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Abstract. Extensions of Stone-type dualities have a long history in
algebraic logic and have also been instrumental for proving results in
algebraic language theory. We show how to extend abstract categorical
dualities via monoidal adjunctions, subsuming various incarnations of
classical extended Stone and Priestley duality as a special case. Guided by
these categorical foundations, we investigate residuation algebras, which
are algebraic models of language derivatives, and show its subcategory
of boolean derivation algebras to be dually equivalent to the category of
profinite monoids. We further extend this duality to capture relational
morphisms of profinite monoids, which dualize to natural morphisms of
residuation algebras.

1 Introduction

Marshall H. Stone’s representation theorem for boolean algebras, the foundation
for the so called Stone duality between boolean algebras and Stone spaces,
manifests a tight connection between logic and topology. It has thus become an
ubiquitous tool in various areas of theoretical computer science, not only in logic,
but also for example in domain theory and automata theory.

From algebraic logic arose the need for extending Stone duality to capture
boolean algebras equipped with additional operators (modelling quantifiers or
modalities). Originating in Jónsson and Tarski’s representation theorem for
boolean algebras with operators [20,21], a representation in the spirit of Stone
was proven by Halmos [16]; the general categorical picture of the duality of Kripke
frames and modal algebras is based on an adjunction between operators and
continuous relations developed by Sambin and Vaccaro [31].

In the study of regular languages, the need for extensions of Stone duality
was not discovered until this millenium: while Pippenger [26] has already shown
that the boolean algebra of regular languages on an alphabet Σ corresponds,
under Stone duality, to the Stone space Σ̂∗ of profinite words, Gehrke et al. [14]
discovered that, under Goldblatt’s [15] form of extended Priestley duality, the
residuals of concatenation product on regular languages correspond to the mul-
tiplication on the space of profinite words. But while categorical frameworks
have identified Stone-type dualities to be one of the cornerstones of algebraic
language theory [36,30], the correspondence between residuals and multiplication
via extended duality has not yet been placed in the categorical big picture. One
reason is that, despite some progress in recent years [5,17], extended (Stone)
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dualities for (co-)algebras are themselves not fully understood as instances of a
crisp categorical idea.

Therefore we introduce as our first main contribution a simple, yet powerful
framework to extend any categorical duality C ≃op Ĉ via monoidal adjunctions:
For a given adjunction on C with a strong monoidal right adjoint U we prove a dual
equivalence between the category of U -operators on C to dual operators in the
Kleisli category of the monad on Ĉ arising from the dual of the given adjunction.
We show how to instantiate the abstract extended duality to Priestley duality,
which not only recovers Goldblatt’s original duality [15] for distributive lattices
with operators but also applies more generally to bialgebraic operators with
relational morphisms. Guided by our categorical foundations for extended Stone
duality we investigate the correspondence between residuals and multiplication
of profinite words in the setting of residuation algebras originally studied by
Gehrke [13]. The key observation is that on finite distributive lattices the residuals
are equivalent to a coalgebraic operator on the lattice, and we show how to lift
this correspondence to locally finite structures, i.e. structures built up from finite
substructures. By identifying suitable non-full subcategories – boolean derivation
algebras and boolean comonoids, respectively – and an appropriate definition
of morphism for residuation algebras, we augment Gehrke’s characterization of
Stone-topological algebras in terms of residuation algebras to a proper categorical
duality between the categories of boolean derivation algebras and that of profinite
(i.e. Stone-topological) monoids:

BDer ∼= BComon ≃op ProfMon. (1.1)

The above duality clarifies the relation between Gehrke’s results and the duality
by Rhodes and Steinberg [28] between profinite monoids and counital boolean
algebras. The extended Stone duality now suggests that the dual equivalence
between profinite monoids on the one side and comonoids as well as boolean
derivation algebras on the other side extends to a more general duality capturing
relational morphisms between profinite monoids. To this end, we identify natural
notions of relational morphism for residuation algebras and comonoids, and use
our abstract extended duality theorem to obtain the dual equivalence

RelBDer ∼= RelBComon ≃op RelProfMon

which extends (1.1) to relational morphisms. To our knowledge this is the first
duality result for relational morphisms of profinite monoids, which have become
an ubiquitous tool in algebraic language theory [25] and semigroup theory [28].

Related Work. Duality for (complete) boolean algebras with operators goes back
to Jónsson and Tarski [20,21]. This duality was refined by the topological approach
via Stone spaces taken by Halmos [16], which allowed to characterize the relations
arising as the duals of operators, namely boolean relations. Halmos’ duality was
extended to distributive lattices with (n-ary) operators by Goldblatt [15] and
Cignoli [6]. Kupke et al. [23] recognized that boolean relations elegantly describe
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descriptive frames as coalgebras for the Vietoris monad on Stone spaces; notions
of bisimulation for these coalgebras were investigated by Bezhanishvili et al. [2].
Bosangue et al. [5] introduced a framework for dualities over distributive lattices
equipped with a theory of operators for a signature, which are dual to certain
coalgebras. Hofmann and Nora [17] have taken a categorical approach to extend
natural dualities to algebras for a signature equipped with unary operators
preserving only some of the operations prescribed by the signature; they relate
these to coalgebras for (the underlying functor of) a suitable monad T . In their
framework T is a parameter required to satisfy certain conditions for the duality
to work, while in our work T is already determined by the adjunction. The recent
work by Bezhanishvili et al. [1] clarifies the relation between free constructions
on distributive lattices and the different versions of the Vietoris monad to derive
several dualities between distributive lattices with different types of operators
and their corresponding Priestley relations.

Residuated boolean algebras, i.e. boolean algebras with a residuated operator,
were explicitly considered by Jónsson and Tsinakis [22] to highlight the roles of the
residuals in relation algebra. Gehrke et al. [14] discovered the connection between
the residuals of the concatenation of regular languages and the multiplication on
profinite words and investigated applications to automata theory, most notably
a duality-theoretic proof of Eilenberg’s variety theorem [7]. The duality theory
behind the correspondence of residuation algebras and profinite monoids was
given via canonical extensions [11,10] and extended Stone duality [13]. However,
while these works developed a substantial amount of theory for the correspondence
between profinite monoids and residuation algebras, they do not provide a proper
categorical duality. The question on when the dual relation to the residuals is
functional was posed and answered by Gehrke [13]; Fussner and Palmigiano [9]
have shown that functionality of the dual relation is not equationally definable
in the language of residuation algebras.

2 Preliminaries

Readers are assumed to be familiar with basic category theory, such as functors,
natural transformations, adjunctions and monoidal categories [24]. We briefly
recall the foundations of Stone duality [34] and Priestley duality [27]. By the
latter we mean the dual equivalence DL ≃op Priest between the category DL
of bounded distributive lattices and lattice homomorphisms, and the category
Priest of Priestley spaces (ordered compact topological spaces in which for
every x ̸≤ y there exists a clopen up-set containing x but not y) and continuous
monotone maps. The duality sends a distributive lattice D to the space DL(D, 2)
of homomorphisms into the two-element lattice (equivalently prime filters), topol-
ogized via pointwise convergence. In the reverse direction, it sends a Priestley
space X to the distributive lattice Priest(X, 2) of continuous maps into the two-
element poset 2 = {0 ≤ 1} with discrete topology (equivalently clopen upsets),
with the pointwise lattice structure. Priestley duality restricts to Stone duality
BA ≃op Stone between the full subcategories BA of boolean algebras and
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Stone of Stone spaces (discretely ordered Priestley spaces). Moreover, it restricts
to Birkhoff duality [3] DLf ≃op Posf between finite distributive lattices and
finite posets, sending a finite distributive lattice to its poset of join-irreducibles
and a poset to its lattice of upsets. For a comprehensive introduction to ordered
structures and their dualities, see the first two chapters of the classic textbook
by Johnstone [19].

3 Extending Dualities

We present the first contribution of our paper, a general categorical framework
for extending Stone-type dualities via monoidal adjunctions. It serves as the basis
for our duality results in the next two sections.

Notation 3.1. (1) For U : C→ D being right adjoint to F : D→ C we write

F : D ⊣ C :U or simply F ⊣ U.

We denote the unit and counit by η and ε and the transposing isomorphisms by

(−)+ : D(C,UD) ∼= C(FC,D) : (−)− with f+ = ε · Ff, g− = Ug · η.

(2) For dually equivalent categories C and Ĉ we denote the equivalence functors
in both directions by (−̂) : C ≃−→ Ĉ and (−̂) : Ĉ ≃−→ C. Moreover, if if F : C→ D

is a functor and D̂ is dual to D, we denote its dual by F̂ = (−̂)◦F ◦ (−̂) : Ĉ→ D̂.
(3) The Kleisli category of a monad (T, η, µ) on C is denoted by CT . It has
the same objects as C and CT (X,Y ) = C(X,TY ) with Kleisli composition
g ◦ f = µ · Tg · f . A morphism f : C → TD of the Kleisli category is pure if
f = η · f ′ for some f ′ : C → D in C. (We omit the components of η and µ.)

Assumptions 3.2. We fix monoidal categories C,D with dually equivalent
categories Ĉ, D̂; we regard Ĉ, D̂ as monoidal categories with tensor products
⊗̂ dual to the tensor products ⊗ of C,D. Moreover, we fix an adjunction
F : D ⊣ C :U with unit η : Id→ UF and counit ε : FU → Id, and assume that
U is a strong monoidal functor with associated natural isomorphisms λ : UX ⊗
UY ∼= U(X ⊗ Y ) and ϵ : ID ∼= UIC. One can extend λ to an isomorphism
λ :

⊗n
i=1 UXi

∼= U(
⊗n

i=1 Xi) for every arity n. The dual functor Û : Ĉ→ D̂ is a
strong monoidal left adjoint to F̂ and the unit and counit of this dual adjunction
are ε̂ and η̂. We denote the monad induced by the dual adjunction by T = F̂ Û
with unit e = ε̂ : Id→ T and multiplication m = F̂ η̂Û : TT → T .

D D̂

C Ĉ

≃op

F F̂

≃op

U⊣

T

⊢ Û
(3.1)
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Remark 3.3. Since Û is strong monoidal with ϵ̂ : ÎD ∼= Û ÎC and λ̂ : ÛX⊗̂ÛY ∼=
Û(X⊗̂Y ) its right adjoint F̂ is monoidal (see e.g. [32, p. 17]) with isomorphisms

((η̂⊗̂η̂) · λ̂−1)− : F̂X⊗̂F̂ Y → F̂ (X⊗̂Y ) and (ε̂−1)− : ÎC → F̂ ÎD.

This makes Û ⊣ F̂ a monoidal adjunction, which then induces a monoidal monad
T = F̂ Û on Ĉ. Let δ : TX⊗̂TY → T (X⊗̂Y ) denote the witnessing natural
transformation, which also extends to any arity. The tensor product ⊗̂ of Ĉ lifts
to the Kleisli category ĈT ; the lifting sends a pair (f : X → TY, g : X ′ → TY ′) of
ĈT -morphisms to the ĈT -morphism δ · (f⊗̂g) : X⊗̂X ′ → TY ⊗̂TY ′ → T (Y ⊗̂Y ′).
This makes ĈT itself a monoidal category [33, Prop. 1.2.2] and the canonical left
adjoint JT : Ĉ→ ĈT a strict monoidal functor.

Definition 3.4. Let G : A→ B be a strict monoidal functor between monoidal
categories, and let m,n ∈ N. An (m,n)-ary G-operator consists of an object
A ∈ A and a morphism a : (GA)⊗m → (GA)⊗n of B. An (m,n)-ary G-operator
morphism from (A, b) to (B, b) is a morphism h : GA→ GB of B such that

(GA)⊗m (GA)⊗n

(GB)⊗m (GB)⊗n

a

h⊗m h⊗n

b

commutes. The category of (m,n)-ary G-operators is denoted by Opm,n
G (A). We

call (m, 1)-ary G-operators G-algebras and (1, n)-ary G-operators G-coalgebras.
An operator is pure if it is of the form λ−1 ·Ga′ · λ, for λ analogous to Assump-
tions 3.2, and an operator morphism is pure if it is of the form Gh′.

Note that the full subcategory of B consisting of the objects in the image of
G fully embeds into Op1,1G (A) via GA 7→ (GA, idGA).

Theorem 3.5 (Abstract Extended Duality). The category of (m,n)-ary
U -operators is dually equivalent to the category of (n,m)-ary JT -operators:

Opm,n
U (C) ≃op Opn,mJT

(Ĉ).

Proof (Sketch). Let f̂ be a morphism from an operator (Â, â) to an operator
(B̂, b̂) in Opn,mJT

(Ĉ). This means that the following diagram commutes in Ĉ:

Â⊗̂n TÂ⊗̂m T (TB̂)⊗̂m TTB̂⊗̂m

(TB̂)⊗̂n TB̂⊗̂n TTB̂⊗m TB̂⊗m

â

f̂⊗̂n

T f̂⊗̂m
Tδ

µ

δ T b̂ µ

We dualize it by applying the natural isomorphism Ĉ(X̂, F̂ Û Ŷ ) ∼= C(FUY,X).
The resulting diagram in C can then be greatly simplified by a diagram chase
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and using adjoint transposition (−)− : C(FUY,X) ∼= D(UY,UX); all units
and counits vanish either by triangle equalities or the transposition equation
f− = Uf · η. In the final step, the resulting diagram in D simplifies to a diagram
showing that f− is an morphism from (A, a) to (B, b) in Opm,n

U (C) using that
conjugation with λ is an isomorphism. Since all steps of this transformation can
be reversed, this establishes the desired equivalence. ⊓⊔

An advantage of extending dualities via adjunctions is that adjunctions
compose, making the extensions modular : let E be a monoidal category with
monoidal adjunctions F1 : E ⊣ C :U1 and F2 : D ⊣ E :U2 splitting F ⊣ U , i.e.,
F = F1F2 and U = U2U1 and λ = U2λ1 · λ2U1. Then the following lifting
characterization applies to operators (set A = B) as well as operator morphisms
(set m = n = 1):

Proposition 3.6. A morphism a : (UA)⊗m → (UB)⊗n in D lifts to a morphism
b : (U1A)⊗m → (U1B)⊗n with a = λ−1

2 · U2b · λ2 iff the dual of a factors through
the canonical monad morphism F̂1ε̂2Û1 : T1 → T , where T1 = F̂1Û1.

Remark 3.7. (1) A special case of Proposition 3.6 proves that extended Stone
duality preserves purity: splitting F ⊣ U into F1 = Id ⊣ Id = U1 and F2 = F ⊣
U = U2 we see that a U -operator (or operator morphism) a is pure iff its dual f
is pure as a Kleisli morphism, i.e. factors through the unit e of T .
(2) The right adjoint U2 often is faithful and in this case F̂1ε̂2Û1 is monic, i.e. T1

is a submonad of T : faithfulness of U2 is equivalent to ε2 being epic, hence
ε̂2Û1 is mono, and the right adjoint F̂1 preserves monos. In particular, if T is
“powerset-like”, then ĈT is a category of relations, and we think of U -operators
(or operator morphisms) of the form a = λ−1

2 · U2b · λ2 as dualizing to “more
functional” relations. We eloborate this point in Section 4.2.

4 Example: Extended Priestley Duality

As a first application of our adjoint framework, we investigate the classical
Priestley duality (Section 2) and derive a generalized version of Goldblatt’s
duality [15] between distributive lattices with operators and relational Priestley
spaces. We instantiate (3.1) to the following categories and functors, which we
will subsequently explain in detail:

D D̂

C Ĉ

≃op

F F̂

≃op

U⊣

T

⊢ Û
=

JSL StoneJSL

DL Priest

≃op

F F̂

≃op

U⊣

V↓

⊢ Û

Categories The upper duality is Hofman-Mislove-Stralka duality [18] between the
category of join-semilattices with bottom and the category of Stone semilattices
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(i.e. topological join-semilattices with bottom whose underlying topological space
is a Stone space) and continuous semilattice homomorphisms. The duality maps
a join-semilattice J to the Stone semilattice JSL(J, 2) of semilattice homomor-
phisms into the two-element semilattice, topologized by pointwise convergence.
Equivalently, JSL(J, 2) is the space Idl(J) of ideals (downwards closed and up-
wards directed subsets) of J , ordered by reverse inclusion, with topology generated
by the subbasic open sets σ(j) = {I ∈ Idl(J) | j ∈ I} and their complements for
j ∈ J . In the other direction, a Stone semilattice X is mapped to its semilattice
StoneJSL(X, 2) of clopen ideals, ordered by inclusion.

Functors The functor U : DL → JSL is the obvious forgetful functor. Its left
adjoint F : JSL → DL maps a join-semilattice to the set U◦

fg(J) of finitely
generated upsets of J ordered by reverse inclusion. The dual right adjoint F̂
of the left adjoint F is the forgetful functor mapping a Stone semilattice to its
underlying Priestley space. Indeed, as U2 = 2 we compute for the underlying
Priestley space |X| of a Stone semilattice X that

F̂X = DL(F (StoneJSL(X, 2)), 2) ∼= |JSL(StoneJSL(X, 2), U2)| ∼= |X|,

and this bijection is a homeomorphism. Its left adjoint Û : Priest→ StoneJSL
maps a Priestley space X to the space

ÛX̂ = JSL(U(Priest(X, 2)), 2) ∼= Idl(Cl↑ X) ∼= V↓X

of ideals of clopen upsets of X. This space is isomorphic to the (downset) Vietoris
hyperspace V↓X of X that has as carrier the set of closed downsets of X. The
isomorphism Idl(Cl↑ X) ∼= V↓X maps an ideal I to the intersection

⋂
U∈I X \ U ;

its inverse sends a closed downset C to the ideal {U ∈ Cl↑ X | C ⊆ X \ U}
of complements of the basic clopen downsets that contain it. The topology of
pointwise convergence on JSL(U(Priest(X, 2)), 2) translates to the hit-or-miss
topology on V↓X generated by the subbasic open sets

{A ⊆ X closed | A ∩ U ̸= ∅} for U ∈ Cl↑ X

and their complements. For a detailed exposition of these results we refer the
reader to the recent work by Bezhanishvili et al. [1]; the free join-semilattice
structure on V↓X was already observed by Johnstone [19, Sec. 4.8]. The unit
e : X → V↓X of the Vietoris monad is given by x 7→ ↓x and multiplication is
given by union [17]. The monad V↓ restricts to the full subcategory Stone of
Stone spaces. We denote the restriction of this monad simply by V.

Remark 4.1 (Continuous Relations). Continuous maps in Priest of the
form ρ : X → V↓Y have a variety of names, we use the term Priestley relation as
in [6,15] or Stone relation if X,Y are Stone spaces. We write x ρ y for y ∈ ρ(x),
and sometimes identify ρ with a subset of X × Y . Let us note that some authors
(e.g. [28]) call a relation R ⊆ X × Y between topological spaces continuous if it
is closed as a subspace of X × Y . Every Priestley relation is continuous, but a
continuous relation between Priestley spaces is generally not a Priestley relation.
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Monoidal Structure The category JSL of join-semilattices has a tensor product
⊗ with the universal property that it extends join-bilinear maps:

Bilin(J × J ′,K) ∼= JSL(J ⊗ J ′,K).

Join-bilinear maps J×J ′ → K and their corresponding JSL-morphisms J⊗J ′ →
K are often tacitly identified. The tensor product ⊗ makes JSL a monoidal
category with unit 2, i.e. 2 ⊗ J ∼= J . The tensor product has a representation
by the generators {j ⊗ j′ | j ∈ J, j′ ∈ J ′} and relations j ⊗ 0 = 0⊗ j′ = 0 and
(j1 ∨ j2) ⊗ (j′1 ∨ j′2) = j1 ⊗ j′1 ∨ j2 ⊗ j′1 ∨ j1 ⊗ j′2 ∨ j2 ⊗ j′2. We call elements of
the form j ⊗ j′ pure tensors. If D,D′ are bounded distributive lattices then so is
UD⊗UD′ [8], with meet given on pure tensors as (d⊗d′)∧(e⊗e′) = (d∧e)⊗(d′∧e′).
The lattice UD ⊗ UD′ moreover is the coproduct of D,D′ in DL: the coproduct
injections are ι(d) = d⊗1′ and ι′(d′) = 1⊗d′ for d ∈ D, d′ ∈ D′, and the copairing
of lattice homomorphisms f : D → E, f ′ : D′ → E is given by the extension of
the join-bilinar map D×D′ → E, (d, d′) 7→ f(d)∧f(d′). Taking coproducts yields
a monoidal structure on DL and since U(D+D′) = UD⊗UD′, the functor U is
strong monoidal. The monoidal structure on Priest is given by binary products,
and the natural transformation δ of Remark 3.3 by

δ : V↓X × V↓Y → V↓(X × Y ), (C,D) 7→ C ×D.

Spelling out Definition 3.4, the category Opn,mJV↓
(Priest) is given as follows:

Definition 4.2. A ((n,m)-ary) relational Priestley space consists of a carrier
Priestley space X and a Priestley relation ρ : Xn → V↓X

m. A relational morphism
from a relational Priestley space (X, ρ) to (X ′, ρ′) is given by a Priestley relation
β : X → V↓Y such that, for all x ∈ Xn,y ∈ Xm,y′ ∈ X ′m,

x ρ y ∧ (∀i : yi β y′i)⇒ ∃x′ : (∀i : xi β x′
i) ∧ x′ ρ′ y′,

and, for all x ∈ Xn,x′ ∈ X ′n,y′ ∈ X ′m,

(∀i : xi β x′
i) ∧ x′ ρ′ y′ ⇒ ∃y : x ρ y ∧ (∀i : yi β y′i).

We let Opn,mJV↓
(Priest) denote the category of (n,m)-ary relational Priestley

operators and relational morphisms.
Then Theorem 3.5 instantiates to the following result:

Theorem 4.3 (Extended Priestley duality). The category of (m,n)-ary U -
operators of distributive lattices is dually equivalent to the category of (n,m)-ary
relational Priestley spaces and relational morphisms:

Opm,n
U (DL) ≃op Opn,mJV↓

(Priest).

By taking n = 1 and restricting to pure morphisms, we recover Goldblatt’s
duality [15]. Here, pure relational morphisms are called bounded morphisms and
n-ary U -algebras (UD)⊗n → UD in JSL are called n-ary join-hemimorphisms.
Corollary 4.4 (Goldblatt, 1989). The category of distributive lattices with n-
ary join-hemimorphisms, and pure morphisms between them, is dually equivalent
to the category of (1, n)-relational Priestley spaces and bounded morphisms.
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4.1 Deriving Concrete Formulas

We proceed to show how the adjoint framework can be used to methodically
derive concrete (i.e. element-based) formulas for the dual join operator of a
continuous relation and vice versa. Let us first observe that all involved categories
are order-enriched, i.e. the homsets are (pointwise) partially ordered; for JSL
and DL this is clear and relations X → V↓Y are ordered by inclusion, as usual.
Moreover, from the definitions it is clear that the transposing isomorphisms of
the adjunction F ⊣ U and the duality DL ≃op Priest are order-isomorphisms.

Second, in Priest we can represent an element x̂ of a space X̂ as a continuous
function 1 → X that we also denote by x̂; on the lattice side, elements of a
join-semilattice J correspond bijectively to JSL-morphisms 2→ J .

For the rest of the section we fix a U -algebra h : (UX)⊗n → UX with dual
Priestley relation ρ : X̂ → V↓X̂

n. We first show how to express ρ in terms of
h. Two elements x̂ ∈ X̂, x̂ ∈ X̂n are related by ρ (i.e. x̂ ρ x̂) iff the inequality
e(x̂) = ↓x̂ ≤ ρ(x̂) holds, equivalently, iff the left diagram below commutes laxly:

X̂ V↓X̂
n UX (UX)⊗n

1 X̂n 1n U2 (U2)⊗n

ρ

≥
Ux

≥

h

⊗
i Uxix̂

x̂

∆

e ∏
i x̂i ∇

The duals of x̂, x̂i are DL morphisms x, xi : X → 2. Under duality and transposi-
tion the left diagram corresponds to the right diagram where ∇ is the codiagonal
given by n-fold conjunction, i.e. it sends

⊗n
i=1 xi to

∧n
i=1 xi. Writing Fz = z−1(1)

for the prime filter corresponding to a morphism z ∈ DL(X, 2) the right diagram
yields Goldblatt’s formula [15, p. 186] for the dual Priestley relation of an algebra
h: we have x̂ ρ x̂ iff h[

∏
i Fxi ] ⊆ Fx.

To express h in terms of ρ, it suffices to describe h(x) for a pure tensor
x ∈ (UX)⊗n by the universal property of the tensor product. We factor x =⊗

i xi · ∇−1 : U2 ∼= (U2)⊗n → (UX)⊗n to see that the element h(x) corresponds
to the following morphism representing an element of the join-semilattice UX:

h ·
⊗
i

xi · ∇−1 : U2 ∼= (U2)⊗n → (UX)⊗n → UX.

Its dual is the characteristic function

X̂
ρ−→ V↓X̂

n V↓(
∏

i Ci)−−−−−−→ V↓(V↓1)
n V↓δ−−→ V↓V↓1

n
⋃
−→ V↓1

n V↓∆−1

−−−−→ V↓1 = 2,

where Ci = x̂+
i is the clopen upset of X̂ dual to

xi ∈ JSL(U2, UX) ∼= DL(FU2, X) ∼= Priest(X̂,V↓1) ∼= Priest(X̂, 2).

This shows that h(x) ∈ X ∼= Cl↑ X̂ corresponds to the clopen upset

h(x) = {a ∈ X̂ | ∃(b1, . . . , bn) ∈ ρ(a) : ∀i : bi ∈ Ci = x̂+
i } ∈ Cl↑(X̂),

which is Goldblatt’s formula [15, p. 184] for the dual algebra of a relation ρ.
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4.2 Partial Functions and Total Relations

As a further application of the adjoint framework we characterize those operators
whose dual Priestley relation is a partial function or a total relation, respectively.
We achieve this by considering two splittings of the adjunction F : JSL ⊣ DL :U
(Proposition 3.6 and Remark 3.7). The tensor on all categories considered is the
tensor product of their underlying join-semilattices.

First split the adjunction into Q : DL0 ⊣ DL :P and Q′ : JSL ⊣ DL0 :P ′,
where DL0 is the category of distributive lattices that are only bounded from
below, and P, P ′ are forgetful functors. The left adjoint Q add s a fresh top
element to a lattice in DL0. The dual submonad Q̂P̂ ↪→ V↓ on Priest is given by

Q̂P̂ D̂ ∼= Q̂PD ∼= DL(QPD, 2) ∼= DL0(PD,P2).

Every f ∈ DL0(PD,P2) either satisfies f(1) = 1, in which case f ∈ D̂ is prime,
or f(1) = 0 but then f = 0! is the constant zero map. In the pointwise ordering
of DL0(PD,P2) the morphism 0! is clearly the bottom element. Hence, the
monad Q̂P̂ just freely adds a bottom element. In particular, the dual category of
DL0 is readily seen to be equivalent to Priest0, the category of Priestley spaces
with a bottom element, and bottom-preserving continuous monotone maps. A
continuous relation ρ : X → Q̂P̂ X̂ is thus simply a partial continuous function.

Another splitting of the adjunction F ⊣ U is given by L : JSL1 ⊣ DL :R
and L′ : JSL ⊣ JSL1 :R′ and Q′ : JSL ⊣ DL0 :P ′ where JSL1 is the category
of join-semilattices with both a bottom and top element (which are preserved
by homomorphisms). The right adjoints R,R′ are forgetful functors. The left
adjoint L maps J ∈ JSL1 to the distributive lattice U◦

fg+ of non-empty finitely
generated upsets of J , ordered by reverse inclusion. The submonad L̂R̂ ↪→ V↓
thus maps a Priestley space D̂ to

L̂R̂D̂ ∼= DL(LRD, 2) ∼= JSL1(RD,R2) ∼= V+
↓ D̂,

where V+
↓ is the submonad of V↓ taking non-empty closed downsets. Coalgebras

for V+
↓ are total Priestley relations. Hence, we recover from Proposition 3.6 the

following result (the unary case is well-known, see e.g. [17, Lemma 4.6]):

Corollary 4.5. The dual Priestley relation of a U -operator (operator morphism,
respectively) is a partial function iff the operator (operator morphism, respectively)
preserves non-empty meets, and total iff it preserves ⊤.

5 Residuation Algebras

We are now ready to prove the main result of this paper: a fully fledged categorical
duality between profinite monoids and a subcategory of residuation algebras we
call boolean derivation algebras, refining Gehrke’s correspondence [12,13] between
profinite monoids and residuation algebras. Our result is obtained by combining
two ingredients: our framework for extended Stone duality from the previous
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sections and an isomorphism between residuation algebras and certain lattice
coalgebras. The latter is first established for finite algebras via an operator
on complete lattices we call tensor implication; extending it to locally finite
algebras (Definition 5.22) then yields the desired duality with the category of
profinite monoids. To this end we introduce the notion of residuation morphism
(Definition 5.8). In addition, we also consider relational morphisms and obtain a
dual equivalence between the categories of profinite monoids and that of boolean
derivation algebras, both equipped with (Stone) relational morphisms.

5.1 The Tensor Product of Distributive Lattices Revisited

Notation 5.1. By a lattice we always mean a bounded and distributive lattice,
i.e. an object of DL. We often write de for d∧ e. The dual lattice of D is denoted
D◦. The category of meet-semilattices (with a top element) is denoted MSL.
Analogous to JSL it has a tensor product M ⊠M ′ and is dual to the category
of Stone meet-semilattices [18]. From now on we denote the forgetful functors
from DL to JSL and MSL by U∨ and U∧, respectively. Sometimes we omit the
forgetful functors U∧ and U∨ for notational brevity and just write the respective
tensor products of the underlying semilattices as D ⊗D′ and D ⊠D′.

Remark 5.2. The monad induced by the dual of F∧ ⊣ U∧ sends X to its
hyperspace V↑X of closed upsets [1]. The comonads of the adjunctions F∧ ⊣ U∧
and F∨ ⊣ U∨ are not isomorphic but conjugate: F∧U∧ ∼= (F∨U∨(−)◦)◦. Their
restrictions to the category of boolean algebras are isomorphic since their dual
monads satisfy V↓ = V = V↑ as the order on their dual Priestley space is discrete.
On the category of finite Priestley spaces, which are simply posets, the Vietoris
monad V↓ is simply the downset monad, which restricts to the finite powerset
monad on the category of finite sets (discrete finite posets).

Remark 5.3 (Adjunctions on Lattices). By the adjoint functor theorem [24,
Thm. V.6.1] a monotone function f : D → D′ between complete lattices pre-
serves all joins iff it has a right adjoint f∗ : D

′ → D, which is then given
by f∗(d

′) =
∨

f(d)≤d′ d; dually, it preserves all meets iff it has a left adjoint
f∗ : D′ → D, given by f∗(d′) =

∧
d′≤f(d) d. Finite lattices are complete, so every

lattice homomorphism f between finite lattices has a left and a right adjoint.
The join-irreducibles JD of a finite lattice D are precisely those elements p ∈ D
whose characteristic function χp : D → 2 (mapping x ∈ D to 1 iff p ≤ x) is a
lattice morphism. The left adjoint of χp, also denoted p : 2→ D, maps 1 7→ p.

Lemma 5.4. (1) The join- and meet-semilattice tensor products of distributive
lattices D,E are isomorphic, that is, there is an isomorphism ω : D⊗E ∼= D⊠E.
(2) Adjunctions on lattices “compose horizontally”: Given adjunctions f : D ⊣
E :g and f ′ : D′ ⊣ E′ :g′ on lattices, the following composites are adjoints:

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣

ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣ ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω ⊣

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω

⊣

f⊗f ′
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Construction 5.5. For every finite lattice D the map x ⊗ (−) : D → D ⊗ D
preserves all joins, so it admits a right adjoint x ⊸ (−) : U∧(D⊗D)→ U∧D which
we call tensor implication. By Remark 5.3, it is given by x ⊸ T =

∨
x⊗y≤T y.

Analogously, we let (−) ⊸x denote the right adjoint of (−)⊗ x.

Definition 5.6. A (boolean) residuation algebra consists of a (boolean) lattice
R ∈ DL equipped with MSL-morphisms \ : R◦⊠R→ R and / : R⊠R◦ → R, the
left and right residual, satisfying the residuation property : b ≤ a\c ⇐⇒ a ≤ c / b.
We call R associative if it satisfies x \ (z / y) = (x \ z) / y for all x, y, z ∈ R. A
join-irreducible element e ∈ JR is a unit if it satisfies e \ z = z = z / e.

Residuals may be thought of algebraic generalizations of language derivatives,
but as the following examples indicate they are not limited to this interpretation.

Examples 5.7. (1) Every distributive Heyting algebra is an associative residu-
ation algebra with residuals a \ c = a→ c and c / b = b→ c.
(2) Every boolean algebra B is a non-associative residuation algebra with x\1 = 1
and x \ z = ¬x for z ̸= 1, but for |B| > 1 it does not have a unit.
(3) For a binary algebra m : X ×X → X on a Stone space X, the dual boolean
algebra X̂ of clopens forms a residuation algebra: given clopens A,C ⊆ X, put

A \ C = {x ∈ X | ∀(a ∈ A) : m(a, x) ∈ C},
C / A = {x ∈ X | ∀(b ∈ B) : m(x, b) ∈ C}.

(4) The regular languages RegΣ over a finite alphabet Σ form an associative
boolean residuation algebra with residuals given by (extended) left and right
derivatives: K \ L = {v ∈ Σ∗ | Kv ⊆ L} and L / K = {v ∈ Σ∗ | vK ⊆ L}. The
singleton empty word {ε} is a unit. This example is a special case of item (3)
obtained by taking the Stone algebra given by the free profinite monoid Σ̂∗.

We now introduce the notion of a residuation morphism between residuation
algebras and also its relational generalization.

Definition 5.8. (1) A lattice morphism f : R→ S between unital residuation
algebras is a (pure) residuation morphism if it satisfies the conditions

f(x \ z) ≤ f(x) \ f(z) (Forth)
∀(y, z) ∈ S ×R : ∃(xy,z ∈ R) : y ≤ f(xy,z) ∧ y \ f(z) = f(xy,z \ z) (Back)
∀x : e ≤ x⇔ e′ ≤ f(x) (Unit)

The morphism f is open if, additionally, it has a left adjoint. The category of
unital residuation algebras with residuation morphisms is denoted Res.
(2) A (lax) relational residuation morphism from a unital residuation algebra R
to a unital residuation algebra S is a morphism ρ ∈ JSL1(R,S) satisfying

ρ(x \ z) ≤ ρ(x) \ ρ(z) and e′ ≤ ρ(e).
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Unital residuation algebras with relational residuation morphisms form a category
RelRes.

We use the convention that for a subcategory C of Res we denote the full
subcategory of C with boolean carriers by BC, and analogously for RelRes.

Remark 5.9. Let us provide some intuition behind the choices made in Defini-
tion 5.8. Recall that a relational monoid morphism from a finite monoid M to N
is a total relation ρ : M → PN such that ρ(x)ρ(y) ⊆ ρ(xy) and 1N ∈ ρ(1M ).

(1) The notion of residuation morphism is derived from a result by Gehrke [13,
Theorem 3.19], where it is shown to capture precisely the conditions satisfied by
the duals of morphisms of binary Stone algebras.
(2) We speak about relational morphisms of residuation algebras since for finite
algebras these will dualize precisely to relational morphisms of finite monoids,
which model inverses of surjective monoids homomorphisms [28, p. 38]: on
finite monoids the inverse relation e−1 : N → PM of a surjective homomorphism
e : M ↠ N is the right adjoint e ⊣ e−1 in the category of P-coalgebras (relations),
i.e. as relations they satisfy id ≤ e−1 · e and e · e−1 ≤ 1. Under duality the
composition is reversed, so e−1 dualizes to a left adjoint ê−1 ⊣ ê. As left adjoints
between finite lattices are precisely the join-preserving functions this suggests the
choice that relational morphisms of residuation algebras preserve finite joins (and
not necessarily meets). Surjectivity of e is equivalent to totality of e−1, which by
Corollary 4.5 is equivalent to ê−1 preserving the top element.
(3) This is also the reasoning behind the naming for open residuation morphisms:
if e : M ↠ N is a continuous surjection between profinite monoids (that is,
topological monoids in Stone), then e−1 : N → VM is continuous precisely iff e
is an open map.

For open residuation morphisms the conditions (Back) and (Forth) can be
combined into a much simpler condition. Over finite residuation algebras this is
particularly convenient since every residuation morphism is open.

Lemma 5.10. Let R,S be residuation algebras. A lattice morphism f : R→ S
is an open residuation morphism iff f∗(e′) = e and it satisfies the condition

y \ f(z) = f(f∗(y) \ z). (Open)

Example 5.11. Let Σ, ∆ be finite alphabets. Every substitution f0 : Σ → ∆∗

can be extended to a monoid homomorphism f : Σ∗ → ∆∗, and for regular
languages L ∈ RegΣ and K ∈ Reg∆ both f [L] and f−1[K] are also regular.
Then f−1 : Reg∆ → RegΣ is an open residuation morphism. Indeed, its left
adjoint is f [−], and we have f [{ε}] = {f(ε)} = {ε} and

K \ f−1[L] = {w | Kw ⊆ f−1[L]} = {w | f [K]f(w) ⊆ L} = f−1(f [K] \ L).

5.2 Finite Residuation Algebras

Construction 5.12. In a finite residuation algebra R the partially applied
residuals (x \ −), (− / y) have left adjoints µ(x,−) ⊣ (x \ −), µ(−, y) ⊣ (− /
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y) that can be combined, by the universal property of ⊗, into a U∨-algebra
µ : U∨R⊗U∨R→ U∨R called multiplication. Every algebra U∨D⊗U∨D → U∨D
on a finite lattice D has a right adjoint γ : U∧D → U∧(D⊗D) that can, by using
the isomorphism ω from Lemma 5.4, be extended to a U∧-coalgebra

γ̂ = U∧ω · γ : U∧D → U∧(D ⊗D) ∼= U∧(D ⊠D) = U∧D ⊠ U∧D.

Since γ and γ̂ are essentially the same function (differing only by the isomorphism
ω) we refer to both as comultiplication or coalgebra structure. Conversely, we
obtain a U∨-algebra from a comultiplication γ : U∧D → U∧(D ⊗D) by taking
its left adjoint. In summary, each of /, \, µ, γ determine each other uniquely:

x ≤ z / y ⇐⇒ y ≤ x \ z ⇐⇒ µ(x⊗ y) ≤ z ⇐⇒ x⊗ y ≤ γ(z),

Lemma 5.13. In a finite residuation algebra R the residuals can be expressed
via comultiplication γ and tensor implication as x \ z = x ⊸ γ(z) and z / y =
γ(z) ⊸y. Conversely, the comultiplication can be expressed via residuals as

γ(z) =
∨

x∈R
x⊗ (x \ z) =

∨
p∈JR

p⊗ (p \ z).

First we investigate when the comultiplication is a pure, i.e. lifts to a lattice
morphism R→ R+R.

Lemma 5.14. For a finite residuation algebra R, the following are equivalent:
(1) The comultiplication is pure, i.e., γ(0) = 0 and γ(x ∨ y) = γ(x) ∨ γ(y).
(2) For all p ∈ JR we have p \ 0 = 0 = 0 / p, and the following equations hold:

p \ (x ∨ y) = p \ x ∨ p \ y and (x ∨ y) / p = x / p ∨ y / p.

(3) For all x, y ∈ R : µ(x⊗ y) = 0 ⇐⇒ x = 0 ∨ y = 0, and µ[J (R+R)] ⊆ JR.

Next we inspect how structural identities like (co-)associativity or unitality
translate to the other operations. Note that while the statements are to be
expected, the proof is non-trivial due to the complication introduced by the
seemingly innocent isomorphism ω : R ⊗ R ∼= R ⊠ R. Recall that a coalgebra
c : U∧R→ U∧R⊠ U∧R is coassociative if (c⊠ id) · c = (id⊠ c) · c and counital if
it is equipped with a counit ε ∈ DL(R, 2) such that (ε⊠ id) · c = id = (id⊠ ε) · c.

Lemma 5.15. The following are equivalent for a finite residuation algebra R:
(1) The comultiplication on R is coassociative and has a counit.
(2) The residuals are associative and R has a unit.
(3) The multiplication µ is associative and has a unit, i.e. a join-irreducible
e ∈ JR satisfying µ(e⊗−) = id = µ(−⊗ e).

These lemmas suggest the following definitions.

Definition 5.16. (1) A finite residuation algebra R is pure if it satisfies the
equivalent conditions of Lemma 5.14.
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(2) A finite residuation algebra R is a finite derivation algebra if it is pure,
associative and has a unit. The respective full subcategories of Resf and RelResf
are denoted by Derf and RelDerf .
(3) A (not necessarily finite) U∧-coalgebra γ̂ : U∧C → U∧C ⊠ U∧C is a U∧-
comonoid if its coassociative and counital. It is a comonoid if γ̂ is pure.

In order to extend the correspondence of (finite) residuation algebras and
U∧-coalgebras to a categorical equivalence we introduce appropriate morphisms.

Definition 5.17. (1) A pure morphism from a counital U∧-coalgebra (C, γ̂, ϵ)
to (C ′, γ̂′, ϵ′) is a lattice morphism f : C → D satisfying (f ⊠ f) · γ̂ = γ̂′ · f and
ϵ = ϵ′ · f .

U∧C U∧C
′

U∧C ⊠ U∧C U∧C
′ ⊠ U∧C

′

U∧f

γ̂ γ̂′

U∧f⊠U∧f

U∧C U∧C
′

U∧2

U∧f

U∧ϵ
U∧ϵ′

The category of counital U∧-coalgebras with pure morphisms is denoted by
Coalg(U∧) and its full subcatgegory of U∧-comonoids by Comon(U∧), again
with the full subcategory Comon of comonoids.
(2) Let C and C ′ be comonoids. A (lax) relational morphism from C to C ′ is a
morphism ρ ∈ JSL1(C,C

′) satisfying (ρ⊗ ρ) · γ ≤ γ′ · ρ and ϵ ≤ ϵ′ · ρ, i.e. the
following diagrams in JSL commute laxly:

U∨C U∨C
′ U∨C U∨C

′

U∨C ⊗ U∨C U∨C
′ ⊗ U∨C

′ U∨2

ρ

U∨γ U∨γ′

ρ

U∨ϵ
U∨ϵ′

ρ⊗ρ

≤ ≤

Comonoids with relational morphisms form a category RelComon.

Theorem 5.18. The following categories are isomorphic:

Coalgf(U∧) ∼= Resf , Comonf
∼= Derf and RelComonf

∼= RelDerf .

Proof (Sketch). On objects the isomorphism swaps between residuals and comul-
tiplication; the residual unit is left adjoint of the counit. The first isomorphism
restricts to the second by Lemmas 5.14 and 5.15. On morphisms one proves that
a lattice morphism f : C → C ′ is a pure coalgebra morphism iff it is an (open)
residuation morphism, and if C and C ′ are comonoids, then ρ ∈ JSL1(C,C

′) is
a relational comonoid morphism iff it is a relational residuation morphism.

From Theorem 5.18 we obtain the following dual characterization of finite
monoids; an analogous result can be stated for finite ordered monoids.

Theorem 5.19. (1) The category of finite monoids is dually equivalent to the
category of finite boolean derivation algebras (or finite boolean comonoids):

Monf ≃op BComonf
∼= BDerf .
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(2) The category of finite monoids with relational morphisms is dually equivalent
to the category of finite boolean derivation algebras (or finite boolean comonoids)
with relational morphisms.

RelMonf ≃op RelBComonf
∼= RelBDerf .

Proof. The first statement is a trivial extension of Theorem 5.18 by (finite) Stone
duality since finite monoids dualize to finite boolean comonoids. For item (2)
note that a relational monoid morphism (M, ·M , 1M ) → (N, ·N , 1N ) is a total
relation ρ : M → PN making the following diagrams commute laxly:

M ×M M 1 M

PN × PN P(N ×N) PN N PN

·M

ρ×ρ ρ

1M

1N ρ

δ

≤
P(·N )

≤
η

If we view N as a finite discrete Priestley space, then PN = VN , thus under
extended duality this yields precisely a relational morphism ρ̂− ∈ JSL1(N̂ , M̂)
of finite boolean comonoids, or equivalently, a relational residuation morphism.

5.3 Locally Finite Residuation Algebras

The main complication in the generalization from finite to infinite structures
comes from the reliance on adjoints, as these may not exist anymore on infinite
lattices. The prime example of a residuation algebra in automata theory suggests
a local translation between residuals and comultiplication:

Example 5.20. It is well-known that the boolean algebra RegΣ of regular
languages dualizes under Stone duality to the free profinite monoid Σ̂∗ (see
Pippenger [26]). The multiplication µ : Σ̂∗× Σ̂∗ → Σ̂∗ of profinite words dualizes
under Stone duality to a comultiplication µ−1 : RegΣ → RegΣ + RegΣ on
regular languages defined on L ∈ RegΣ by

µ−1(L) =
∨

[v]∈SynL

[v]⊗ [v] \ L. (5.1)

Here SynL is the syntactic monoid of L, whose elements are the equivalence
classes of the equivalence relation on Σ∗ defined by v ≡L w iff v, w belong to the
same residuals K \ L / M . Gehrke [12, Thm. 15] has shown that, under Stone
duality, SynL dualizes to the residuation ideal generated by L ∈ RegΣ.

Definition 5.21. A residuation ideal of a residuation algebra R is a sublattice
I ↪→ R such that for all z ∈ I and x ∈ R one has x \ z, z / x ∈ R. We denote the
residuation ideal generated by a subset X ⊆ R by \X/.

Residuation ideals were used by Gehrke [13] to characterize quotients of Priest-
ley topological algebras. Note that in the formula (5.1) for the comultiplication
on regular languages it is crucial that the residuation ideal \{L}/ generated by a
single regular language L is finite, as otherwise the join might not exist. This
leads to the following restriction.
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Definition 5.22. (1) A residuation algebra R is locally finite if every finite
subset of R is contained in a finite residuation ideal of R.
(2) A U∧-coalgebra C is locally finite if every finite subset of C is contained in a
finite subcoalgebra of C.

Note that not every residuation algebra is locally finite, consider for example
an infinite boolean algebra in Example 5.7(2).

Proposition 5.23. (1) Every locally finite residuation algebra R yields a locally
finite U∧-coalgebra γ\ : U∧R→ U∧(R⊗R) with comultiplication given by

γ\(z) = (ιA ⊗ ιA)(γA(z)) =
∨

x∈A
ιA(x)⊗ ιA(x \ z) =

∨
p∈JA

ιA(p)⊗ ιA(p \ z)

for any finite residuation ideal ιA : A ↪→ R containing z (here γA is the comulti-
plication on A as in Construction 5.12).
(2) Every locally finite U∧-coalgebra (C, γ) yields any locally finite residuation
algebra with the left residual given by x \γ z = ιA(x \A z) = ιA(x ⊸ γ(z)) for
any finite subcoalgebra ιA : A ↪→ C containing x, z (here \A is the residual on
A as given by Construction 5.12). The residual has a canonical presentation as
x \γ z = ιz(ι

∗
z(x) \ z), where ιz : ⟨z⟩ → C is the smallest (finite) subcoalgebra

containing z. The right residual is defined analogously.
(3) These translations are mutually inverse.

Proposition 5.23 shows that every locally finite residuation algebra carries
a unique U∧-coalgebra structure and vice versa. We may thus translate at will
between the residuals and comultiplication as in the finite case and omit the
subscripts. We extend Lemmas 5.14 and 5.15 to locally finite structures:

Lemma 5.24. Let R be a locally finite residuation algebra.
(1) Finite residuation ideals correspond to finite subcoalgebras.
(2) The residuals are associative iff the comultiplication is coassociative.
(3) The residuals have a unit iff the comultiplication is counital.
(4) The comultiplication is pure iff every finite residuation ideal is pure (see
Definition 5.16).

Definition 5.25. A residuation algebra R is a derivation algebra if it is locally
finite, associative, unital and every finite residuation ideal I is pure. The ensuing
full subcategories of Res and RelRes are denoted Der and RelDer.

Theorem 5.26. (1) The category of locally finite residuation algebras and resi-
duation morphisms is isomorphic to the category of locally finite unital U∧-
coalgebras and pure coalgebra morphisms.
(2) The isomorphism restricts to the full subcategories of derivation algebras and
locally finite comonoids.
(3) The categories of derivation algebras and relational residuation morphisms
and locally finite comonoids with relational morphisms are isomorphic.
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Combining this characterization with our approach to extended Stone duality
we finally arrive at our main result. We define a Stone relational morphism from
a profinite monoid X to a profinite monoid Y to be a Stone relation ρ : X → VY
such that ρ(x)ρ(x′) ⊆ ρ(xx′) and 1N ∈ ρ(1M ).

Theorem 5.27. (1) The category of boolean derivation algebras is dually equiv-
alent to the category of profinite monoids:

BDer ∼= BComon ≃op ProfMon.

(2) The category of boolean derivation algebras and relational residuation mor-
phisms is dually equivalent to the category of profinite monoids and Stone rela-
tional morphisms:

RelBDer ∼= RelBComon ≃op RelProfMon.

Remark 5.28. (1) By extended Priestley duality, Theorem 5.27 extends to all
derivation algebras and Priestley monoids with Priestley relational morphisms.
(2) All results of Section 5 hold analogously for the extension of the “discrete”
duality between posets (or sets) and algebraic completely distributive lattices
(or CABAs) along the free-forgetful adjunction between completely distributive
lattices and complete join-semilattices. This yields a duality between the category
of all monoids and completely atomic boolean residuation algebras with open
residuation morphisms that can further be extended to relational morphisms.

6 Conclusion and Future Work

We have presented an abstract approach to extending Stone-type dualities based
on adjunctions between monoidal categories and instantiated it to recover and
generalize extended Priestley duality. Guided by these foundations we have
investigated residuation and derivation algebras and proved a duality between
the latter and profinite monoids, Moreover, we have extended this duality to
relational morphisms.

Our next goal is to apply our abstract duality framework beyond classical
Stone and Priestley dualities. Specifically, we aim to develop an extended duality
theory for the recently developed nominal Stone duality [4], which would allow
to generalize our present results on residuation algebras to the nominal setting
and uncover new results about data languages.

A conceptually rather different dual characterization of the category of profi-
nite monoids and continuous monoid morphisms in terms of semi-Galois categories
has been provided by Uramoto [35]. Extending this result to relational morphisms,
similar to our Theorem 5.27, is another interesting point for future work.

Finally, by extending the duality on objects we note that by dualizing a
non-pure lattice comonoid one obtains a relational profinite monoid. General
relational monoids are equivalent to power quantales, which recognize precisely
context-free languages [29]; this leads to the question of the expressivity of
relational (pro-)finite monoids.
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A Appendix

This appendix provides full proofs of all results and technical statements omitted
for space reasons.

Proof of Theorem 3.5

Let â : Â⊗̂n → TÂ⊗̂m and b̂ : B̂⊗̂n → TB̂⊗̂m be objects of Opn,mJT
(Ĉ), and let

f̂ : (Â, â) → (B̂, b̂) be a morphism of operators. Unfolding the definitions of
composition and monoidal structure in the Kleisli category, this means f̂ is a
morphism Â→ TB̂ = F̂ Û B̂ such that the following diagram in Ĉ commutes:

Â⊗̂n TÂ⊗̂m T (TB̂)⊗̂m TTB̂⊗̂m

(TB̂)⊗̂n TB̂⊗̂n TTB̂⊗m TB̂⊗m

â

f̂⊗̂n

T f̂⊗̂m
Tδ

µ

δ T b̂ µ

Its dual diagram is the dashed center square of the following commuting diagram
in C. (Note that we extend δ to arbitrary tensor powers, and also that the choice
of the order in which we compose λ, λ−1 and the associators is irrelevant by the
Coherence Theorem [24] for monoidal categories.)

F (UB)⊗n F (UA)⊗n

FUFUB⊗m FUB⊗n F (UFUB)⊗n

F (UB)⊗m FUB⊗m (FUB)⊗n FU(FUB)⊗n

FUF (UB)⊗m FUFUB⊗m A⊗n FUA⊗n

FU(FUB)⊗m FUA⊗m

F (UFUB)⊗m FUF (UFUB)⊗m FUFU(FUB)⊗m

F (UA)⊗m FUF (UA)⊗m FUFUA⊗m

FUA⊗m FUA⊗m

F(f–)⊗n

Fη⊗n

Fλ

FUb

Fλ−1

δ̂

F(Uf)⊗n

Fλ

F (ηU)⊗m

Fη

F(f–)⊗m

Fλ−1

FηU

FηU

F (b−)

f⊗n

ε

FUf⊗n

FUF (ηU)⊗m

FUFλ−1

FUδ̂

ε

FUf⊗m

a

Fη

F (Uf)⊗m FUF (Uf)⊗m

FUFλ

FUFUf⊗m

FUε

Fη

Fλ

FUFλ

FUε
FηU

Since the counit ε = id+ is the adjoint transpose of the identity and trans-
position is natural, transposing the outer paths of the above diagram yield the
inner square of the following commutative diagram in D:

(UB)⊗m UB⊗m UB⊗n (UB)⊗n (UA)⊗n

(UB)⊗m (UA)⊗m UA⊗m UA⊗n U(A⊗n)

λ b−

λ−1

λ−1 (f−)⊗n

λ

(f−)⊗m
λ a− λ−1
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By pre- and postcomposition of this square with λ and λ−1, respectively, and
replacing a− and b− by their respective conjugates α = λ · a− · λ−1 and β =
λ · b− · λ−1 this diagram simply becomes the square

(UB)⊗m (UB)⊗n

(UA)⊗m (UA)⊗n

β

(f−)⊗m (f−)⊗n

α

in D, which is a homomorphism diagram of (m,n)-ary U -operators. All steps of
this transformation are reversible. We have thus shown that the functor sending
an operator (Â, â) in Opn,mJT

(Ĉ) to the operator (A, λ · a− · λ−1) in Opm,n
U (C),

and an operator morphism f̂ to f−, defines an equivalence of categories. ⊓⊔

Proof of Proposition 3.6

We denote the transposition of F1 ⊣ U1 by (−)$ : C(F1X,Y ) ∼= D(X,U1Y ). Let
ĥ : B̂⊗̂n → TÂ⊗̂m = F̂1F̂2Û2Û1Â

⊗m be the dual of a : (U2U1A)⊗m → (U2U1B)⊗n

under the abstract extended duality. This is precisely the case iff the outer path
of the following diagram commutes:

U2U1A
⊗m U2U1B

⊗n

U2(U1A
⊗m) U2(U1B

⊗n)

(U2U1A)⊗m (U2U1B)⊗n

h−

U2λ
−1
1

λ−1

U2λ1

λ−1
2λ2

a

λ

Let ĝ : B⊗n → T1A
⊗m = F̂1Û1A

⊗m be a morphism in Ĉ with ĥ = F̂1ε̂2Û1 · ĝ.
This holds iff

h = g · F1ε2U1 ⇐⇒ h$ = g$ · ε2U1 ⇐⇒ h− = U2g
$

since the counit ε2 vanishes under the second transposition. The dual b of ĝ under
the extended duality along the adjunction F1 ⊣ U1 makes the upper square of
the following diagram commute

U2U1A
⊗m U2U1B

⊗n

U2(U1A
⊗m) U2(U1B)⊗n

(U2U1A
⊗m) (U2U1)B

⊗n

U2g
$=h−

U2λ
−1
1

λ−1

U2λ1

U2b

λ−1
2λ2

a

λ
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whence the whole diagram commutes. But this is equivalent to a admitting the
lifting b with a = λ−1

2 · U2b · λ2. ⊓⊔

Details for Section 4

Lemma A.1. The map δ witnessing that V↓ is a monoidal monad is given by

δ : V↓X × V↓Y → V↓(X × Y ), (C,D) 7→ C ×D.

Proof. Let C ∈ V↓X,D ∈ V↓Y be closed downsets. We first represent them by
their respective ideals IC , ID of Cl↑ X, which are equivalently JSL-morphisms

c : U Cl↑ X → U2, d : U Cl↑ X → U2.

The dual of the distributive law δ is

δ̂ : DL(FU Cl↑ X + FU Cl↑ X, 2)→ DL(FU(Cl↑ X +Cl↑ X), 2)

mapping [c+, d+] to the transpose of

U [c+, d+] · (η ⊗ η) : U(Cl↑ X +Cl↑ X)

=U(Cl↑ X)⊗ U(Cl↑ X)→ UFU Cl↑ X ⊗ UFU Cl↑ X

=U(FU Cl↑ X + FU Cl↑ X)→ U2.

The latter map sends a pure tensor A⊗B ∈ U(Cl↑ X +Cl↑ X) to its “product”
c(A)∧ d(B). Therefore the closed set δ(C,D) corresponding to U [c+, d+] · (η⊗ η)
contains a pair of elements x, y iff x ∈ C and y ∈ D. ⊓⊔

Details for Lemma 5.4

For the proofs, we need an extended version of Lemma 5.4

Lemma A.2. (1) The join- and meet-semilattice tensor products of distributive
lattices D,E yield isomorphic lattices.

U∨D ⊗ U∨E ∼= U∧D ⊠ U∧E.

More precisely, the unique lattice morphism ω : U∨D ⊗ U∨E → U∧D ⊠ U∧E
commuting with the coproduct injections is an isomorphism. It acts on pure
tensors as d⊗ e 7→ d⊠ 0 ∧ 0⊠ e, and on general elements ω is given by∨

i∈I
di ⊗ ei 7→

∧
A∈PI

(
∨

i∈A
di)⊠ (

∨
i̸∈A

ei)

with inverse ω−1 given by∧
i∈I

di ⊠ ei 7→
∨

A∈PI
(
∧

i∈A
di)⊗ (

∧
i ̸∈A

ei).
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(2) Adjunctions on lattices “compose horizontally”: Given adjunctions f : D ⊣
E :g and f ′ : D′ ⊣ E′ :g on lattices we get adjunctions:

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣
ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

⊣ ω−1ω

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω ⊣

f⊗f ′

E ⊠ E′ D ⊠D′

E ⊗ E′ D ⊗D′

g⊠g′

ω−1ω

⊣

f⊗f ′

If the right adjoints g, g′ preserve finite joins this simplifies to

f ⊗ f ′ ⊣ g ⊗ g′ = ω−1(g ⊠ g′)ω

and dually ω(f ⊗ f ′)ω−1 = f ⊠ f ′ if both f, f ′ preserve finite meets.

Proof. (1) By order-duality, the tensor product U∧D ⊠ U∧E in the category of
meet-semilattices also gives a representation of the coproduct D + E in DL,
its inclusions ι̂1, ι̂2 map d ∈ D, e ∈ E to ι̂1(d) = d ⊠ 0 and ι̂2(e) = 0 ⊠ e,
respectively. The canonical isomorphism ω is the coparing ω = [ι̂1, ι̂2] of the
inclusions of the meet-semilattice tensor product. Therefore on pure tensors ω
maps d ⊗ e 7→ d ⊠ 0 ∧ 0 ⊠ e, which extends to general elements of D ⊗ E via
distributivity as

ω(
∨

i∈I
di ⊗ ei) =

∨
i∈I

ω(di ⊗ ei)

=
∨

i∈I
di ⊠ 0 ∧ 0⊠ ei

=
∧

A∈PI

∨
i∈A

di ⊠ 0 ∨
∨

i ̸∈A
0⊠ ei

=
∧

A∈PI
(
∨

i∈A
di)⊠ 0 ∨ 0⊠ (

∨
i̸∈A

ei)

=
∧

A∈PI
(
∨

i∈A
di)⊠ (

∨
i ̸∈A

ei),

where we in the last two steps that (a⊠ b) ∨ (c⊠ d) = (a ∨ c)⊠ (b ∨ d) holds in
D ⊠ E.
(2) It suffices to prove that only one of the squares is an adjunction, since one
gets all others by suitable composition with ω.

We choose the third, i.e. we show that there is an adjunction

(f ⊗ f ′) · ω−1 : D ⊠D′ ⊣ E ⊗ E′ : (g ⊠ g′) · ω.

by verifying the unit and counit inequalities

id ≤ (g ⊠ g′)ω(f ⊗ f ′)ω−1 and (f ⊗ f ′)ω−1(g ⊠ g′)ω ≤ id.

We only prove the counit inequality; the proof of the unit inequality is dual.
Recall that the right adjoint g preserves meets. Therefore, for every xA =

∨
i∈A xi
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we have:

(f ⊗ f ′)ω−1(g ⊠ g′)ω(
∨

i
xi ⊗ yi)

= (f ⊗ f ′)ω−1(g ⊠ g′)(
∧

A∈PI
xA ⊠ yAc) def. ω

= (f ⊗ f ′)ω−1(
∧

A∈PI
g(xA)⊠ g′(yAc)) def. g ⊠ g′

= (f ⊗ f ′)(
∨

B∈PPI
(
∧

A∈B
g(xA))⊗ (

∧
A∈Bc

g′(yAc))) def. ω−1

= (f ⊗ f ′)(
∨

B∈PPI
g(
∧

A∈B
xA)⊗ g′(

∧
A∈Bc

yAc)) g pres. meets

= (
∨

B∈PPI
fg(

∧
A∈B

xA)⊗ f ′g′(
∧

A∈Bc
yAc)) def. f ⊗ f ′

≤ (
∨

B∈PPI
id(

∧
A∈B

xA)⊗ id(
∧

A∈Bc
yAc)) counits f ⊣ g, f ′ ⊣ g′

= ω−1ω(
∨

i
xi ⊗ yi) =

∨
i
xi ⊗ yi.

If g, g′ preserve finite joins, then g ⊗ g′ is defined (otherwise it would not be!)
and it is clear that f ⊗ f ′ ⊣ g ⊗ g′. By uniqueness of adjoints this implies
g ⊗ g′ = ω−1(g ⊠ g′)ω. ⊓⊔

Details for Construction 5.5

Proposition A.3. Let D be a finite distributive lattice.
(1) The function

x⊗ (−) : D → D ⊗D, y 7→ x⊗ y

has a right adjoint

x ⊸ (−) : D ⊗D → D, T 7→ x ⊸ T =
∨

x⊗y≤T
y

called tensor implication. If p ∈ JD is join-irreducible then p ⊸ (−) is the lattice
homomorphism

λ · (χp + id): D +D → 2 +D ∼= D,
∨

i∈I
pi ⊗ qi 7→

∨
p≤pi

qi.

(2) It can be extended to a function (−) ⊸ (−) : D◦ ⊠ (D ⊗D)→ D.
(3) Every adjunction l ⊣ r between finite distributive lattices satisfies

x ⊸ ω−1(r ⊠ r)ω(T ) = r(l(x) ⊸ T )

as well as

l(x ⊸ T ) ≤ l(x) ⊸ (l ⊗ l)(T ) and r(x ⊸ T ) ≤ r(x) ⊸ ω−1(r ⊠ r)ω(T ),

where the latter equation is an equality if r is order-reflecting.
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Proof. (1) The function x⊗ (−) preserves finite joins by definition, so its right
adjoint x ⊸ (−) exists and is given by T 7→

∨
x⊗y≤T y. We can express x⊗ (−)

as
x⊗ (−) = λ−1 · (x⊗ id) : D ∼= 2⊗D → D ⊗D,

so it has by Lemma A.2(2) the right adjoint λ ·ω−1 · (χx ⊠ id) ·ω. If x = p ∈ JD
is join-irreducible then χp preserves joins, whence the right adjoint simplifies to

λ−1 · (χp ⊗ id) : D ⊗D → 2⊗D ∼= 2,
∨

i
pi ⊗ qi 7→

∨
p≤pi

qi

which is a lattice morphism.
(2) This is an instance of an adjunction with a parameter (cf. [24, Chapter IV.7]),
and it is easy to verify that (−) ⊸ T sends joins (meets in D◦) to meets in D.
(3) Let T ∈ D ⊗D and x ∈ E, then for all y ∈ E we have

y ≤ x ⊸ ω−1(r ⊠ r)ω(T ) ⇐⇒ x⊗ y ≤ ω−1(r ⊠ r)ω(T )

⇐⇒ l(x)⊗ l(y) ≤ T

⇐⇒ l(y) ≤ l(x) ⊸ T

⇐⇒ y ≤ r(l(x) ⊸ T ),

so the first statement follows. With this we compute

x ⊸ T ≤ x ⊸ ω−1(r ⊠ r)ω(l ⊗ l)(T ) = r(l(x) ⊸ (l ⊗ l)(T )),

which by adjunction is equivalent to

l(x ⊸ T ) ≤ l(x) ⊸ (l ⊗ l)(T ).

Similarly,

r(x ⊸ T ) ≤ r(l(r(x)) ⊸ T ) = r(x) ⊸ ω−1(r ⊠ r)ω(T ),

and the first step is an equality if l · r = id, which is equivalent to r being
order-reflecting. ⊓⊔

Proof of Lemma 5.10

Let f : R→ S be a lattice morphism with left adjoint f∗ : S → R.
We first show that if f satisfies (Open) then it is an open residuation morphism.

The (Forth) condition follows from the counit f∗(f(x)) ≤ x and contravariance:

f(x \ z) ≤ f(f∗(f(x)) \ z) = f(x) \ f(z).

The (Back) condition is satisfied since one can choose for every y ∈ S the element
xy,z = f∗(y) ∈ R independently of z ∈ R. By the unit of the adjunction it satisfies
y ≤ f(f∗(y)) = f(xy,z), and thus via (Open)

y \ f(z) = f(f∗(y) \ z) = f(xy,z \ z).
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For the other direction we prove that every open residuation morphism
satisfies the condition (Open). Let (y, z) ∈ S ×R, then by the (Back) condition
there exists xy,z ∈ R with y ≤ f(xy,z) and y \ f(z) = f(xy,z \ z). This implies
f∗(y) ≤ xy,z and whence via (Back) also

y \ f(z) = f(xy,z \ z) ≤ f(f∗(y) \ z).

On the other hand the adjunction unit y ≤ f(f∗(y)) and (Forth) combine to

f(f∗(y) \ z) ≤ f(f∗(y)) \ f(z) ≤ y \ f(z).

This proves that f indeed satisfies (Open).
For the respective unitality conditions we have by f∗ ⊣ f that

∀x : e ≤ x⇔ e′ ≤ f(x)⇔ f∗(e′) ≤ x

which is equivalent to e = f∗(e′). ⊓⊔

Proof of Lemma 5.13

The identity x \ z = x ⊸ γ(z) holds because, for every y ∈ R,

y ≤ x \ z ⇐⇒ µ(x⊗ y) ≤ z ⇐⇒ x⊗ y ≤ γ(z) ⇐⇒ y ≤ x ⊸ γ(z).

The proof of z / y = γ(z) ⊸y is analogous. Finally, we have

γ(z) =
∨
{T =

∨
i
xi ⊗ yi | µ(T ) ≤ z} formula right adjoint

=
∨
{x⊗ y | µ(x⊗ y) ≤ z} µ preserves joins

=
∨
{x⊗ y | y ≤ x \ z} µ(x⊗−) ⊣ (x \ −)

=
∨
{x⊗ x \ z} simplification

( =
∨
{z / x⊗ x} symmetry).

It is clear that
∨

p∈JR p ⊗ p \ z ≤
∨

x∈R x ⊗ x \ z, for the reverse inclusion we
compute

x⊗ x \ z = (
∨

p≤x
p)⊗ x \ z =

∨
p≤x

p⊗ x \ z ≤
∨

p≤x
p⊗ p \ z,

where p ranges over JR and we use contravariance of (−\ z) in the last step. ⊓⊔

Proof of Lemma 5.14

We first prove the equivalence of (1) and (3). First, we have

γ(0) = 0 ⇐⇒ γ(0) ≤ 0

⇐⇒ ∀T : T ≤ γ(0)⇒ T ≤ 0

⇐⇒ ∀T =
∨

i
xi ⊗ yi : µ(T ) =

∨
i
µ(xi ⊗ yi) ≤ 0 =⇒ ∀i : xi ⊗ yi ≤ 0

⇐⇒ ∀x, y : µ(x⊗ y) = 0⇒ x⊗ y = 0

⇐⇒ ∀x, y : µ(x⊗ y) = 0⇔ x = 0 ∨ y = 0.
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Moreover, note that the join-irreducibles of R ⊗ R are given by pure tensors
of p ⊗ q join-irreducibles p, q ∈ JR, and that in a distributive lattice every
join-irreducible element j is join-prime (i.e. j ≤ x ∨ y implies j ≤ x or j ≤ y),
and vice versa. Consequently,

∀x, y : γ(x ∨ y) = γ(x) ∨ γ(y)

⇐⇒∀x, y : ∀a, b ∈ JR : a⊗ b ≤ γ(x ∨ y)⇒ a⊗ b ≤ γ(x) ∨ γ(y)

⇐⇒∀x, y : ∀a, b ∈ JR : a⊗ b ≤ γ(x ∨ y)⇒ [a⊗ b ≤ γ(x) or a⊗ b ≤ γ(y)]

⇐⇒∀x, y : ∀a, b ∈ JR : µ(a⊗ b) ≤ x ∨ y ⇒ [µ(a⊗ b) ≤ x or µ(a⊗ b) ≤ y]

⇐⇒∀x, y : ∀a⊗ b ∈ J [R⊗R] : µ(a⊗ b) ∈ JR.

For the equivalence (1) ⇐⇒ (2) we combine Lemma 5.13 with the preservation
properties of x ⊸ (−) from Proposition A.3(1): If γ preserves finite joins, then
so does (p \−) = p ⊸ γ(−) for p ∈ JR, and if every (p \−) preserves finite joins
then so does γ =

∨
p∈JR p⊗ p \ (−). ⊓⊔

Proof of Lemma 5.15

For the proof we only have to do “adjunctional calculus”: The equivalence (3)
⇐⇒ (2) follows from uniqueness of adjoints: We write associativity of µ as

∀x, y : µ(−⊗ y) · µ(x⊗−) = µ(x⊗−) · µ(−⊗ y)

and associativity of the residuals as

∀x, y : (x \ −) · (− / y) = (− / y) · (x \ −).

Since the respective left and right sides of the equalities are adjoint, and adjoints
are unique, it is clear that one of the equations hold iff the other one does. The
equivalence of the (co-)unit properties is analogous.

The equivalence (1) ⇐⇒ (3) works similar, but we have to be careful since µ
and γ̂ are technically not adjoint, only up to the isomorphism ω : R⊗R→ R⊠R.
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By Lemma 5.4(2) we have the following diagram of adjunctions:

R

R⊗R R⊗R

R⊠R R⊗R⊗R R⊠R

R⊠ (R⊗R) (R⊗R)⊠R

R⊠R⊠R

γ

⊣

γ

⊣

γ̂ γ̂

µ

ω

⊣

µ

ω⊣

id⊠γ

id⊠γ̂

id⊗µ µ⊗id

ω ω

γ⊠id

γ̂⊠id

ω−1

id⊠ω

ω−1

ω⊠id

The left and right diamonds come from the horizontal composition of adjunctions
under the respective tensor products. The bottom diamond is easily seen to
commute. So if µ is associative, then the top inner diamond commutes, and so by
uniqueness the outer big diamond commutes by uniqueness of adjoints, proving
γ̂ coassociative. Dually, if γ̂ is coassociative then µ is associative. The unit of µ
is the left adjoint of γ = ω−1 · γ̂.

Proof of Theorem 5.18

The correspondence on operators follows from the following proposition.

Proposition A.4. Let R and R′ be finite residuation algebras with unit.
(1) A lattice morphism f : R → R′ is a pure morphism of coalgebras iff it is a
residuation morphism.
(2) If R and R′ are comonoids, then ρ ∈ JSL1(R,R′) is a relational comonoid
morphism iff it is a (unital) relational residuation morphism.

Proof. (1) First, let f be a pure coalgebra morphism. Then

x \ f(z) = x ⊸ γ′f(z)

= x ⊸ ω−1γ̂′f(z)

= x ⊸ ω−1(f ⊠ f)ωγ(z) f coalgebra morphism
= f(f∗(x) ⊸ γ(z)) Proposition A.3(3)
= f(f∗(x) \ z),
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which by Lemma 5.10 shows that f is an (open) residuation morphism. Conversely,
if f is an (open) residuation morphism, then for every z we compute

γ′f(z) =
∨

x′∈R′
x′ ⊗ x′ \ f(z)

=
∨

x′∈R′
x′ ⊗ f(f∗(x′) \ z)

≤
∨

x′∈R′
ff∗(x′)⊗ f(f∗(x′) \ z)

= (f ⊗ f)(
∨

x′∈R′
f∗(x′)⊗ f∗(x′) \ z)

≤ (f ⊗ f)(
∨

x∈R
x⊗ x \ z)

= (f ⊗ f)γ(z),

and (order-isomorphic) postcomposition with ω gives

γ̂′f = ωγ′f ≤ ω(f ⊗ f)γ = (f ⊠ f)ωγ = (f ⊠ f)γ̂.

Conversely,

(f ⊗ f)γ(z) =
∨

x∈R
f(x)⊗ f(x \ z)

≤
∨

x∈R
f(x)⊗ f(f∗f(x) \ z) counit + contravariance

=
∨

x∈R
f(x)⊗ f(x) \ f(z) f open res. hom.

≤
∨

x′∈R′
x′ ⊗ x′ \ f(z) = γ′(f(z))

and postcomposition with ω again yields γ̂′f ≥ (f ⊠ f)γ̂. Hence we shown that
γ̂′f = (f ⊠ f)γ̂, i.e. f is a pure coalgebra morphism. Moreover, it is clear that the
counit condition is equivalent to the unit conditions since e ⊣ ϵ and f∗(e) ⊣ ϵ′ · f
and since adjoints are unique one of the equations holds iff the other one does.
(2) If ρ : R→ R′ is a relational morphism of pure coalgebras, then by Proposi-
tion A.3(3)

ρ(x \ z) = ρ(x ⊸ γ(z)) ≤ ρ(x) ⊸ (ρ⊗ ρ)γ(z) ≤ ρ(x) ⊸ γ′(ρ(z)) = ρ(x) \ ρ(z).

Conversely, if ρ : R→ R′ is a relational morphism of residuation algebras, then

(ρ⊗ ρ)γ(z) =
∨

x∈R
ρ(x)⊗ ρ(x \ z) ≤

∨
x∈R

ρ(x)⊗ ρ(x) \ ρ(z) ≤ γ′(ρ(z)).

For the respective counits we compute

ϵ ≤ ϵ′ · ρ
⇐⇒ ∀x : ϵ(x) ≤ ϵ′(ρ(x))

⇐⇒ ∀x, y : y ≤ ϵ(x)⇒ y ≤ ϵ′(ρ(x))

⇐⇒ ∀x, y : e(y) ≤ x⇒ e′(y) ≤ ρ(x) e ⊣ ϵ, e′ ⊣ ϵ′

⇐⇒ ∀x : e ≤ x⇒ e′ ≤ ρ(x) y ∈ {0, e} and e(0) = e′(0) = 0

⇐⇒ e′ ≤ ρ(e),
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where in the last step we set x = e for the downwards implication we use
monotonicity: if e′ ≤ ρ(e) and e ≤ x then e′ ≤ ρ(e) ≤ ρ(x).

Details for Example 5.20

By duality, RegΣ is the filtered colimit of its finite sub-coalgebras PM ↪→ RegΣ
dual to monoid quotients Σ̂∗ ↠ M , we can apply the coalgebra structure to
a language L ∈ RegΣ in its syntactic monoid and then embed into regular
languages via the preimage of its syntactic morphism h : Σ∗ ↠ M :

Cl(Σ̂∗) Cl(Σ̂∗ × Σ̂∗) Cl(Σ̂∗) + Cl(Σ̂∗)

PM P(M ×M) PM + PM

µ−1 ∼=

h−1

µ−1 ∼=

(h×h)−1
h−1+h−1

If we denote by [w] the syntactic equivalence class of w with respect to L we
thus can compute

µ−1(L) = µ−1(h−1(h[L])) L recognized by M

= (h× h)−1(µ−1(h[L])) h−1 coalgebra hom.

= (h× h)−1({(m,n) | mn ∈ h[L]})

= (h× h)−1(
⋃

mn∈h[L]

{(m,n)})

7→ (h−1 + h−1)(
∨

mn∈h[L]
{m} ⊗ {n}) P(M ×M) ∼= PM + PM

=
∨

mn∈h[L]
h−1[{m}]⊗ h−1[{n}]

=
∨

h(v)h(w)∈h[L]
h−1h[v]⊗ h−1h[w] h surj.

=
∨

vw∈L
[v]⊗ [w] syntactic equivalence classes

=
∨

v∈Σ∗

∨
w∈v−1L

[v]⊗ [w] definition of v−1L

=
∨

v∈Σ∗
[v]⊗ (

∨
w∈v−1L

[w]) fin. many equivalence classes

=
∨

v∈Σ∗
[v]⊗ v−1L,

=
∨

[v]∈SynL

[v]⊗ [v] \ L.

In the second to last step we use that v−1L =
⋃

w∈v−1L[w], which holds by the
definition of syntactic equivalence.
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Proof of Proposition 5.23

(1a) We first show that the formula for γ\(z) is well-defined, i.e. it does not
depend on the residuation ideal containing z. First, let ιK · ι : I ↪→ K ↪→ R be
finite residuation ideals containing z. Since I ⊆ K it is clear that

(ιI ⊗ ιI)(γ(z)) = (ιI ⊗ ιI)(
∨

x∈I
x⊗ x \ z)

≤ (ιK ⊗ ιK)(
∨

x∈K
x⊗ x \ z)

= (ιK ⊗ ιK)(γ(ι(z))).

For the other direction note that for every q ∈ J (K) we find p ∈ J I with q ≤ ι(p)
since q ≤ 1 = ι(1) = ι(

∨
p∈J I p) =

∨
p∈J I ι(p) and q is join-irreducible. We so

compute

(ιK ⊗ ιK)(γ(ι(z))) =
∨

q∈JK
ιK(q)⊗ ιK(q \ ι(z))

=
∨

p∈J I

∨
q≤ι(p)

ιK(q)⊗ ιK(q \ ι(z))

=
∨

p∈J I

∨
q≤ι(p)

ιK(q)⊗ ιI(ι
∗(q) \ z) (∗)

=
∨

p∈J I

∨
q≤ι(p)

ιIι
∗(q)⊗ ιI(ι

∗(q) \ z) (∗∗)

≤
∨

p∈J I
ιI(p)⊗ ιI(p \ z) (∗ ∗ ∗)

= (ιI ⊗ ιI)(γ(z)).

For step (∗) we use the for p ∈ J I, q ∈ JK with q ≤ ι(p) the following holds:

ιK(q \ ι(z)) = ιK(q) \ ιK(ι(z))

= ιK(q) \ ιI(z)
= ιI(ι

∗
I(ιK(q)) \ z) ιI finite (open) residuation morphism

= ιI(ι
∗(ι∗K(ιK(q))) \ z) ιI = ιKι

= ιI(ι
∗(q) \ z) ιK embedding.

For step (∗∗) we use that q ≤ ι(ι∗(q)) to get

ιK(q) ≤ ιK(ι(ι∗(q))) = ιI(ι
∗(q)).

For step (∗ ∗ ∗) observe that ι∗(q) ∈ J (I) for q ∈ J (K) (indeed, ι∗(q) ≤ x ∨ y
in I implies q ≤ ι(x) ∨ ι(y) in K, hence q ≤ ι(x) or q ≤ ι(y), hence ι∗(q) ≤ x or
ι∗(q) ≤ y. In particular, each ιIι

∗(q)⊗ ιI(ι
∗(q) \ z) where q ∈ J (K) is equal to

ιI(p)⊗ ιI(p) \ z) for some p ∈ J (I), which proves (∗ ∗ ∗).
Now, if I, I ′ are finite residuation ideals containing z they are both contained

in a finite residuation ideal ι : I ↪→ K ←↩ I ′ : ι′, using that R is locally finite, and
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we have

(ιI ⊗ ιI)(γ(z)) = (ιK ⊗ ιK)(ι⊗ ι)(γ(z))

= (ιK ⊗ ιK)(γ(ι(z))) ι coalgebra morphism
= (ιK ⊗ ιK)(γ(ι′(z))) ι, ι′ subcoalgebras
= (ιI′ ⊗ ιI′)(γ(z)) backwards.

This shows that the mapping

γ\ : |R| 7→ |R⊗R|, z 7→ (ιI ⊗ ιI)(γ(z))

does not depend on the choice of I.
(1b) We show that the mapping indeed yields a U∧-coalgebra , i.e. preserves all
finite meets. Let F ⊆ R be a finite subset. By local finiteness we find a residuation
ideal I containing F . Now we simply use that both the comultiplication on I and
ιI ⊗ ιI preserve finite meets:

γ\(
∧

x∈F
x) = (ιI ⊗ ιI)(γ(

∧
x∈F

x)) =
∧

x∈F
(ιI ⊗ ιI)(γ(x)) =

∧
x∈F

γ\(x).

(1c) The coalgebra is easily seen to be locally finite, since for every finite subset
X ⊆ R we find a finite residuation ideal I containing X, and the corresponding
coalgebra structure on I is per definition a subcoalgebra of (R, γ\).
(2a) Again we first show that for finite subcoalgebras A,A′ of R containing both
x, z we have

ιA(x \ z) = ιA′(x \ z).
First, let ιB · ι : A ↪→ B ↪→ R be finite subcoalgebras. Then

ιA(x \ z) = ιA(x ⊸ γ(z))

= ιB(ι(x ⊸ γ(z)))

= ιB(ι(x) ⊸ (ι⊗ ι)(γ(z))) embeddings preserve ⊸

= ιB(ι(x) ⊸ γ(ι(z)))

= ιB(ι(x) \ ι(z)).

From this it follows that

ιB(x\ι(z)) = ιB(x ⊸ (ι⊗ι)(γ(z))) = ιB(ι(ι
∗(x) ⊸ γ(z))) = ιA(ι

∗(x)\z). (A.1)

In particular, for x \γ z no matter what subalgebra A one chooses it certainly
contains the subalgebra generated by z, i.e. ι : ⟨z⟩ ↪→ A and we hence obtain the
canonical presentation

x \γ z = ιA(x \ z) = ιA(x \ ι(z)) = ι⟨z⟩(ι
∗(x) \ z).

For general finite subcoalgebras A,A′ ↪→ R containing x, z we find an upper
bound ι : A ↪→ B ←↩ A′ : ι′ and compute

ιA(x \ z) = ιB(ι(x) \ ι(z)) = ιB(ι
′(x) \ ι′(z)) = ιA′(x \ z).
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(2b) The proof that the residuals preserve finite meets in the covariant component
is analogous to the comultiplication.
(2c) The residuation structure is locally finite since we have the canonical repre-
sentation x \γ z = ιz(ι

∗
z(x) \ z) and ⟨z⟩ is finite.

(2d) It remains to verify the residuation property:

y ≤ x \γ z ⇐⇒ y ≤ ιz(ι
∗
z(x) \z z) definition \γ

⇐⇒ y ≤ ιz(ι
∗
zx ⊸ γz) definition \z

⇐⇒ ι∗zy ≤ ι∗zx ⊸ γz ι∗z ⊣ ιz

⇐⇒ ι∗zx⊗ ι∗zy ≤ γz ι∗zx⊗(−) ⊣ ι∗zx⊸(−)
⇐⇒ ι∗zx ≤ γz ⊸ι∗zy (−)⊗ι∗zy ⊣ (−) ⊸ι∗zy

⇐⇒ x ≤ ιz(γz ⊸ι∗zy) ι∗z ⊣ ιz

⇐⇒ x ≤ ιz(z /z ι∗zy) definition /z

⇐⇒ x ≤ z /γ y definition /γ

(3) The translations are inverse since they are liftings of the translations between
the operators on the finite substructures: To show that γ\γ

= γ note that for
z ∈ R the subcoalgebra ιz : ⟨z⟩ ↪→ R generated by z is a residuation ideal of \γ :

x \γ z = ιz(ι
∗
z(x) ⊸ γ(z)) ∈ ⟨z⟩.

We can therefore choose it as a residuation ideal containing z in the definition of
γ\γ

to get

γ\γ
(z) = (ιz ⊗ ιz)(γ\γ

(z)) = (ιz ⊗ ιz)(γ(z)) = γ(z).

An analogous argument proves \γ\ = \. ⊓⊔

Proof of Lemma 5.24

(1) If ιI : I ↪→ R is a finite residuation ideal then by definition its comultiplication
makes I a subcoalgebra of (R, γ). On the other hand, if ιA : A ↪→ R is a finite
subcoalgebra then ιA by definition is a residuation embedding since x\z = ιA(x\z).
To show that A is a residuation ideal, let x ∈ R and z ∈ A. There exists a finite
subcoalgebra B containing x, z with ι : A ↪→ B. By (A.1) we then have

x \ z = ιB(x \ z) = ιA(ι
∗(x) \ z) ∈ A.

(2) First, let γ be the coassociative comultiplication and let x, y, z ∈ R. By local
finiteness they are contained in a finite coassociative subcoalgebra ιA : A ↪→ R.
Then by Lemma 5.24(1) ιA is an associative finite residuation ideal of R, whence

x \ (z / y) = ιA(x \ (z / y)) = ιA((x \ z) / y) = (x \ z) / y.

The other direction works analogous: if the residuals are associative and z ∈ R,
then it is contained in a finite associative residuation ideal ιI : I ↪→ R. Whence I
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is a finite associative subcoalgebra of R and whence

(γ̂ ⊠ id)(γ̂(ιI(z))) = (ιI ⊠ ιI ⊠ ιI)((γ̂ ⊠ id)(γ̂(z)))

= (ιI ⊠ ιI ⊠ ιI)((id⊠ γ̂)(γ̂(z)))

= (id⊠ γ̂)(γ̂(ιI(z)))

(3) Let ϵ : R → 2 be a counit for the comultiplication γ̂ = ω · γ : U∧R →
U∧(R⊗R) ∼= U∧R⊠ U∧R with right adjoint e ∈ R. Note that ϵ · ιA is a counit
for every subcoalgebra ιA : A ↪→ R: Let z ∈ A, then

ιA(((ϵ · ιA)⊠ idA)(γ̂(z))) = (ϵ⊠ id)(ιA ⊠ ιA)(γ̂(z)) = (ϵ⊠ id)(γ̂(ιA(z))) = ιA(z).

Whence its left adjoint eA = ι∗A(e) ∈ A is a unit for the finite residuation ideal A.
Thus for all z ∈ R we have e \ z = ιz(ι

∗
z(e) \ z) = ιz(ez \ z) = ιz(z) = z, so e is a

unit for the residuals. Conversely, let e ∈ R be a unit for the residuals with right
adjoint ϵ : R → 2. For every residuation ideal ιI : I ↪→ R the element ι∗I(e) ∈ I
is the unit of I: The embedding trivially is an open residuation morphism and
whence ιI(ι

∗
I(e) \ z) = e \ ιI(z) = ιI(z) for every z ∈ I. So the subcoalgebra

structure I has the counit ϵ · ιI , and whence for every z ∈ R contained we have

(ϵ⊠ id)(γ̂(z)) = (ϵ⊠ id)(γ̂(ιI(z)))

= (ϵ⊠ id)((ιI ⊠ ιI)(γ̂(z)))

= ιI((ϵιI ⊠ id)(γ̂(z)))

= ιI(z) = z.

This shows that ϵ is a counit for γ̂. By definition ϵ is coprime iff e is a prime
element of R.
(4) If the comultiplication is pure, associative and has a counit, then this holds
for every finite subcoalgebra. Every finite residuation ideal I of R is a finite pure
subcoalgebra, which therefore is a derivation algebra. On the other hand, if every
finite residuation ideal is a derivation algebra, then we only have to show that
the comultiplication preserves finite joins, since it clearly is coassociative and has
a counit. But this is clear since the join of finitely many elements is taken in a
finite subcoalgebra, which thus is a derviation algebra and hence preserves finite
joins. ⊓⊔

Proof of Lemma A.5

Gehrke [13, Proposition 3.15] has identified a condition on general residuation
algebras which is related to the previous lemma in the following way.

Lemma A.5. If C is a locally finite residuation algebra where every residuation
finite ideal is pure then it is join-preserving at primes:

∀F ∈ DL(C, 2) : ∀(a ∈ F ),∀(b, c ∈ C) : ∃a′ ∈ F : a \ (b ∨ c) ≤ (a′ \ b) ∨ (a′ \ c).
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Proof. If F is a prime filter on C and a ∈ F , then we get by local finiteness for
all b, c ∈ C a finite pure residuation ideal ι : I ↪→ C containing a, b, c. In this
residuation ideal we have a =

∨
K for join-irreducibles K ⊆ J I. Since F is prime

some a′ ∈ K lies in F and satisfies

a \ (b ∨ c) = ι(a \ (b ∨ c))

= ι((
∨

K) \ (b ∨ c))

≤ ι(a′ \ (b ∨ c))

= ι(a′ \ b ∨ a′ \ c) I is pure
= ι(a′ \ b) ∨ ι(a′ \ c)
= a′ \ b ∨ a′ \ c.

This shows that the residuals are join-preserving at primes. ⊓⊔

Proof of Theorem 5.26

The bijection on objects is given by Lemma 5.24, so we just have to prove it on
morphisms, which is the content of the following

Proposition A.6. Let R,R′ be locally finite residuation algebras with units.

(1) A lattice morphism f ∈ DL(R,R′) is a residuation morphism iff it is a
counital morphism of U∧-coalgebras.
(2) If R,R′ are comonoids a finite join-preserving function ρ ∈ JSL(R,R′) is a
relational residuation morphism iff it is a relational comonoid morphism.

Proof. (1) First, let f : R→ R′ be a residuation morphism. For z ∈ R we choose
a finite residuation ideal I ′ ↪→ R′ containing f(z). Since f is a residuation
morphism we have by the (Back) condition that for every y ∈ I ′ there exists
some xy,z with y ≤ f(xy,z) and y \ f(z) = f(xy,z \ z). We now choose a finite
ideal I ↪→ R containing z and all xy,z for y ∈ I ′. We therefore have

γ\(f(z)) =
∨

y∈I′
y ⊗ y \ f(z)

≤
∨

y∈I′,y≤f(xy,z)
f(xy,z)⊗ f(xy,z \ z)

= (f ⊗ f)(
∨

y∈I′,y≤f(xy,z)
xy,z ⊗ xy,z \ z)

≤ (f ⊗ f)(
∨

x∈I
x⊗ x \ z)

= (f ⊗ f)(γ\(z)).
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For the reverse direction choose a finite residuation ideal J ↪→ R′ containing f(z)
and all f(x), x ∈ I, and use the (Forth) condition:

(f ⊗ f)(γ\(z)) =
∨

x∈I
f(x)⊗ f(x \ z)

≤
∨

x∈I
f(x)⊗ f(x) \ f(z)

≤
∨

y∈J
y ⊗ y \ f(z)

= γ\(f(z)),

This proves that f is a morphism of U∧-coalgebras.
Conversely, let f : R→ R′ be a morphism of U∧-coalgebras. For every z ∈ R

the morphism f restricts to the finite subcoalgebras generated by z, f(z) as
fz : ⟨z⟩ → ⟨f(z)⟩. If we denote the respective inclusions by ιz : ⟨z⟩ ↪→ R and
ιf(z) : ⟨f(z)⟩ ↪→ R′ then this is equivalent to saying that f · ιz = ιf(z) · fz. From
the unit of ιz we thus get f ≤ f · ιz · ι∗z = ιf(z) · fz · ι∗z, and so by adjunction

ι∗f(z) · f ≤ fz · ι∗z. (A.2)

This gives the (Forth) condition by

f(x \γ z) = f(ιz(ι
∗
z(x) ⊸ γ(z))) def. \γ

= ιf(z)(fz(ι
∗
z(x) ⊸ γ(z))) fz restriction

≤ ιf(z)(fz(ι
∗
z(x)) ⊸ (fz ⊗ fz)γ(z))) ⊸ Proposition A.3(3)

= ι(z)(fz(ι
∗
z(x)) ⊸ γ(fz(z))) fz coalgbra morphism

≤ ιf(z)(ι
∗
f(z)(f(x)) ⊸ γ(fz(z))) (A.2) + contravariance

≤ ιf(z)(ι
∗
f(z)(f(x)) ⊸ γ(f(z))) fz(z) = f(z)

= f(x) \γ f(z).

To verify the (Back) condition, let y ∈ R′, z ∈ R and put

xy,z = ιz(f
∗
z (ι

∗
f(z)(y))).

Then

y ≤ ιf(z)ι
∗
f(z)(y) ≤ ιf(z)(fz(f

∗
z (ι

∗
f(z)(y)))) = f(ιz(f

∗
z (ι

∗
f(z)(y)))) = f(xy,z)

and

y \γ f(z) = ιf(z)(ι
∗
f(z)(y) ⊸ γ(fz(z))) def. \γ

= ιf(z)(ι
∗
f(z)(y) ⊸ (fz ⊗ fz)(γ(z))) fz coalgebra morphism

= ιf(z)(fz(f
∗
z (ι

∗
f(z)(y)) ⊸ γ(z))) Proposition A.3(3)

= f(ιz(f
∗
z (ι

∗
f(z)) ⊸ γ(z))) ιf(z) · fz = f · ιz

= f(ιz(ι
∗
z(ιz(f

∗
z (ι

∗
f(z)(y)))) ⊸ γ(z))) ι∗zιz = id

= fz(xy,z \γ z) def. xy,z.
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For the (co-)unitality conditions we split the pointwise equality ∀x : ϵ′(f(x)) =
ϵ(x) into ϵ′(f(x)) ≤ ϵ(x) and ϵ(x) ≤ ϵ′(f(x)). These are equivalent to e′ ≤ f(x)⇒
e ≤ x and e ≤ x⇒ e′ ≤ f(x), respectively, combining to ∀x : e′ ≤ f(x)⇔ e ≤ x.
(2) Now let R,R′ be comonoids and let f ∈ JSL(R,R′) be a relational comonoid
morphism. For x, z ∈ R we choose a finite subcomonoid ι : I ↪→ R that contains
x, z and a finite subcomonoid ι′ : I ′ ↪→ R′ (with structure γ′) containing ρ[I].
Then ρ restricts to a relational morphism ρ : I → I ′ of finite comonoids. By
Theorem 5.18 it is a relational morphism of the equivalent finite residuation
algebra, so it satisfies ρ(a \γ′ b) ≤ ρ(a) \γ′ ρ(b) for all a, b ∈ I. We therefore get

ρ(x \γ z) = ρ(ι(x \γ′ z)) = ι′(ρ(x \γ′ z)) ≤ ι′(ρ(x) \γ′ ρ(z)) = ρ(x) \γ (z).

which proves that f is a relational residuation morphism. To verify e′ ≤ ρ(e) we
again choose finite subcoalgebras A,A′ with e ∈ A and ρ[A] ∪ {e′} ⊆ A′. Since ρ
is counital it satisfies ϵ ≤ ϵ′ · ρ and therefore also ϵ · ιA ≤ ϵ′ · ρ · ιA = ϵ′ · ιA′ · ρ.
As ϵ · ιA and ϵ′ · ιA′ are the counits for A and A′, respectively, its restriction
ρ : A → A′ is thus also counital and whence satisfies ι∗A(e) ≤ ρ(ι∗A′(e′)) for the
corresponding units of the residuals on A,A′. But e ∈ A and e′ ∈ A′, so this
equation simplifies to the desired e ≤ ρ(e′).

Conversely, if f is a relational residuation morphism choose for z ∈ R a finite
residuation ideal ι : I ↪→ R containing z and a finite residuation ideal ι′ : I ′ ↪→ R
containing ρ[I]. Then we have

(ρ⊗ ρ)(γ(z)) = (ρ⊗ ρ)(γ(ι(z)))

= (ρ⊗ ρ)(ι⊗ ι)(γ(z))

= (ι′ ⊗ ι′)(ρ⊗ ρ)(γ(z))

≤ (ι′ ⊗ ι′)γ(ρ(z))

= γ(ρ(z)),

so ρ is a relational residuation morphism. To show that ϵ ≤ ϵ′ · ρ, take z ∈ R
with ideals I, I ′ chosen as before. Recall that ι∗(e) is a unit of the residuation
ideal I and ϵ · ι is a counit for the corresponding subcoalgebra. Since ρ is unital
it satisfies

e′ ≤ ρ(e) ≤ ρ(ι(ι∗(e))) = ι′(ρ(ι∗(e)))

which is equivalent to ι′∗(e′) ≤ ρ(ι∗(e)). Since ρ : I → I ′ is a relational residuation
morphism it is relational morphism of the coalgebra structures on I, I ′ and we
thus get

ϵ(z) = ϵ(ι(z)) ≤ ϵ′(ι′(ρ(z))) = ϵ′(ρ(ι(z))) = ϵ′(ρ(z)). ⊓⊔

Remark A.7. We note that the proof of Proposition A.6 gives an alternative
formulation of the (Back) condition for locally finite residuation algebras as
y \ f(z) = f((ιz · f∗

z · ι∗f(z))(y) \ z). Here one “chooses locally” the existentially
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quantified xy,z via the local left adjoint f∗
z .

xy,z f(xy,z) y

R S

\z/ \f(z)/

f∗
z (ι

∗
f(z)(y)) ι∗f(z)(y)

∈ ∈

≥
∈

f

ι∗z ⊣ ι∗f(z) ⊣

fz

⊣

ιz

f∗
z

ιf(z)

∈ ∈

Compare this with open residuation morphisms, where the existence of a global
left adjoint f∗ allows one to choose xy,z = f∗(y) independently of z.

Proof of Theorem 5.27

To extend Theorem 5.26 by (extended) Stone duality we need the following
characterization. We write Ind(C) and Pro(C) for the free completion of a
category C under directed colimits and codirected limits, respectively.

Lemma A.8. All pure boolean comonoids are locally finite.

Proof. Every Stone monoid is profinite (see e.g. [19, Chapter VI, Example 2.9]),
i.e. one has Pro(Monf) ≃ ProfMon ≃ StoneMon, the category of Stone-
topological monoids and continuous monoid morphisms. Under Stone duality this
statement dualizes to Ind(Comonf) ≃ Comon, which tells us that all boolean
comonoids are locally finite. ⊓⊔
(1) All Stone monoids are profinite, so by Stone duality the category of profinite
monoids is dual to the category of boolean comonoids. We have just seen that all
boolean comonoids are locally finite, and locally finite pure boolean comonoids
are isomorphic, as a category, to boolean derivation algebras by Theorem 5.26(2).
(2) A Stone relational morphism from M to N is precisely a Stone relation
ρ : M → VN such that the following diagrams laxly commute.

M ×M M 1 M

VN × VN V(N ×N) VN N VN

·M

ρ×ρ ρ

1M

1N ρ

δ

≤
·N

≤
η

Recall that V ∼= F̂∨Û∨ for U∨ : BA → JSL, so under extended duality this
dualizes precisely to a relational morphism of pure boolean comonoids:

U∨M̂ ⊗ U∨M̂ U∨M̂ 2 U∨M̂

U∨N̂ ⊗ U∨N̂ U∨N̂ U∨N̂

U∨ (̂·M ) U∨(1̂M )

ρ̂−⊗ρ̂− ≤ ρ̂−

U∨ (̂·M )

≤ ρ̂−
U∨(1̂N )

⊓⊔
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Together with Theorem 5.26(3) this yields the desired duality.
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