42, false), (42, false), (42, true)) are equivalent.

With this notion of equivalence we compared traces of SCADE simulations of a test
case with those of UPPAAL simulations of the same test case. We showed equivalence
of the two models with respect to all test cases from our test suite.

4 Comparative Safety Analysis of Level Crossing Control

Now we present the results of our industrial case study. For the sake of brevity we omit
some details; they can be found in [8]. Our formal safety analysis was performed com-
paratively for two SCADE models for the modular level crossing controller in [13]. The
two SCADE models were developed by different developers with different implementa-
tion styles: the first model uses a design based on safe state machines (SSM) [4] and the
second one uses data flow diagrams, which are essentially graphical respresentations
of LUSTRE [12]. Whenever information has to be stored for the next execution cycle
in the data-flow oriented model, this is done within local variables for which the value
is kept using the fby-operator. Both models implement the same architecture with the
following operators, which can be composed in order to obtain a level crossing control
logic for a specific level crossing layout:

- route controller (LC Route)
- site controller (LC Site)
- group controller (LC LS Group)
- time controller (LC Timer)

The route controller monitors the activation of the lights and barrier groups depending
on the activation signal from a particular route, cf. Figure 4.

The site controller synchronizes all route controllers and group controllers and acts
as a logical connector. The group controller controls the lights and barriers, which are
grouped logically, using a hardware abstraction layer. Finally, the time controller mon-
itors the time elapsed since the last activation of the LC until its complete deactivation.
Depending on the level crossing layout, numbers of inputs, outputs and nodes in the
models can vary. In our case, models are specified for controlling of a level crossing
with 2 routes and 2 lights-barrier groups, see Figure 4. They have 18 boolean, 1 integer
input variables, 5 boolean output variables and 14 constants. The models are composed
of 5 nodes: 2 LC Route, 2 LC LS Group, 1 LC Site. Specifically, the first model has 12
states + 23 transitions for each LC Route operator, 14 states + 23 transitions for each
LC Site operator, 27 states + 51 transitions for each LC LS Group operator. In both
models, the LC Timer operator has 2 states.



10 I. Daskaya, M. Huhn, S. Milius

Fig. 4. Sample layout of a locally monitored level crossing

4.1 Application of FMEA

We briefly summarize the results of our FMEA, the details are in [8]. The analysis
has revealed ten component fault modes (FM1 – FM10) and two hazards: (a) a train
drives through a non-secured level crossing (LC) and (b) car drivers drive against clos-
ing/closed barriers. Hazard (a) can happen if the monitoring signal shows the LC to
be safe while it is not (i. e., one of the light-barrier groups (LBG) is switched off).
That means, if a monitoring signal is activated (UE MEin=true), both LBGs must be
switched-on (LS1 MEin=true and LS2 MEin=true). This state can be represented as a
formula H in propositional logic as follows:

H = (UE MEin ∧ ¬(LS1 MEin ∧ LS2 MEin)) (1)

Figure 5 shows the SCADE observer node for the hazard H from (1).

Fig. 5. SCADE model of the hazardous event H

4.2 Application of DCCA

To apply DCCA to our two models we first created an environment model in SCADE
simulating stimuli from the hardware of a real level crossing system. We then extended
the hardware model with the fault modes and their occurrence patterns from the FMEA.

Functional correctness. Recall from Section 2.4 that the first step of DCCA con-
siders the empty set of fault modes. So we verify functional correctness of the models
w.r.t. the safety requirement expressed by the hazard H . With SCADE DV, the proof
took 15 seconds for the first model and 322 seconds for the second one. The difference



Formal Safety Analysis in Industrial Practice 11

State-based Model Data-flow Model
N=1 Valid Critical Time Valid Critical Time
FM1 x 1 x 1
FM2 x 122 x 543
FM3 x 14 x 459
FM4 x 13 x 312
FM5 x 143 x 323
FM6 x 108 x 330
FM7 x 199 x 329
FM8 x 14 x 324
FM9 x 15 x 245
FM10 x 14 x 495
Average Time (sec) 64,3 336,1

Table 1. Singleton fault modes

originates from the different implementation styles. The SSM based design seems to
have a smaller state space, hence a quicker proof is possible with the first model.

Single fault modes. We checked criticality of singleton fault mode sets Γ w.r.t. the
hazard node H . Table 1 shows the results and proof execution times in seconds. Only
FM1 (unwanted switch off of warning lights) is identified as critical for both models.
The rest of the failure modes could be proven to be non-critical.

At most 2 fault modes. This step requires analysis of the fault mode sets Γ with
|Γ | = 2. As FM1 is already critical, we only analyze sets Γ with FM1 6∈ Γ . We assume
that for each hardware type only one fault mode can occur at a time, and only a single
hardware component of the same hardware type can fail at a time, e. g. only one of the
barriers in a barrier group can fail. Finally, sensor failures can occur either as a false
detection or a mis-detection, but not both.

Figure 6 and 7 present the analysis results for the first and second model, respec-
tively. The cells marked with an “x” represent single fault modes and already have been
treated in the previous step. The Gray colored combinations have not been analyzed
due to the assumptions explained in the previous paragraph and since FM1 is critical.
Red colored cells (marked by “C”) represent the critical sets while green cells (marked
by “V〈time〉”) represent the non-critical fault modes and also indicate the proof dura-
tions in seconds. Critical sets were proven to be critical within 1 second. White colored
combinations (marked by “U”) could not be proven to be critical or non-critical in a
reasonable time. We could not analyze all relevant 2-element fault mode combinations,
hence, our DCCA for critical doubletons is not complete. Since three simultaneous fail-
ures are highly unlikely we terminated the analysis with this step.

FM1 FM2 FM 3 FM4 FM5 FM6 FM7 FM8 FM9 FM10
FM1 x
FM2 x
FM3 x
FM4 V149 V15 x
FM5 V457 U x
FM6 U U C V256 x
FM7 U U C V14 x
FM8 U U U U U U x
FM9 U U U U U U x
FM10 U U U U U U x

Fig. 6. Results for the state-based model

FM1 FM2 FM 3 FM4 FM5 FM6 FM7 FM8 FM9 FM10
FM1 x
FM2 x
FM3 x
FM4 U U x
FM5 U U x
FM6 U U C U x
FM7 U U C U x
FM8 U U U U U U x
FM9 U U U U U U x
FM10 U U U U U U x

Fig. 7. Results for the data-flow model



12 I. Daskaya, M. Huhn, S. Milius

To summarize, while our analysis remains incomplete we have identified three min-
imal critical sets: {FM1}, {FM4,FM6} and {FM4,FM7}; FM4 means that a barrier is
stuck and FM6 and FM7 mean the corresponding sensor does not detect this.

4.3 Liveness analysis

We have shown that both models do have critical sets of fault modes. From a con-
trol engineering point of view this was expected to happen, and rather than requiring
prevention of the hazard the corresponding safety requirement for the system reads as
follows:

Requirement. A state in which the monitoring equipment feedbacks its status as
activated (UE MEin=true) and at least one LBG is non-active (LS1 MEin=false or
LS2 MEin=false) is non-safe. Such a state must not be permanent and has to be left
independently from the input values as quickly as possible by deactivation of the moni-
toring signal.

This requirement can be formalized as a liveness property in CTL as follows:

AG(UE MEin ∧ ¬(LS1 MEin ∧ LS2 MEin)⇒ AF(¬UE MEin)) (2)

As explained in Section 3.3 we tried to use the SCADE DV with an observer as
shown in Figure 2 to obtain a lower bound on the number n of cycles the system remains
in the non-safe state corresponding to our hazard property H .
4.3.1 Liveness of the state-based model. For n = 2, SCADE DV delivered “falsifiable”
as an answer within a few seconds, which means that the hazard may last for at least
two cycles. For n = 3 it was not possible to prove the correctness of the system after
1 week of execution time as a result of the state explosion problem. To overcome this
problem we used several strategies (see Section 3.3). Full details are in [8].
Data Abstraction. The only integer input of the models is used for synchronization
of the controller with a global clock T System. The value of T System is used by 14
different timers for realizing the delays and timeouts. For the current verification, only
10 of them are relevant. Using SCADE assumptions we have put bounds on the possible
values of T System, thus reducing the complexity of the verification.
Cone of Influence Reduction. Only 7 inputs out of 19 of the model have an influence
on the observer node. Some of the remaining inputs have constant values as they cor-
respond to configuration settings. These inputs can be replaced by the constants. As a
consequence some transition triggers are simplified or even become constantly false.
As a result some states become unreachable and are removed as well.
Symmetry Reduction. Here we remove the identical operators and symmetric config-
urations in order to reduce the state space. Our initial configuration was a 2 Route+2
LBG level crossing. Obviously, a reduced model (1 Route+1 LBG) needs to satisfy the
liveness property, too. If we can verify the validity, it can substantiate the claim that the
full system is correct.

Unfortunately, even with the above three simplifications it was still impossible to
verify the liveness property with the SCADE DV.
4.3.2 Compositional verification. With an operator level analysis, we identified that an
occurrence of FM1 generates an LS MEin=false (an LBG is not switched on) signal,



Formal Safety Analysis in Industrial Practice 13

which is converted to AN MEin=false (not all LBG’s are switched on) signal through
an AND gate by the LC LS Group operator. It feedbacks this status to the LC Site
operator, which updates an internal variable as LS MEin=false. Finally, LC Route re-
ceives this signal and signals the monitoring signal to switch-off. This is followed by
a UE MEin=false signal by a failure-free monitoring signal. This led us to decompose
the liveness property for the whole model into properties for its components:
1. For LC LS Group operator: LS MEin=false shall be followed by an AN MEin=false
signal; in CTL:

AG((¬LS MEin ∧AN MEin)⇒ AF(¬AN MEin)). (3)

2. For the LC Site and LC Route operators: AN MEin=false shall be followed by an
UE MEin=false signal; in CTL:

AG((UE MEin ∧ ¬AN MEin)⇒ AF(¬UE MEin)).

It can be easily seen that both parts together imply the main liveness property. Analysis
of the second formula was successful. Thus, the operators LC Site and LC Route are
verified. They were found to satisfy the liveness property within 6 execution cycles.
However, the first part could not be proven in a reasonable time. This led us to consider
the LC LS Group operator as the bottleneck for the complete analysis.
4.3.3 UPPAAL transformation. Using the model transformation described in Sec-
tion 3 we transformed the LC LS Group operator to UPPAAL. The resulting UPPAAL
model is a network of 5 timed automata. Four automata model the environment such as
hardware behavior, switch-on and switch-off commands and the fault mode FM1. The
LBG automaton (see Figure 8) models the behavior of the LC LS Group operator. It
synchronizes with other UPPAAL automata over the urgent go1 channel. This chan-
nel ensures progress and an immediate transition as soon as an edge’s guard holds. For
example, it can be seen that edge from S00 to S01 fires as soon as AN SEin holds.

Verification with UPPAAL. UPPAAL uses a fragment of timed CTL (TCTL) [2].
Like TCTL, the query language consists of path formulæ and state formulæ [20]. In our
case the liveness property (3) for the LC LS Group operator will be rewritten as:

(not LS_MEin and AN_MEin) --> not AN_MEin

This property means when a failure occurs in the hardware (LS MEin=false), the output
variable AN MEin of the LBG automaton will eventually be false. This property is valid
and the proof has been completed within seconds.

4.3.4 Liveness of the data-flow design. The second model could not be proven correct
w.r.t. the liveness property with the full configuration (2 Route+2 LBG). Its data-flow
oriented design does not allow us to apply state and transition based abstraction tech-
niques. However, symmetry reduction is still possible. A model with reduced configu-
ration (1 Route+1 LBG) was found to be valid for 4 cycles within 130 seconds.

In contrast to the first model, in the case of the second model the liveness property
could be proven to be valid for a reduced model without decomposing it. As a pos-
sible reason we consider the direct connection between LBG hardware elements and



14 I. Daskaya, M. Huhn, S. Milius

Fig. 8. LBG automaton in UPPAAL

the LC Route operator. In this model, whenever a failure occurs, it is directly sensed
by the route controller that controls the monitoring signal. This connection eliminates
the effects of the other operators on the liveness property. Hence, this property is not
dependent on the feedbacks from the LC LS Group operator.

5 Lessons Learned and Conclusions

We performed a comparative case study on formal safety analysis and verification. Our
starting point were two functional equivalent SCADE models of a level crossing con-
troller software, both developed in industry. As a formally founded, model-based ap-
proach was used in the design already, a seamless expansion towards formal safety
analysis and verification within the same tool environment was straightforward. De-
spite of the difficulties we faced and which fill major parts of our experience report, we
were able to identify some of the most relevant critical sets of fault modes as well as
to verify numerous safety requirements. In addition, confidence that the results of the
formal verification apply for the finally generated executable is strong, since the target
code is automatically generated from the SCADE models by the certified code genera-
tor. Such a full integration and tool support for design, code generation and verification
is mandatory for the successful usage of formal methods in industrial development of
safety-critical systems. In this way formal methods can contribute with strong evidence
to a safety case a system manufacturer has to provide to certification authorities.

5.1 Lessons Lerned

Our verification results support the hypothesis that applicability of formal analysis
based on SAT model checkers depends on the design and modeling style. We found that



Formal Safety Analysis in Industrial Practice 15

the state-based model lends itself better to abstraction and reduction techniques than the
data-flow oriented one; in our case study some properties were only provable after re-
duction and abstraction had been applied. Another argument pro state-based designs
is that they facilitate transformation to other model checkers. For data-flow oriented
designs some abstraction techniques do not seem obviously applicable.

On the other hand, we found that our liveness analysis could be performed with
the data-flow oriented model after a symmetry reduction with the SCADE DV whereas
for the state-based model further abstraction and a model transformation to UPPAAL
was necessary. In this concrete case this seems to be due to architectural differences.
However, from our case study we cannot conclude that data-flow oriented models are in
general better suited for formal verification. We faced severe complexity issues during
DCCA and liveness analysis for both of our moderately sized models.

After all, we cannot fully explain why the two modeling styles differ w.r.t. verifi-
cation: The size and complexity of the models are similar. But in the data-flow design
the state information is scattered throughout the model and less uniform than in the
state-based one. That may be a reason why the model transformation to SCADE DV’s
SAT-based model checker yields a better result for the state-based model. But to sub-
stantiate this assumption the SCADE internal model transformation would have to be
inspected in detail.

5.2 Open Issues and Future Work

Next, we discuss a few open issues: Firstly, the heuristics we applied in order to deal
with complexity issues during our liveness analysis also could be applied to the for-
mal verifications that happen during the DCCA. Secondly, our model transformation to
UPPAAL makes heavy use of the specific form of the given SCADE model (flat state
machine, timers). If one aims at an extension to safe state machines with hierarchy it is
questionable to which extent the flattening that has to be part of any (automatic) trans-
formation will blow-up the resulting timed automata and whether formal verification in
UPPAAL will perform well on them. Perhaps, it is possible to exploit compositional
techniques in this case, and we leave this as an open question. Thirdly, we believe that
the steps we performed in our case study are successfully applicable more generally pro-
vided that given SCADE models adhere to similar restrictions. Lastly, we verified our
model transformation with the help of testing and did not provide of formal proof of the
semantic correctness of our model transformation. Such a correctness proof would, of
course, be desirable, but here we leave this for future work.

Finally, we have to state that formal verification is still constrained by scalability
problems that hampers its usage in practice. We solved them for the state-based model
by transforming it into UPPAAL timed automata, a formalism that offers a much more
efficient handling of time. From a methodological point of view, this model transforma-
tion is a time abstraction. However, it cannot easily be integrated with the synchronous
modeling paradigm SCADE is based on. In addition, thorough expertise on verifica-
tion techniques, the underlying semantics and algorithmics is a pre-requisite to come
up with an alternative formalism that potentially can efficiently solve a specific veri-
fication problem. However, a desirable improvement of todays verification engines is
feedback that, in case of complexity problems, directs the developer to the origin of the



16 I. Daskaya, M. Huhn, S. Milius

problems within the models. For example, a measure of the impact of selectable model
elements or system components on state space size or other complexity measures for
the verification problem will be of great help, as it will ease the choice for a promising
abstraction or reduction heuristic.
Acknowledgements. We are grateful to Siemens AG, I MO RA, for providing the real
industrial models for our formal analysis and to Dr. Dirk Peter for fruitful discussions.

References
1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing Safe, Reliable

Systems Using Scade. In: Margaria, T., Steffen, B. (eds.) ISoLA. Lecture Notes Comput. Sci.,
vol. 4313, pp. 115–129. Springer (2004), http://dx.doi.org/10.1007/11925040 8

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and
Computation 104(1), 2–34 (1993)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–
235 (1994)

4. André, C.: Semantics of S.S.M (safe state machine). Tech. Rep. UMR 6070, I3S Laboratory,
University of Nice-Sophia Antipolis (2003)

5. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking: The
fsap/nusmv-sa safety analysis platform (2003)

6. CENELEC: EN 50128 – Railway Applications – Software for Railway Control and Protec-
tion Systems. European Standard. (2001)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,
Massachusetts (1999)

8. Daskaya, I.: Comparative Safety Analysis and Verification for Level Crossings. Master’s
thesis, Technische Universität Braunschweig (2011)

9. DIN: EN 50126: Spezifikation und Nachweis der Zuverlässigkeit, Verfügbarkeit, Instand-
haltbarkeit und Sicherheit (RAMS) (1999)

10. DIN: EN 50129: Bahnanwendungen – Telekommunikationstechnik, Signaltechnik und
Datenverarbeitungssysteme – Sicherheitsrelevante elektronische Systeme für Signaltechnik
(2003)

11. Güdemann, M., Ortmeier, F., Reif, W.: Using deductive cause-consequence analysis (DCCA)
with SCADE. In: Proc. 26th Intern. Conference on Computer Safety, Reliability and Security
(SAFECOMP). Lecture Notes Comput. Sci., vol. 4680, pp. 465–478. Springer (2007)

12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language LUSTRE. In: Proceedings of the IEEE. vol. 79:9, pp. 1305–1320 (1991)

13. Hanisch, H.M., Pannier, T., Peter, D., Roch, S., Starke, P.: Modeling and formal verification
of a modular level-crossing controller design (2000)

14. IEC 60812: Analysis techniques for system reliability (2006)
15. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related

systems – Part 3: Software requirements (1998), corrigendum 1999
16. Joshi, A., Whalen, M.: Modelbased safety analysis: Final report. Tech. rep., NASA (2005)
17. Lamport, L.: What good is temporal logic. Information Processing 83, 657–668 (1983)
18. McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the application

of HAZOP to computer-based systems. In: 10th Annual Conference on Computer Assurance
(Compass). pp. 37–48 (1995)

19. Ortmeier, F., Reif, W., Schellhorn, G.: Deductive cause consequence analysis (DCCA). In:
Proc. IFAC World Congress. Elsevier, Amsterdam (2006)

20. UPPAAL 4.0: Small Tutorial. http://www.it.uu.se/research/group/darts/uppaal/small tutorial.pdf
(2009), November 16, 2009


