
Killing Epsilons with a Dagger: A Coalgebraic Study of

Systems with Algebraic Label Structure

Filippo Bonchia, Stefan Miliusb,1, Alexandra Silvac,d,e, Fabio Zanasia

aENS Lyon, U. de Lyon, CNRS, INRIA, UCBL, France
bLehrstuhl für Theoretische Informatik, FAU Erlangen-Nürnberg

cInstitute for Computing and Information Sciences, Radboud University Nijmegen
dCentrum Wiskunde & Informatica (Amsterdam, The Netherlands)
eHASLab / INESC TEC, Universidade do Minho (Braga, Portugal)

Abstract

We propose an abstract framework for modeling state-based systems with
internal behaviour as e.g. given by silent or ε-transitions. Our approach
employs monads with a parametrized fixpoint operator † to give a semantics
to those systems and implement a sound procedure of abstraction of the
internal transitions, whose labels are seen as the unit of a free monoid. More
broadly, our approach extends the standard coalgebraic framework for state-
based systems by taking into account the algebraic structure of the labels
of their transitions. This allows to consider a wide range of other examples,
including Mazurkiewicz traces for concurrent systems and non-deterministic
transducers.

Keywords: coalgebras on Kleisli categories, parametrized fixpoint
operator, trace semantics, epsilon transitions, Mazurkiewicz traces,
non-deterministic transducers

1. Introduction

The theory of coalgebras provides an elegant mathematical framework to
express the semantics of computing devices: the operational semantics, which

Email addresses: filippo.bonchi@ens-lyon.fr (Filippo Bonchi),
mail@stefan-milius.eu (Stefan Milius), alexandra@cs.ru.nl (Alexandra Silva),
fabio.zanasi@ens-lyon.fr (Fabio Zanasi)

1Stefan Milius acknowledges support by the Deutsche Forschungsgemeinschaft (DFG)
under project MI 717/5-1

Preprint submitted to Theoretical Computer Science March 6, 2015

is usually given as a state machine, is modeled as a coalgebra for a functor;
the denotational semantics as the unique map into the final coalgebra of
that functor. While the denotational semantics is often compositional (as,
for instance, ensured by the bialgebraic approach of [34]), it is sometimes
not fully-abstract, i.e., it discriminates systems that are equal from the point
of view of an external observer. This is due to the presence of internal
transitions (also called ε-transitions) that are not observable but that are
not abstracted away by the usual coalgebraic semantics using the unique
homomorphism into the final coalgebra.

In this paper, we focus on the problem of giving trace semantics to systems
with internal transitions. Our approach stems from an elementary observa-
tion (pointed out in previous work, e.g. [39]): the labels of transitions form
a monoid and the internal transitions are those labeled by the unit of the
monoid. Thus, there is an algebraic structure on the labels that needs to be
taken into account when modeling the denotational semantics of those sys-
tems. To illustrate this point, consider the following two non-deterministic
automata (NDA).

// q0

b

		 a
++ q2

b

kk

b

33

a,c

		

q3

b

		c
ss

OO

ε

// q0

a+b∗c
++

b

		

q2

b

kk

bb∗c+a+c

		

The one on the left (that we call A) is an NDA with ε-transitions: its tran-
sitions are labeled either by the symbols of the alphabet A = {a, b, c} or by
the empty word ε ∈ A∗. The one on the right (that we call B) has transitions
labeled by languages in P(A∗), here represented as regular expressions. The
monoid structure on the labels is explicit on B, while it is less evident in
A since the set of labels A ∪ {ε} does not form a monoid. However, this
set can be trivially embedded into P(A∗) by looking at each symbols as the
corresponding singleton language. For this reason each automaton with ε-
transitions, like A, can be regarded as an automaton with transitions labeled
by languages, like B. Furthermore, we can define the semantics of NDA with
ε-transitions by defining the semantics of NDA with transitions labeled by

languages: a word w is accepted by a state q if there is a path q
L1−→ · · · Ln−→ p

where p is a final state, and there exist a decomposition w = w1 · · ·wn such
that wi ∈ Li. Observe that, with this definition, A and B accept the same
language: all words over A that end with a or c. In fact, B was obtained

2

from A in a well-known process to compute the regular expression denoting
the language accepted by a given automaton [25].

We propose to define the semantics of systems with internal transitions
following the same idea as in the above example. Given some transition
type (i.e. an endofunctor) F , one first defines an embedding of F -systems
with internal transitions into F ∗-system, where F ∗ has been derived from F
by making explicit the algebraic structure on the labels. Next one models
the semantics of an F -system as the one of the corresponding F ∗-system e.
Naively, one could think of defining the semantics of e as the unique map !e
into the final coalgebra for F ∗. However, this approach turns out to be too
fine grained, essentially because it ignores the underlying algebraic structure
on the labels of e. The same problem can be observed in the example above:
B and the representation of A as an automaton with languages as labels
have different final semantics—they accept the same language only modulo
the equations of monoids.

Thus we need to extend the standard coalgebraic framework by taking
into account the algebraic structure on labels. To this end, we develop our
theory for systems whose transition type F ∗ has a canonical fixpoint, i.e.
its initial algebra and final coalgebra coincide. This is the case for many
relevant examples, as observed in [23]. Our canonical fixpoint semantics will
be given as the composite ¡ ◦ !e, where !e is a coalgebra morphism given by
finality and ¡ is an algebra morphism given by initiality. The target of ¡
will be an algebra for F ∗ encoding the equational theory associated with
the labels of F ∗-systems. Intuitively, ¡ being an algebra morphism, will take
the quotient of the semantics given by !e modulo those equations. Therefore
the extension provided by ¡ is the technical feature allowing us to take into
account the algebraic structure on labels.

It were Simpson and Plotkin [38, Section 6] who realized that the above
composites ¡ ◦ !e yield a parametrized fixpoint operator e 7→ e†. This operator
can be understood as assigning to systems of mutally recursive equations a
certain solution, and the properties of e 7→ e† will be crucial for our canonical
fixpoint semantics.

Within the same perspective we also consider a different fixpoint operator
e 7→ e‡ turning any system e with internal transitions into one e‡ where those
have been abstracted away. By comparing the operators e 7→ e† and e 7→ e‡,
we are then able to show that such a procedure (also called ε-elimination) is
sound with respect to the canonical fixpoint semantics.

We further explore the flexibility of our framework by modelling the case

3

in which the algebraic structure of the labels is quotiented under some equa-
tions, resulting in a coarser equivalence than the one given by the canonical
fixpoint semantics. As a relevant example of this phenomenon, we give the
first coalgebraic account of Mazurkiewicz traces.

As our last application, we model non-deterministic transducers (with and
without ε-transitions). This is a pleasing case study: on the one hand, it was
known to be a hard problem to solve in the coalgebraic framework [21]; on
the other hand, it follows as a simple application of our approach, thereby il-
lustrating its power. In fact, as we observe, the only difference between trans-
ducers and non-deterministic automata is a change in the monad capturing
the branching structure. In the NDA case, this is just non-determinism (P,
the powerset monad) whereas in the transducer case the monad needs to also
capture the fact that transitions can output words (P(B∗× Id), composition
of the powerset and monoid action monads).

This paper is an extended and improved version of our CMCS’14 pa-
per [10]. We have included all the proofs and the new example of non-
deterministic transducers. We were also able to weaken the assumptions of
our framework. In the conference version, Assumption 5.1 required the base
category C to be Cppo-enriched and the monad T to be locally continuous.
These assumptions ensure (a) initial algebra-final coalgebra coincidence for
the functors T (Id + Y) and (b) that the canonical fixpoint operator e 7→ e†

satisfies the so-called double dagger law. The latter is instrumental in our
framework to correctly capture the semantics of systems with internal be-
haviour. Fortunately, it follows from the results of Simpson and Plotkin [38]
that (a) and (b) hold whenever T has enough canonical fixpoints, in partic-
ular, no Cppo-enrichment and local continuity of T is needed.

Synopsis. After recalling the necessary background in Section 2, we dis-
cuss our motivating examples—automata with ε-transitions and automata
on words—in Section 3. Section 4 and 5 are devoted to present the canonical
fixpoint semantics and the sound procedure of ε-elimination. This framework
is then instantiated to the examples of Section 3. In Section 6 we show how a
quotient of the algebra on labels induces a coarser canonical fixpoint seman-
tics. We propose Mazurkiewicz traces as a motivating example for such a
construction. Finally, in Section 7 we apply our theory to give a coalgebraic
modeling of non-deterministic transducers.

4

2. Preliminaries

In this section we introduce the basic notions we need for our abstract
framework. We assume some familiarity with category theory. We will use
boldface capitals C to denote categories, X, Y, . . . for objects and f, g, . . . for
morphisms. We use Greek letters and double arrows, e.g. η : F ⇒ G, for
natural transformations and monad morphisms. If C has coproducts we will
denote them by X + Y and use inl, inr for the coproduct injections.

2.1. Monads

We recall the basics of the theory of monads, as needed here. For more
information, see e.g. [30]. A monad is a functor T : C→ C together with two
natural transformations, a unit η : idC ⇒ T and a multiplication µ : T 2 ⇒ T ,
which are required to satisfy the following equations, for every X ∈ C:
µX ◦ ηTX = µX ◦ TηX = idTX and µX ◦ µTX = µX ◦ TµX .

A morphism of monads from (T, ηT , µT) to (S, ηS, µS) is a natural trans-
formation γ : T ⇒ S that preserves unit and multiplication: γX ◦ ηTX = ηSX
and γX ◦ µTX = µSX ◦ γSX ◦ TγX . A quotient of monads is a morphism of
monads with epimorphic components.

Example 2.1. We briefly describe the examples of monads that we use in
this paper.

1. Let C = Sets. The powerset monad P maps a set X to the set PX of
subsets of X, and a function f : X → Y to Pf : PX → PY given by
direct image. The unit is given by the singleton set map ηX(x) = {x}
and multiplication by union µX(U) =

⋃
S∈U S.

2. For later reference we introduce another monad on Sets, namely B∗×
Id. Its value on a set X is B∗ × X, where B∗ is the set of words on
a fixed B. The unit ηX maps x ∈ X into (ε, x) ∈ B∗ × X and the
multiplication µX maps (w, v, x) ∈ B∗ ×B∗ ×X to (wv, x) ∈ B∗ ×X.

3. Let C be a category with coproducts and E an object of C. The
exception monad E is defined on objects as EX = E+X and on arrows
f : X → Y as Ef = idE + f . Its unit and multiplication are given on
X ∈ C respectively as inrX : X → E+X and ∇E + idX : E+E+X →
E + X, where ∇E = [idE, idE] is the codiagonal. When C = Sets,
E can be thought as a set of exceptions and this monad is often used

5

to encode computations that might fail throwing an exception chosen
from the set E.

4. Let H be an endofunctor on a category C such that for every object
X there exists a free H-algebra H∗X on X (equivalently, an initial
H(−) + X-algebra) with the structure τX : HH∗X → H∗X and uni-
versal morphism ηX : X → H∗X. Then as proved by Barr [8] (see
also Kelly [28]) H∗ is the object mapping of a free monad on H with
the unit given by the above ηX and the multiplication given by the
freeness of H∗H∗X: µX is the unique H-algebra homomorphism from
(H∗H∗X, τH∗X) to (H∗X, τX) such that µX ◦ ηH∗X = idH∗X . Also no-
tice that for a cocomplete category every free monad arises in this way.
Finally, for later use we fix the notation κ = τ ◦ Hη : H ⇒ H∗ for the
universal natural transformation of the free monad.

Given a monad M : C → C, its Kleisli category K`(M) has the same
objects as C, but morphisms X → Y in K`(M) are morphisms X → MY
in C. The identity map X → X in K`(M) is M ’s unit ηX : X → MX; and
composition g ◦ f in K`(M) uses M ’s multiplication: g ◦ f = µ ◦ Mg ◦ f .
There is a forgetful functor U : K`(T) → C, sending X to TX and f to
µ ◦ Tf . This functor has a left adjoint J, given by JX = X and Jf = η ◦ f .
The Kleisli category K`(M) inherits coproducts from the underlying category
C. More precisely, for every objects X and Y their coproduct X + Y in C
is also a coproduct in K`(M) with the injections Jinl and Jinr.

2.2. Distributive Laws and Liftings

The most interesting examples of the theory that we will present in Sec-
tion 4 concern coalgebras for functors Ĥ : K`(M)→ K`(M) that are obtained
as liftings of endofunctors H on Sets. Formally, given a monad M : C→ C,
a lifting of H : C → C to K`(M) is an endofunctor Ĥ : K`(M) → K`(M)
such that J◦H = Ĥ ◦J. The lifting of a monad (T, η, µ) is a monad (T̂ , η̂, µ̂)
such that T̂ is a lifting of T and η̂, µ̂ are given on X ∈ K`(M) (i.e. X ∈ Sets)
respectively as J(ηX) and J(µX).

A natural way of lifting functors and monads is by means of a distributive
law. A distributive law of a monad (T, ηT , µT) over a monad (M, ηM , µM) is
a natural transformation λ : TM ⇒MT , that commutes appropriately with
the unit and multiplication of both monads; more precisely, the diagrams

6

below commute:

TX

TηMX
��

TX

ηMTX
��

TM2X

TµMX
��

λMX //MTMX
MλX //M2TX

µMTX
��

TMX
λX
//MTX TMX

λX
//MTX

MX

ηTMX

OO

MX

MηTX

OO

T 2MX

µTMX

OO

TλMX

// TMTX
λTX

// T 2MX

MµTX

OO

A distributive law of a functor T over a monad (M, ηM , µM) is a natural
transformation λ : TM ⇒MT such that only the two topmost squares above
commute.

The following “folklore” result gives an alternative description of distribu-
tive laws in terms of liftings to Kleisli categories, see also [26], [33] or [7].

Proposition 2.2 ([33]). Let (M, ηM , µM) be a monad on a category C. Then
the following holds:

1. For every endofunctor T on C, there is a bijective correspondence be-
tween liftings of T to K`(M) and distributive laws of T over M .

2. For every monad (T, ηT , µT) on C, there is a bijective correspondence
between liftings of (T, ηT , µT) to K`(M) and distributive laws of T over
M .

In what follows we shall simply write Ĥ : K`(M)→ K`(M) for the lifting
of an endofunctor H for some distributive law λ : HM ⇒MH. This can be
explicitly given as Ĥ(X) = HX for an object X and Ĥ(f : X → MY) =
λ ◦Hf : HX →MHX for a morphism f : X → Y in K`(M).

Example 2.3. Consider the powerset monad P (see Example 2.1.1) and the
functor HX = A × X + 1 on Sets (with 1 = {X}). We can lift H to
Ĥ : K`(P)→ K`(P) via the distributive law ϕ : HP⇒ PH defined as

ϕX : A× PX + 1→ P(A×X + 1)

X 7→ {X}
(a, Y) 7→ {(a, y) | y ∈ Y }

More explicitly, the functor H lifts to Ĥ on K`(P) as follows: for any f : X →
Y in K`(P) (that is f : X → P(Y) in Sets), Ĥf : A×X + 1→ A× Y + 1 is
given by Ĥf(X) = {X} and Ĥf(〈a, x〉) = {〈a, y〉 | y ∈ f(x)}.

7

Proposition 2.4 ([23]). Let M : C → C be a monad and H : C → C be
a functor with a lifting Ĥ : K`(M) → K`(M). If H has an initial algebra
ι : HI

∼=→ I (in C), then Jι : ĤI → I is an initial algebra for Ĥ (in K`(M)).

In our examples, we will often consider the free monad Ĥ∗ generated by
a lifted functor Ĥ (cf. Example 2.1.4). From now on, whenever we write H∗,
we will implicitly assume that for every object X a free H-algebra H∗X on
X exists. This can be assured under mild assumptions on C and H, e.g. as-
suming that C is a locally presentable category and H an accessible functor
(see e.g. Adámek and Rosický [5]). The following result (also appearing
in [12, 13]) will be pivotal.

Proposition 2.5. Let H : C→ C be a functor and M : C→ C be a monad
such that there is a lifting Ĥ : K`(M) → K`(M). Then the free monad
H∗ : C→ C lifts to a monad Ĥ∗ : K`(M)→ K`(M). Moreover, Ĥ∗ = Ĥ∗.

Proof. Let ϕ : HM → MH be the distributive law of the functor H over
the monad M corresponding to the lifting Ĥ (see Proposition 2.2). For an
object X, we define λX : H∗M → H∗M by the universal property of the
initial H(−) +MX-algebra H∗(MX).

HH∗MX
τMX //

HλX
��

H∗MX

λX
��

MX
ηMXoo

MηXyy

HMH∗X ϕTX

//MHH∗X
MτX

//MH∗X

(1)

By diagram chasing, one can show that λ : H∗M ⇒ MH∗ is a distributive
law of the monad H∗ over the monad M and, by Proposition 2.2, we have a
lifting Ĥ∗ : K`(M)→ K`(M).

For proving Ĥ∗ = Ĥ∗, take αX : HH∗X + X → H∗X to be the initial
H(−) +X-algebra and observe that J(α) is the initial Ĥ(−) +X-algebra (by
Proposition 2.4). The fact that the units and the multiplications of Ĥ∗ and
Ĥ∗ coincide is immediately proved by functoriality of J.

Remark 2.6. Recall from [23] that for every polynomial endofunctor H on
Sets there exists a canonical distributive law of H over any commutative
monad M (equivalently, a canonical lifting of H to K`(M)); this result was
later extended to so-called analytic endofunctors of Sets (see [31]). This
provides a number of examples in which Propositions 2.4 and 2.5 apply and it
can be used in our applications since the powerset functor P is commutative,
and so is the exception monad E iff E = 1.

8

Example 2.7. Continuing Example 2.3 we see that the free monad on HX =
A×X + 1 is given by H∗X = A∗ ×X +A∗. It is not difficult to verify that
the distributive law λ : H∗P⇒ PH∗ acts as follows

λX : A∗ × PX + A∗ → P(A∗ ×X + A∗)

w 7→ {w}
(w, Y) 7→ {(w, y) | y ∈ Y }

for any w ∈ A∗ and Y ∈ PX. Indeed, one readily verifies that this morphism
λX makes diagram (1) commutative. Note that both H and H∗ are poly-
nomial functors; both ϕ and λ are the canonical distributive laws obtained
from the results in [23] (see Remark 2.6).

2.3. Cppo-Enriched Categories

For our applications in K`(M) we are going to assume that the hom-sets
of that category carry a cpo structure. Recall that a cpo is a partially ordered
set in which all ω-chains have a join. A cpo with bottom is a cpo with a
least element ⊥. A function between cpos is called continuous if it preserves
joins of ω-chains. Cpos with bottom and continuous maps form a category
that we denote by Cppo.

A Cppo-enriched category C is a category where (a) each hom-set C(X, Y)
is a cpo with a bottom element ⊥X,Y : X → Y and (b) composition is con-
tinuous, that is:

g ◦

(⊔
n<ω

fn

)
=
⊔
n<ω

(g ◦ fn) and

(⊔
n<ω

fn

)
◦ g =

⊔
n<ω

(fn ◦ g).

The composition is called left strict if ⊥Y,Z ◦f = ⊥X,Z for all arrows f : X →
Y . An endofunctor H : C→ C on a Cppo-enriched category C is said to be
locally continuous if for any ω-chain fn : X → Y , n < ω in C(X, Y) we have:

H

(⊔
n<ω

fn

)
=
⊔
n<ω

H(fn).

We are going to make use of the fact that a locally continuous endofunctor
H on C has a canonical fixpoint, i.e. whenever its initial algebra exists it is
also its final coalgebra:

9

Theorem 2.8 ([18]). Let H : C→ C be a locally continuous endofunctor on
the Cppo-enriched category C whose composition is left-strict. If an initial
H-algebra ι : HI

∼=→ I exists, then ι−1 : I
∼=→ HI is a final H-coalgebra.

In the sequel, we will be interested in free algebras for a functor H on C
and the free monad H∗ (cf. Example 2.1.4). For this observe that coproducts
in C are always Cppo-enriched, i.e. all copairing maps [−,−] : C(X, Y) ×
C(X ′, Y) → C(X + X ′, Y) are continuous; in fact, it is easy to show that
this map is continuous in both of its arguments using that composition with
the coproduct injections is continuous.

Proposition 2.9. Let C be Cppo-enriched with composition left-strict. Fur-
thermore, let H : C → C be locally continuous and assume that all free
H-algebras exist. Then the free monad H∗ is locally continuous.

Proof. First recall that H∗X is a free H-algebra with the structure τX and
the universal morphism ηX (cf. Example 2.1.4). Equivalently, αX = [τX , ηX] :
H(H∗X)+X → H∗X is an initial algebra for H(−)+X. Given a morphism
f : X → Y , H∗f is defined by initiality; more precisely, H∗f is the unique
morphism such that the following diagram commutes:

H(H∗X) +X
αX //

H(H∗f)+id

��

H∗X

H∗f

��

H(H∗Y) +X
id+f

// H(H∗Y) + Y αY

// H∗Y

Now recall that αX is an isomorphism by Lambek’s lemma and consider the
following function

Φ : C(X, Y)×C(H∗X,H∗Y)→ C(H∗X,H∗Y)

with
Φ(f, h) = αY · (Hh+ f) · α−1

X .

Since H is locally continuous, we see that Φ is continuous (in both argu-
ments). Clearly, H∗f is the unique fixpoint of Φ(f,−). To see that H∗f is
locally continuous let fn : X → Y be an ω-chain in C(X, Y). It is easy to
see that

⊔
n<ωH

∗fn is a fixpoint of Φ
(⊔

n<ω fn,−
)
; indeed we have (using

10

continuity of Φ): ⊔
n<ω

H∗fn =
⊔
n<ω

Φ(fn, H
∗fn)

= Φ

(⊔
n<ω

fn,
⊔
n<ω

H∗fn

)
.

Thus, by the uniqueness of the fixpoint H∗
(⊔

n<ω fn
)

we have

H∗

(⊔
n<ω

fn

)
=
⊔
n<ω

H∗fn

as desired.

2.4. Final Coalgebras in Kleisli categories

As we mentioned already, in our applications the Cppo-enriched category
will be the Kleisli category C = K`(M) of a monad on Sets and the endo-
functors of interest are liftings Ĥ of endofunctors H on Sets. It is known
that in this setting a final coalgebra for the lifting Ĥ can be obtained as a
lifting of an initial H-algebra (see Hasuo et al. [23]). Recall e.g. from [5]
that an endofunctor H on Sets is accessible if it preserves λ-filtered colimits
for some cardinal λ; equivalently, H is bounded, i.e. there exists a cardinal λ
such that for every x ∈ HX there exists a subset m : Y ↪→ X and y ∈ Y
with |Y | < λ and such that x = Hm(y) (see Adámek and Porst [4]). Many
endofunctors of interest are accessible: basic examples are constant functors,
the identity functor and the finite power-set functor; moreover, accessible
functors are closed under coproducts, finite products and composition. The
(full) power-set functor is a notable example of an endofunctor that is not
accessible.

The following result is a variation of Theorem 3.3 in [23]:

Theorem 2.10. Let M : Sets→ Sets be a monad and H : Sets→ Sets be
a functor such that

(a) K`(M) is Cppo-enriched with composition left strict;

(b) H is accessible and has a lifting Ĥ : K`(M) → K`(M) which is locally
continuous.

11

If ι : HI
∼=→ I is the initial algebra for the functor H, then

1. Jι : ĤI → I is the initial algebra for the functor Ĥ;

2. Jι−1 : I → ĤI is the final coalgebra for the functor Ĥ.

The first item follows from Proposition 2.4 and the second one follows
from Theorem 2.8. There are two differences with Theorem 3.3 in [23]:

(1) There the functor H : Sets→ Sets is supposed to preserve ω-colimits
rather than being accessible. We use the assumption of accessibility
because it guarantees the existence of all free algebras for H and for
Ĥ, which implies also that for all Y ∈ K`(M) an initial Ĥ∗(Id + Y)-
algebra exists. This property of Ĥ∗ will be needed for applying our
framework of Section 4.

(2) We assume that the lifting Ĥ : K`(M) → K`(M) is locally continuous
rather than locally monotone. This assumption is not really restrictive
since, as explained in Section 3.3.1 of [23], in all the meaningful exam-
ples where Ĥ is locally monotone, it is also locally continuous. On the
other hand this stronger assumption allows us to replace preservation
of ω-colimits by accessibility of H.

Example 2.11 (NDA). Non-deterministic automata (NDA) over the input
alphabet A can be regarded as coalgebras for the functor Ĥ : K`(P)→ K`(P)
in Example 2.3. Consider, on the left, a 3-state NDA, where the only final
state is marked by a double circle.

1a,b
)) b // 2

b //

a

3
a
oo b

ii

X = {1, 2, 3} A = {a, b}
e(1) = {〈a, 1〉, 〈b, 1〉, 〈b, 2〉}
e(2) = {〈a, 2〉, 〈b, 3〉} e(3) = {X, 〈a, 2〉, 〈b, 3〉}

It can be represented as a coalgebra e : X → ĤX, that is a function e : X →
P(A ×X + 1), given above on the right, which assigns to each state x ∈ X
a set which: contains X if x is final; and 〈a, y〉 for all transitions x

a−→ y.

It is easy to see that M = P and H above satisfy the conditions of
Theorem 2.10 and therefore both the final Ĥ-coalgebra and the initial Ĥ-
algebra are the lifting of the initial algebra for the functor HX = A×X + 1,

12

given by A∗ with structure ι : A×A∗+ 1→ A∗ which maps 〈a, w〉 to aw and
X to ε.

For an NDA (X, e), the final coalgebra homomorphism !e : X → A∗ is
the function X → PA∗ that maps every state in X to the language that it
accepts. In K`(P):

X

e

��

ε ∈ !e(x) ⇔ X ∈ e(x)

aw ∈ !e(x) ⇔ for some y ∈ X, (a, y) ∈ e(x) and w ∈ !e(y)

!e // A∗

Jι−1

��

A×X + 1
̂A×!e+1

// A× A∗ + 1

(2)

2.5. Monads with Fixpoint Operators

In order to develop our theory of systems with internal behaviour, we will
adopt an equational perspective on coalgebras. In the sequel we recall some
preliminaries on this viewpoint.

Let T : C→ C be a monad on any category C. Any morphism e : X →
T (X+Y) (i.e. a coalgebra for the functor T (Id+Y)) may be understood as a
system of mutually recursive equations. In our applications we are interested
in the case where C = K`(M) and T = Ĥ∗ is a (lifted) free monad. As in the
example of NDA (Example 2.11) take M = P and HX = 1+A×X, meaning
that TX = Ĥ∗X = A∗ + A∗ × X. Now, consider the following system of
mutually recursive equations

x0 ≈ {c, (ab, x1)}, x1 ≈ {d, (a, x0), (ε, y)},

where x0, x1 ∈ X are recursion variables, y ∈ Y is a parameter and a, b, c, d
are elements of A. The right hand side of each equation is an element of
P(T (X + Y)). A solution assigns to each of the two variables x0, x1 an
element of P(TY) such that the two equations hold true:

x0 7→ (aba)∗c ∪ (aba)∗abd ∪ {(w, y) | w ∈ (aba)∗ab}
x1 7→ (aab)∗d ∪ (aab)∗ac ∪ {(w, y) | w ∈ (aab)∗}.

The above system of equations corresponds to an equation morphism e : X →
T (X + Y) and the solution to a morphism e† : X → TY , both in K`(M).

13

The property that e† is a solution for e is expressed by the following equality
in K`(M):

e† = (X e //T (X + Y)
T [e†,ηTY]

//TTY
µTY //TY). (3)

Definition 2.12 (Following Simpson and Plotkin [38]). Given any monad T
on C a parametrized fixpoint operator is a family of maps C(X,T (X+Y))→
C(X,TY), e 7→ e†, indexed by parameter objects Y such that for every
e : X → T (X + Y), (3) hold.

Remark 2.13. In our applications we shall need a certain equational prop-
erty of the operator e 7→ e† called double dagger law : for all Y ∈ C and
equation morphism e : X → T (X +X + Y),

e†† = (X e //T (X +X + Y)
T (∇X+Y)

//T (X + Y))†.

This and other laws of parametrized fixpoint operators have been studied by
Bloom and Ésik in the context of iteration theories [9].A closely related notion
is that of Elgot monads [2, 3]. The parametrized fixpoint operators that we
introduce in Section 4 will satisfy the double dagger law by construction
(Theorem 4.3).

Example 2.14 (Least fixpoint solutions). Observe that in the above example
of NDA every equation morphism e has a least solution e†. More generally, let
T : C→ C be a locally continuous monad on the Cppo-enriched category C.
Then T is equipped with a parametrized fixpoint operator obtained by taking
least fixpoints: given a morphism e : X → T (X+Y) consider the function Φe

on C(X,TY) given by Φe(s) = µTY ◦T [s, ηTY]◦e. Then Φe is continuous and we
take e† to be the least fixpoint of Φe. Since e† = Φe(e

†), equation (3) holds,
and hence we have a parametrized fixpoint operator. Moreover it follows
from the argument in Theorem 8.2.15 and Exercise 8.2.17 in [9] that the
operator e 7→ e† satisfies the axioms of iteration theories (or Elgot monads,
respectively). In particular the double dagger law holds for the least fixpoint
operator e 7→ e†.

3. Motivating examples

The work of [23] bridged a gap in the theory of coalgebras: for certain
functors, taking the final coalgebra directly in Sets does not give the right

14

notion of equivalence on states of coalgebras. For instance, for NDA, one
would obtain bisimilarity instead of language equivalence. The change to
Kleisli categories allowed the recovery of the usual language semantics for
NDA and, more generally, led to the development of coalgebraic trace se-
mantics.

In the Introduction we argued that there are relevant examples for which
this approach still does not yield the right notion of equivalence, the problem
being that it does not consider the extra algebraic structure on the label set.
In the sequel, we motivate the reader for the generic theory we will develop by
detailing two case studies in which this phenomenon can be observed: NDA
with ε-transitions and NDA with word transitions. Later on, in Example 6.7,
we will also consider Mazurkiewicz traces [29].

NDA with ε-transitions. In the world of automata, ε-transitions are consid-
ered in order to enable easy composition of automata and compact represen-
tations of languages. These transitions are to be interpreted as the empty
word when computing the language accepted by a state. Consider, on the
left, the following simple example of an NDA with ε-transitions, where states
x and y just make ε transitions. The intended semantics in this example is
that all states accept words in a∗.

x ε // y ε // z a
ii

e(x) = {(ε, y)}
e(y) = {(ε, z)}
e(z) = {(a, z),X}

!e(x) = εεa∗

!e(y) = εa∗

!e(z) = a∗

Note that, more explicitly, these are just NDA where the alphabet has a dis-
tinguished symbol ε. So, they are coalgebras for the functor Ĥ + Id: K`(P)→
K`(P) (where H is the functor of Example 2.11), i.e. functions e : X →
P((A ×X + 1) + X) ∼= P((A + 1) ×X + 1), as made explicit for the above
automaton in the middle.

The final coalgebra for Ĥ + Id is simply (A + 1)∗ and the final map
!e : X → (A + 1)∗ assigns to each state the language in (A + 1)∗ that it
accepts. However, the equivalence induced by !e is too fine grained: for
the automata above, !e maps x, y and z to three different languages (on
the right), where the number of ε plays an explicit role, but the intended
semantics should disregard ε’s.

15

NDA with word transitions. This is a variation on the motivating example
of the introduction: instead of languages, transitions are labeled by words2.
Formally, consider again the functor H from Example 2.11. Then NDA with
word transitions are coalgebras for the functor Ĥ∗ : K`(P)→ K`(P), that is,
functions e : X → P(A∗ × X + A∗) ∼= P(A∗ × (X + 1)). We observe that
they are like NDA but (1) transitions are labeled by words in A∗, rather
than just symbols of the alphabet A, and (2) states have associated output
languages, rather than just X. We will draw them as ordinary automata plus

an arrow
L⇒ to denote the output language of a state (no ⇒ stands for the

empty language). For example, consider the following word automaton and
associated transition function e.

x a // y b // z
{c}
��u ε // v

ab

99

e(x) = {(a, y)} e(y) = {(b, z)} e(z) = {c}
e(u) = {(ε, v)} e(v) = {(ab, z)}

The semantics of NDA with word transitions is given by languages over A,
obtained by concatenating the words in the transitions and ending with a
word from the output language. For instance, x above accepts word abc but
not ab.

However, if we consider the final coalgebra semantics we again have a mis-
match. The initial H∗-algebra has carrier (A∗)∗×A∗ that can be represented
as the set of non-empty lists of words over A∗, where (A∗)∗ indicates possibly
empty lists of words. Its structure ι : A∗ × ((A∗)∗ × A∗) + A∗ → (A∗)∗ × A∗
maps w into (〈〉, w) and (w′, (l, w)) into (w′ :: l, w). Here, we use 〈〉 to denote
the empty list and :: is the append operation. By Theorem 2.10, the final
Ĥ∗-coalgebra has the same carrier and structure Jι−1. The final map, as a
function !e : X → P((A∗)∗ × A∗), is then defined by commutativity of the
following square (in K`(P)):

X
!e //

e

��

(〈〉, w) ∈ !e(x) ⇔ w ∈ e(x)

(w :: l, w′) ∈ !e(x) ⇔ ∃y (w, y) ∈ e(x) and (l, w′) ∈ !e(y)

(A∗)∗ ×A∗

Jι−1

��

A∗ ×X +A∗
idA∗×!e+idA∗

// A∗ × ((A∗)∗ ×A∗) +A∗

(4)

2More generally, one could consider labels from an arbitrary monoid.

16

Once more, the semantics given by !e is too fine grained: in the above
example, !e(x) = {([a, b], c)} and !e(u) = {([ε, ab], c)} whereas the intended
semantics would equate both x and u, since they both accept the language
{abc}.

Note that any NDA can be regarded as word automaton. Recall the
natural transformation κ : Ĥ ⇒ Ĥ∗ defined in Example 2.1.4: for the functor
Ĥ of NDA,

κX : A×X + 1→ A∗ ×X + A∗

maps any pair (a, x) ∈ A×X into {(a, x)} ∈ P(A∗×X+A∗) and X ∈ 1 into
{ε} ∈ P(A∗ ×X + A∗). Composing an NDA e : X → ĤX with κX : ĤX →
Ĥ∗X, one obtains the word automaton κX ◦ e.

In the same way, every NDA with ε-transitions can also be seen as a word
automaton by postcomposing with the natural transformation

[κ, η] : Ĥ + Id⇒ Ĥ∗.

Here, η : Id⇒ Ĥ∗ is the unit of the free monad Ĥ∗ defined on a given set X
below (the multiplication µ : Ĥ∗Ĥ∗ ⇒ Ĥ∗ is shown on the right).

ηX : X → A∗ ×X + A∗ µX : A∗ × ((A∗ ×X + A∗) + A∗ → A∗ ×X + A∗

x 7→ {(ε, x)} (w, (w′, x)) 7→ {(w · w′, x)} (w,w′) 7→ {w · w′}
w 7→ {w}

In the next section, we propose to define the semantics of Ĥ∗-coalgebras
via a canonical fixpoint operator rather than with the final map which as
we saw above might yield unwanted semantics. Then, using the observation
above, the semantics of Ĥ-coalgebras and Ĥ + Id-coalgebras will be defined
by embedding them into Ĥ∗-coalgebras via the natural transformations κ
and [κ, η] described above.

4. Canonical Fixpoint Solutions

In this section we present the foundations of our approach. We recall here
a construction assigning canonical solutions to coalgebras seen as equation
morphisms (cf. Section 2.5) which (in the dual setting) is due to Simpson and
Plotkin [38]. A functor T on a category C is said to have sufficiently many
canonical fixpoints if for every object Y all functors T (Id + Y), T (T (Id +
Y) + Y) and T (Id + Id + Y) have canonical fixpoints. We will be working
under the following assumptions.

17

Assumption 4.1. Let C be a category with coproducts and let T be a
monad on C having sufficiently many canonical fixpoints.

In Section 5 we will see that these assumptions are satisfied for certain
monads arising from the lifted functor Ĥ in Theorem 2.10. This will allow
us to apply the theory developed in this section to the motivating examples
of Section 3 and the non-deterministic transducer in Section 7.

Remark 4.2. Recall that, by Freyd’s iterated square theorem [17], for an
endofunctor H : C → C an initial algebra for HH yields one for H. Con-
versely, one can show that if C has binary products then an initial algebra
for H yields one for HH. Thus, assuming the existence of binary products
and coproducts in C, we see that canonical fixpoints for T (Id + X) exist iff
they exist for T (T (Id + X) + X) (and moreover, these canonical fixpoints
are carried by the same object). However, to our knowledge it is not known
whether existence of canonical fixpoints for T (Id + Id +X) can be obtained
from their existence for T (Id +X) (under some reasonable assumptions).

For every parameter object Y ∈ C, denote the initial algebra and final
coalgebra for T (Id + Y)-algebra by

ιY : T (IY + Y)
∼=−→ IY and ι−1

Y : IY
∼=−→ T (IY + Y).

Then to any equation morphism e : X → T (X +Y) we associate a canonical
morphism of type X → TY as in the following diagram.

X
!e //

e

��

IY

ι−1
Y

��

¡
// TY

TTY
µTY

OO

T (X + Y)
T (!e+idY)

// T (IY + Y)

ιY

TT

T (¡+idY)
// T (TY + Y)

T [idTY ,η
T
Y]

OO (5)

In (5), the map !e : X → IY is the unique morphism of T (Id + Y)-coalgebras
given by finality of ι−1

Y : IY → T (IY + Y), whereas ¡ : IY → TY is the unique
morphism of T (Id + Y)-algebras given by initiality of ιY : T (IY + Y)→ IY .

We call the composite ¡ ◦ !e : X → TY the canonical fixpoint solution of
e, and we write e† for this solution.

Theorem 4.3 ([38], Theorem 3). The operation e 7→ e† of assigning a canon-
ical fixpoint solution yields a parametrized fixpoint operator satisfying the
double dagger law.

18

Remark 4.4. (1) Actually, [38, Theorem 3] is a stronger result; Simpson
and Plotkin prove that the above operator † is a unique parametrically
uniform parametrized fixpoint operator, and it satisfies the Conway
identities. Parametric uniformity is the following property of †: given
e : X → T (X + Y), f : X ′ → T (X ′ + Y) and h : X → X ′, then

X
e //

h
��

T (X + Y)

T (h+Y)

��

X ′
f
// T (X ′ + Y)

=⇒

X
e†

''

h

��

TY

X ′ f†

77

And the Conway identities are equational properties of † which together
with parametrized uniformity imply the axioms of iteration theories
for † (cf. Example 2.14). However, the double dagger law from Re-
mark 2.13 (which is one of the Conway identities) is the only property
that we need here, and so we do not recall the other properties.

(2) From the previous item it immediately follows that in the case where
our category C is Cppo-enriched and T is locally continuous the pa-
rametrized fixpoint operator of Example 2.14 given by taking least
fixpoints is the one described here assigning canonical fixpoint solu-
tions. In fact, the former satisfies parametric uniformity (see [9, Exer-
cise 8.2.17]), and so it agrees with the latter by the uniqueness men-
tioned in item (1).

The following result shows that monad morphisms between monads hav-
ing sufficiently many canonical fixpoints preserve canonical fixpoint solutions.
This is useful for comparing solutions provided by different monads, and it
is a direct consequence of [38, Lemma 6.6].

Proposition 4.5 (†-preservation). Suppose that T and T ′ are monads on C
satisfying Assumption 4.1 and γ : T ⇒ T ′ is a monad morphism. For any
morphism e : X → T (X + Y):

γY ◦ e† = (γX+Y ◦ e)† : X → T ′Y,

where e† is provided by the canonical fixpoint solution for T and (γX+Y ◦ e)†
by the one for T ′.

19

5. A Theory of Systems with Internal Behaviour

We now use canonical fixpoint solutions to provide an abstract theory of
systems with internal behaviour, that we will later instantiate to the moti-
vating examples of Section 3. Throughout this section, we will develop our
framework for the following ingredients.

Assumption 5.1. Let C be a category with coproducts and let F : C→ C
be an endofunctor for which all free F -algebras exist. The following monads
derived from F are assumed to have sufficiently many canonical fixpoints:

• the free monad F ∗ : C→ C (cf. Example 2.1.4);

• for every fixed X ∈ C, the exception monad FX + Id: C → C (cf.
Example 2.1.3).

In other words the monads F ∗ and FX + Id satisfy Assumption 4.1; thus
they have canonical fixpoint solutions (which satisfy the double dagger law by
Theorem 4.3). We shall see in Theorem 5.5 that Assumption 5.1 is satisfied
for F being the lifted functor Ĥ of Theorem 2.10.

To avoid ambiguity, we denote with e 7→ e† the canonical fixpoint operator
associated with F ∗ and with e 7→ e‡ the one associated with FX + Id.

We will employ the additional structure of those two monads for the
analysis of F -systems with internal transitions. An F -system is simply an
F -coalgebra e : X → FX, where we take the operational point of view of
seeing X as a space of states and F as the transition type of e. An F -system
with internal transitions is an (F +Id)-coalgebra e : X → FX+X, where the
component X of the codomain is targeted by those transitions representing
the internal (non-interacting) behaviour of system e.

A key observation for our analysis is that F -systems—with or without
internal transitions—enjoy a standard representation as F ∗-systems, that is,
coalgebras of the form e : X → F ∗X.

Definition 5.2 (F -systems as F ∗-systems). Let κ : F ⇒ F ∗ be as in Ex-
ample 2.1.4. We introduce the following encoding e 7→ ē of F -systems and
F -systems with internal transitions as F ∗-systems.

• Given an F -system e : X → FX, define ē : X → F ∗X as

ē : X e //FX
κX //F ∗X.

20

• Given an F -system with internal transitions e : X → FX + X, define
ē : X → F ∗X as

ē : X e //FX +X
[κX ,η

F∗
X]

//F ∗X.

Thus F -systems (with or without internal transitions) may be seen as
equation morphisms X → F ∗(X + 0) for the monad F ∗ (with the initial
object Y = 0 as parameter), with canonical fixpoint solutions (cf. Section 4).
This will allow us to achieve the following.

§1 We supply a uniform trace semantics for F -systems, possibly with in-
ternal transitions, and F ∗-systems, based on the canonical fixpoint so-
lution operator of F ∗.

§2 We use the canonical fixpoint solution operator of FX+Id to transform
any F -system e : X → FX + X with internal transitions into an F -
system e\ε : X → FX without internal transitions.

§3 We prove that the transformation of §2 is sound with respect to the
semantics of §1.

5.1. Uniform Trace Semantics

The canonical fixpoint semantics of F -systems, with or without internal
transitions, and F ∗-systems is defined as follows.

Definition 5.3 (Canonical Fixpoint Semantics).

• For an F ∗-system e : X → F ∗X, its semantics [[e]] : X → F ∗0 is defined
as e† (note that e can be seen as an equation morphism for F ∗ on
parameter Y = 0).

• For an F -system e : X → FX, its semantics [[e]] : X → F ∗0 is defined
as ē† = (κX ◦ e)†.

• For an F -system with internal transitions e : X → FX+X, its seman-

tics [[e]] : X → F ∗0 is defined as ē† = ([κX , η
F ∗
X] ◦ e)†.

21

The underlying intuition of Definition 5.3 is that canonical fixpoint so-
lutions may be given an operational understanding. Given an F ∗-system
e : X → F ∗X, its solution e† : X → F ∗0 is formally defined as the composite
¡ ◦ !e (cf. (5)): we can see the coalgebra morphism !e as a map that gives the
behaviour of system e without taking into account the structure of labels and
the algebra morphism ¡ as evaluating this structure, e.g. flattening words of
words, using the initial algebra µF

∗
0 : F ∗F ∗0 → F ∗0 for the monad F ∗. In

particular, the action of ¡ is what makes our semantics suitable for modeling
“algebraic” operations on internal transitions such as ε-elimination, as we
will see in concrete instances of our framework.

Remark 5.4. The canonical fixpoint semantics of Definition 5.3 encompasses
the framework for traces in [23], where the semantics of an F -system e :
X → FX—without internal transitions—is defined as the unique morphism
!e from X into the final F -coalgebra F ∗0. Indeed, using finality of F ∗0, it can
be shown that !e = [[e]]. Theorem 5.5 below guarantees compatibility with
Assumption 5.1.

The following result is instrumental in our examples and in comparing our
theory with the one developed in [23] for trace semantics in Kleisli categories.

Theorem 5.5. Let M : Sets→ Sets be a monad and H : Sets→ Sets be a
functor satisfying the assumptions of Theorem 2.10, that is:

(a) K`(M) is Cppo-enriched and composition is left strict;

(b) H is accessible and has a locally continuous lifting Ĥ : K`(M)→ K`(M).

Then K`(M), Ĥ, Ĥ∗ and ĤJX + Id (for a given set X) satisfy Assumption
5.1.

Before we proceed to prove the above theorem, we first show its relevance
for the motivating examples of Section 3.

Example 5.6 (Semantics of NDA with word transitions). In Section 3, we
have modeled NDA with word transitions as Ĥ∗-coalgebras on K`(M), where
H and M are defined as for NDA (see Example 2.11). By Proposition 2.5,
Ĥ∗ = Ĥ∗ and thus, by virtue of Theorem 5.5, Ĥ∗ satisfies Assumption 5.1.
Therefore we can define the semantics of NDA with word transitions e : X →

22

P(A∗ ×X + A∗) via canonical fixpoint solutions as [[e]] = e† = ¡ ◦ !e:

X
!e //

e

��

(A∗)∗ ×A∗

∼=

��

¡
//

¡(〈〉, w) = {w}
¡(w :: l, w′) = {wu | u ∈ ¡(l, w′)}

A∗

A∗ ×X +A∗
id×!e+id

// A∗ × ((A∗)∗ ×A∗) +A∗

TT

id×¡+id
// A∗ ×A∗ +A∗

µ0

OO

(6)

Observe that the above diagram is just (5) instantiated with T = Ĥ∗ and
Y = 0. Moreover, this diagram is in K`(P) and hence the explicit definition
of e† as a function X → P(A∗) is given by e†(x) =

⋃
P¡(!e(x)).

Both !e and ¡ can be defined uniquely by the commutativity of the above
diagram. We have already defined !e in (4) and the definition of ¡ is given in
the right-hand square of the above diagram. The isomorphism in the middle
and µ0 were defined in Section 3.

Using the above formula e†(x) =
⋃

P(¡)(!e(x)) we now have the semantics
of e:

w ∈ e†(x)⇔ w ∈ e(x) or ∃y ∈ X,w1, w2 ∈ A∗

(w1, y) ∈ e(x), w2 ∈ e†(y) and w = w1w2.

(7)

This definition is precisely the language semantics: a word w is accepted by
a state x if there exists a decomposition w = w1 · · ·wn such that

x
w1 // y1

w2 // · · · wn−1
// yn−1

wn +3 .

Take again the automaton of the motivating example. We can calculate the
semantics and observe that we now get exactly what was expected: e†(u) =
e†(v) = e†(x).

x a // y b // z
{c}
��u ε // v

ab

99

!e(x) = {([a, b], c)}
!e(y) = {([b], c)}
!e(z) = {(〈〉, c)}
!e(u) = {([ε, ab], c)}
!e(v) = {([ab], c)}

e†(x) = {abc}
e†(y) = {bc}
e†(z) = {c}
e†(u) = {abc}
e†(v) = {abc}

The key role played by the monad structure on A∗ can be appreciated by
comparing the graphs of !e and e† = ¡ ◦ !e as in the example above. The
algebra morphism ¡ : (A∗)∗ × A∗ → A∗ maps values from the initial algebra

23

(A∗)∗ ×A∗ for the endofunctor Ĥ∗ into the initial algebra A∗ for the monad
Ĥ∗: its action is precisely to take into account the additional equations
encoded by the algebraic theory of the monad Ĥ∗. For instance, we can
see the mapping of !e(u) = {([ε, ab], c)} into the word abc as the result of
concatenating the words ε, ab, c and then quotienting out of the equation
εabc = abc in the monoid A∗.

Remark 5.7 (Multiple Solutions). The canonical solution e† is not the
unique solution. Indeed, the uniqueness of !e in the left-hand square and of ¡
in the right-hand square of the diagram above does not imply the uniqueness
of e†. To see this, take for instance the automaton

x ε
ii

Both s(x) = ∅ and s′(x) = A∗ are solutions. The canonical one is the least
one, i.e., e†(x) = s(x) = ∅. Indeed, as discussed in Remark 4.4(2), whenever
the underlying category is Cppo-enriched and the monad locally continuous,
the canonical solution coincides with the least fixpoint solution introduced
in Example 2.14

Example 5.8 (Semantics of NDA with ε-transitions). NDA with ε-tran-
sitions are modeled as Ĥ + Id-coalgebras on K`(M), where H and M are
defined as for NDA (see Example 2.11). We can define the semantics of NDA
with ε-transitions via canonical fixpoint solutions as [[e]] = ē†, where ē is the
automaton with word transitions corresponding to e (see Definition 5.2). The
first example in Section 3 would be represented as follows,

x ε // y ε // z a
ii

ē(x) = [κX , ηX] ◦ e(x) = {(ε, y)}
ē(y) = [κX , ηX] ◦ e(y) = {(ε, z)}
ē(z) = [κX , ηX] ◦ e(z) = {(a, z), ε}

where η and κ are defined as at the end of Section 3. By using (7), it can be
easily checked that the semantics [[e]] = ē† : X → PA∗ maps x, y and z into
a∗.

We now proceed to prove Theorem 5.5. First, we give more details on
accessible endofunctors and how they yield a canonical free algebra construc-
tion.

24

Remark 5.9. (1) Adámek and Porst [4] showed that an endofunctor H
on Sets is accessible if and only if it is bounded in the following sense:
there exists a cardinal λ such that for every set A, every element of HA
lies in the image of Hb for some b : B ↪→ A of less than λ elements.

(2) Recall from [1] that for an accessible endofunctor H on a cocomplete
category C (not only the initial but) all free H-algebras exist and are
obtained from an inductive construction. More precisely, for every
object X of C define the following ordinal indexed free-algebra-chain:

H0X = X,

Hi+1X = HHiX +X,

HjX = colim
i<j

HiX for a limit ordinal j.

Its connecting morphisms ui,j : HiX → HjX are uniquely determined
by

u0,1 = (X inr //HX +X),

ui+1,j+1 = (HHiX +X
Hui,j+X

//HHjX +X),

ui,j (i < j) is the colimit cocone for limit ordinals j.

Indeed, this defines an ordinal indexed chain uniquely (up to isomor-
phism). The “missing” connecting maps are determined by the univer-
sal property of colimits, e.g. uω,ω+1 is unique such that uω,ω+1 ·ui+1,ω =
ui+1,ω+1 = Hui,ω for all i < ω.

Now suppose that H preserves λ-filtered colimits. Then uλ,λ+1 is an
isomorphism and one can show that HλX is a free H-algebra on X
with the structure and universal morphism given by u−1

λ,λ+1.

(3) As we saw previously, the assignment of a free H-algebra on X to any
object X yields a free monad on H; thus, in item (2) above we have
H∗ = Hλ. Now notice that the construction in the previous point can
be written object free; we obtain H∗ after λ steps of the following chain
in the category of endofunctors on C:

H0 = Id,

Hi+1 = HHi + Id,

Hj = colim
i<j

Hj for limit ordinals i.

25

The connecting natural transformations Hi ⇒ Hj have the components
described as connecting morphisms in item (2).

As a consequence we see that if H is accessible then so is H∗; indeed,
all Hi preserve λ-filtered colimits if H does.

The next proposition is instrumental in relating accessiblity of an endo-
functor with the existence of initial algebras for its lifting.

Proposition 5.10. Let C be a cocomplete category, M : C→ C be a monad
and G : C → C be an accessible endofunctor with a lifting Ĝ : K`(M) →
K`(M). Then for all Y ∈ K`(M) both the initial Ĝ(Id + Y)-algebra and the
initial Ĝ(Id) + Y -algebra exist.

Proof. As the left adjoint J : C→ K`(M) is defined as the identity on objects,
without loss of generality we can prove our statement for an object JY ∈
K`(M), where Y ∈ C.

First we observe that the endofunctor Y +Id: C→ C (cf. Example 2.1.3)
always has a lifting to K`(M). Indeed, because the left adjoint J : C →
K`(M) preserves coproducts, we have

J ◦ (Id + Y) = J(Id) + JY = (Id + JY) ◦ J

implying that Id + JY : K`(M)→ K`(M) is a lifting of Id + Y : C→ C.
Now we can compose the C-endofunctors G and Id + Y in two different

ways, obtaining G(Id)+Y : C→ C and G(Id+Y) : C→ C. It is straightfor-
ward to check that the composite of two liftings is a lifting of the composite
functor. This means that we have liftings Ĝ(Id) + JY : K`(M) → K`(M)
and Ĝ(Id + JY) : K`(M) → K`(M) respectively of G(Id) + Y : C → C and
G(Id + Y) : C→ C.

The next step is to use accessibility to get initial algebras in C that will be
then lifted to K`(M). In fact, we observe that both functors G(Id)+Y : C→
C and G(Id+Y) : C→ C are accessible, because the functor Y +Id is clearly
accessible and G is assumed to have this property.

Thus as observed in Remark 5.9.(2) both an initial G(Id)+Y -algebra and
an initial G(Id + Y)-algebra exist. Then Proposition 2.4 yields the existence
both of an initial Ĝ(Id) + JY -algebra and an initial Ĝ(Id + JY)-algebra.

We are now ready to supply a proof of Theorem 5.5.

Proof of Theorem 5.5. Since K`(M) inherits coproducts from Sets, we only
need to check the following properties:

26

1. all free Ĥ-algebras exist;

2. for all Y ∈ K`(M), the initial algebras for Ĥ∗(Id + Y), Ĥ∗(Ĥ∗(Id +
Y) + Y) and Ĥ∗(Id + Id + Y) exist;

3. for all Y ∈ K`(M), the initial algebras for ĤJX + Id + Y , ĤJX +
ĤJX + Id + Y + Y and ĤJX + Id + Id + Y exist.

Then it follows from Proposition 2.9, Theorem 2.8 and the fact the coproducts
in K`(M) are Cppo-enriched that Ĥ∗ and ĤJX + Id have sufficiently many
canonical fixpoints.

By virtue of Proposition 5.10, the three properties above are implied
respectively by the following statements:

1. the functor H : Sets→ Sets is accessible;

2. the functor Ĥ∗ : K`(M) → K`(M) is the lifting of H∗ : Sets → Sets
and H∗ is accessible;

3. the functor ĤJX+Id: K`(M)→ K`(M) is the lifting ofHX+Id: Sets→
Sets and HX + Id is accessible.

The first point is given by assumption. For the second point, H∗ is accessible
by Remark 5.9.(3) and Ĥ∗ : K`(M)→ K`(M) is its lifting by Proposition 2.5.
For the third point, since the identity Id : Sets → Sets and the constant
functor HX : Sets → Sets are clearly accessible and coproducts preserve
this property, then HX + Id: Sets → Sets is also accessible. As the left
adjoint J : Sets → K`(M) preserves coproducts, it is immediate to check
that ĤJX + Id: K`(M) → K`(M) is the lifting of HX + Id: Sets → Sets.
Indeed:

J ◦ (HX + Id) = JHX + J(Id) = ĤJX + J(Id) = (ĤJX + Id) ◦ J.

This concludes the proof of the three properties above.

5.2. Elimination of Internal Transitions

We view an F -system e : X → FX + X with internal transitions as an
equation morphism for the monad FX + Id, with parameter Y = 0. Thus
we can use the canonical fixpoint solution of FX + Id to obtain an F -system

27

e‡ : X → FX + 0 = FX, which we denote by e\ ε. The construction is
depicted below.

X
!e //

e

��

N× FX
∼=

¡
// FX
��

e\ε def
= e‡

FX +X
idFX+!e

// FX +N× FX

II

idFX+¡
// FX + FX

µ0=∇FX

OO
(8)

Example 5.11 (ε-elimination). Using the automaton of Example 5.8, we
can perform ε-elimination, as defined in (8), using the canonical solution for
the monad ĤJX + Id:

X
!e //

e

��

N× (A×X + 1)

∼=

¡
// (A×X + 1)

(A×X + 1) +X
id+!e
// (A×X + 1) +N× (A×X + 1)

JJ

id+¡
// (A×X + 1) + (A×X + 1)

µ0=∇

OO

We obtain the following NDA e\ε def
= ¡ ◦ !e : X → A×X + 1.

!e(x) = {(2, a, z), (2,X)}
!e(y) = {(1, a, z), (1,X)}
!e(z) = {(0, a, z), (0,X)}

e\ε(x) = {(a, z),X}
e\ε(y) = {(a, z),X}
e\ε(x) = {(a, z),X}

x y a // z a
hh

��

a

The semantics [[e\ε]] is defined as e\ε
†
, where e\ε = κX ◦ e\ε is the repre-

sentation of the NDA e\ε as an automaton with word transitions (Definition
5.2). It is immediate to see, in this case, that [[e\ε]] = [[e]]. This fact is an
instance of Theorem 5.14 below.

Remark 5.12. Note that ε-elimination was recently defined using a trace
operator on a Kleisli category [22, 37, 6]. These works are based on the trace
semantics of Hasuo et al. [23] and tailored for ε-elimination. They do not
take into account any algebraic structure of the labels and are hence not
applicable to the other examples we consider in this paper.

28

5.3. Soundness of ε-Elimination

We now formally prove that the canonical fixpoint semantics of e and e\ε
coincide. To this end, we first show how the construction e 7→ e\ε can be
expressed in terms of the canonical fixpoint solution of F ∗. This turns out to
be an application of †-preservation (Proposition 4.5), for which we introduce
the natural transformation π : FX + Id⇒ F ∗(X + Id) defined at Y ∈ C by

πY : FX + Y
[κX , η

F∗
Y]

// F ∗X + F ∗Y
[F ∗inl,F ∗inr]

// F ∗(X + Y) .

Since F ∗ is a monad with sufficiently many canonical fixpoints, it follows
that so is F ∗(X + Id). Moreover, π is a monad morphism between FX + Id
and F ∗(X + Id). These observations allow us to prove the following.

Proposition 5.13 (Factorisation property of e 7→ e\ε). For any F -system
e : X → FX +X with internal transitions, consider the equation morphism
πX ◦ e : X → F ∗(X +X). Then:

π0 ◦ e\ε = (πX ◦ e)† : X → F ∗X.

Proof. Let us use the notation e 7→ e• for the canonical fixpoint solution
operator of F ∗(X+Id). We now apply Proposition 4.5 to show that solutions
of F ∗(X+Id) factorize through the ones of FX+Id. The connecting monad
morphism is π : FX + Id → F ∗(X + Id), defined above. Proposition 4.5
yields the following factorisation property:

(∗) for any Y, Z ∈ C and equation morphism e : Z → FX+Z+Y , consider
πZ+Y ◦e : Z → F ∗(X+Z+Y). The solution (πZ+Y ◦ e)• : Z → F ∗(X+
Y) provided by F ∗(X+Id) factorises as πY ◦e‡, where e‡ : Z → FX+Y
is the solution of e provided by FX + Id.

If we fix Z = X and Y = 0, then (∗) says: for any F -system e : X → FX+X
with internal computation, consider the equation morphism (πX+0◦e : X)→
F ∗(X + X + 0) for F ∗(X + Id) with parameter Y = 0. Then the following
diagram commutes:

X
(πX◦e)•

//

e‡ ''

F ∗X

FX

π0

OO

(9)

29

To conclude our argument, we observe that the system πX+0◦e : X → F ∗(X+
X+0) can be also seen as an equation for F ∗ with parameter Y = X+0. This
means that also F ∗ provides a solution to such equation, which can be checked
to coincide with the one given by F ∗(X + Id), that is, (πX ◦ e)• = (πX ◦ e)†.
Then the main statement is proven by the following derivation:

π0 ◦ e\ε = π0 ◦ e‡ (Definition of e\ε)
= (πX ◦ e)• (commutativity of (9))

= (πX ◦ e)†. (observation above)

We are now ready to show §3 (see page 21): soundness of ε-elimination.

Theorem 5.14 (Eliminating internal transitions is sound). For any F -
system e : X → FX +X with internal transitions,

[[e\ε]] = [[e]].

Proof. The statement is shown by the following derivation.

[[e\ε]] = [[e‡]] Definition of e\ε
= (κX ◦ e‡)

†
Definition of [[−]] (Def. 5.3)

= (π0 ◦ e‡)
†

Definition of π0

= (πX ◦ e)†† Proposition 5.13

= (F ∗(∇X) ◦ (πX ◦ e))† double dagger law

= ē† Definition of ē (Def. 5.2) and πX

= [[e]] Definition of [[−]].

6. Quotient Semantics

When considering behaviour of systems it is common to encounter spec-
trums of successively coarser equivalences. For instance, in basic process al-
gebra trace equivalence can be obtained by quotienting bisimilarity with an
axiom stating the distributivity of action prefixing by non-determinism [35].
There are many more examples of this phenomenon, including Mazurkiewicz
traces, which we will describe below.

30

In this section we develop a variant of the canonical fixpoint semantics,
where we can encompass in a uniform manner behaviours which are quotients
of the canonical behaviours of the previous section (that is, the object F ∗0).

Assumption 6.1. Let C, F , F ∗ and FX + Id be as in Assumption 5.1
and γ : F ∗ ⇒ Q a monad quotient for some monad Q, i.e., the natural
transformation γ has epimorphic components. Moreover, suppose that Q
has sufficiently many canonical fixpoints.

Observe that, as Assumption 6.1 subsumes Assumption 5.1, we are within
the framework of the previous section, with the canonical fixpoint solution
of F ∗ providing semantics for F ∗- and F -systems. For our extension, one
is interested in Q0 as a semantic domain coarser than F ∗0 and we aim at
defining an interpretation for F -systems in Q0. We first note that according
to Theorem 4.3, Q is a monad with canonical fixpoint solutions, which sat-
isfy the double dagger law. We use the notation e 7→ e∼ for the canonical
fixpoint operator of Q. This allows us to define the semantics of Q-systems,
analogously to what we did for F ∗-systems in Definition 5.3. Moreover, the
connecting monad morphism γ : F ∗ ⇒ Q yields an extension of this semantics
to include also systems of transition type F ∗ and F .

Definition 6.2 (Quotient Semantics). The quotient semantics of F -systems,
with or without internal transitions, F ∗-systems and Q-systems is defined as
follows.

• For a Q-system e : X → QX, its semantics [[e]]∼ : X → Q0 is defined as
e∼ (note that e can be regarded as an equation morphism for Q with
Y = 0).

• For an F ∗-system e : X → F ∗X, its semantics [[e]]∼ : X → Q0 is defined
as (γX ◦ e)∼.

• For an F -system e—with or without internal transitions—its semantics
[[e]]∼ : X → Q0 is defined as (γX ◦ ē)∼, where e is as in Definition 5.2.

Proposition 4.5 allows us to establish a link between the canonical fixpoint
semantics [[−]] and the quotient semantics [[−]]∼.

Proposition 6.3 (Factorisation for the quotient semantics). Let e be either
an F ∗-system or an F -system (with or without internal transitions). Then:

[[e]]∼ = γ0 ◦ [[e]]. (10)

31

Proof. We instantiate the statement of Proposition 4.5 to the monads F ∗, Q
and the monad morphism γ : F ∗ ⇒ Q. It amounts to commutativity of the
following diagram for a given F ∗-system e : X → F ∗X and the parameter
Y = 0:

X
(γX◦e)∼

//

e† ''

Q0

F ∗0

γ0

OO

(11)

Thus for F ∗-systems the equality (10) is immediate, because [[e]]∼ = (γX ◦ e)∼
by Definition 6.2 and (γX ◦ e)∼ = γ0 ◦ e† = γ0 ◦ [[e]] by commutativity of (11).

Starting instead from an F -system e′ based on state space X, with or
without internal computations, consider the following chain of equalities:

[[e′]]∼ = (γX ◦ e′)
∼

= γ0 ◦ e′
†

= γ0 ◦ [[e′]].

The first and third equalities are given by unfolding the definition of [[−]]∼
and [[−]], respectively, whereas the second one is due to commutativity of
(11) applied to the F ∗-system e′ : X → F ∗X in lieu of e.

As a corollary we obtain that eliminating internal transitions is sound
also for quotient semantics.

Corollary 6.4. For any F -system e : X → FX+X with internal transitions,

[[e]]∼ = [[e\ε]]∼.

Proof. The statement is immediately given by the following derivation

[[e]]∼ = γ0 ◦ [[e]] = γ0 ◦ [[e\ε]] = [[e\ε]]∼

where the first and third equalities hold by Proposition 6.3 and the second
equality by Theorem 5.14.

The quotient semantics can be formulated in a Kleisli category K`(M)
by further assuming (♦) below. This is needed to lift a quotient of monads
from Sets to K`(M).

In the following theorem we will work with a monad M : Sets→ Sets and
and an accessible endofunctor H : Sets→ Sets satisfying the assumptions of
Theorem 2.10. So H is assumed to have a lifting Ĥ on K`(M); equivalently
we have a distributive law ϕ : HM → MH (see Proposition 2.2). As shown

32

in Proposition 2.5, ϕ induces the distributive law λ : H∗M → MH∗ so that
the free monad H∗ on H lifts to a monad Ĥ∗ : K`(M) → K`(M) via λ and
Ĥ∗ = Ĥ∗.

Theorem 6.5. Let M : Sets → Sets be a monad and H : Sets → Sets
be an accessible functor satisfying the assumptions of Theorem 2.10, and let
λ : H∗M ⇒ MH∗ be the induced distributive law yielding Ĥ∗ = Ĥ∗. Let
R : Sets→ Sets be a monad and ξ : H∗ ⇒ R a monad quotient such that

(♦) for each set X, there is a map λ′X : RMX →MRX making the follow-
ing commute.

H∗MX

ξMX

��

λX //MH∗X

MξX
��

RMX
λ′X

//MRX

Then the following hold:

1. there is a monad R̂ : K`(M)→ K`(M) lifting R and a monad morphism
ξ̂ : Ĥ∗ ⇒ R̂ defined as ξ̂X = J(ξX);

2. K`(M), Ĥ, Ĥ∗, ĤJX + Id (for a given set X), R̂ and ξ̂ : Ĥ∗ ⇒ R̂
satisfy Assumption 6.1.

Before we proceed to the proof of the theorem we state and prove the
following lemma that provides sufficient conditions for lifting the quotient of
an endofunctor to K`(M).

Proposition 6.6. Let M,S : C → C be monads such that there exists a
distributive law λ : SM ⇒ MS and let Ŝ : K`(M) → K`(M) be the corre-
sponding lifting. Let γ : S ⇒ R be a monad quotient such that

(4) for each X, there is a map λ′X : RMX → MRX making the following
commute.

SMX

γMX

��

λX //MSX

MγX
��

RMX
λ′X

//MRX

Then R lifts to a monad R̂ : K`(M) → K`(M) and q̂ : Ŝ ⇒ R̂ defined as
γ̂X = J(γX) is a monad quotient.

33

Proof. We first prove that λ′ : RM ⇒ MR with the components λ′X is a
natural transformation. Let f : X → Y be a morphism in C. We construct
the following cube.

RMX

RMf %%

λ′X //MRX
MRf

%%

RMY
λ′Y //MRY

SMX

SMf %%

γMX

OO

λX
//MSX

MSf

%%

MγX

OO

SMY

γMY

OO

λY
//MSY

MγY

OO

The bottom face commutes by naturality of λ; the leftmost and the righmost
faces commute by naturality of γ; the backward and the front faces commute
because of (4). It is therefore easy to see that MRf ◦λ′X ◦γMX = λ′Y ◦RMf ◦
γMX . As each γ-component is epi, it follows that MRf ◦ λ′X = λ′Y ◦RMf .

Now, we prove that λ′ : RM ⇒MR is a distributive law of monads. The
argument for the four diagrams is analogous, so we just show the one for ηM ,
depicted in the triangle (1), below.

RX

(1)
RηMX

$$

ηMRX

zz

SX

(2)

ηMSX

��

γXoo

SηMX

%%

MRX RMX
λ′Xoo SMX

(3)

λXyy

γMXoo

MSX

(4)
MγX

kk

Observe that (2) commutes by naturality of γ, (3) commutes since λ is a
distributive law of monads and (4) commute by (4). Therefore the first
equality of the following equation holds

λ′X ◦RηMX ◦ γX = MγX ◦ ηMSX = ηMRX ◦ γX
and the second equality holds by naturality of ηM . The commutativity of (1)
follows since γX is epi.

By Proposition 2.2, and the fact that λ′ : RM ⇒ MR is a distributive
law of the monad R over the monad M , we obtain that R has a monad lifting
R̂ : K`(M)→ K`(M).

34

We now prove that q̂ : Ŝ ⇒ R̂ is a monad morphism. First, we need to
check that it is a natural transformation, that is for all morphisms f : X → Y
in K`(M), the following diagram commutes.

ŜX
J(γX)

//

Ŝf
��

R̂X

R̂f
��

ŜY
J(γY)

// R̂Y

By spelling out the definitions of J and Ŝ, the above diagram corresponds to
the following in C.

SX

(1)

ηMSX //

Sf
��

MSS

(2)

MγX //

MSf
��

MRX

MRf
��

SMY

(3)

ηMSY
//

λY
��

MSMY

(4)

MγMY
//

MλY
��

MRMY

Mλ′Y
��

MSY
ηMMSY

//MMSY
MMγY

//MMRY
µMRY //MRY

Observe that (1) and (3) commute by naturality of ηM , (2) commutes by
naturality of γ and (4) commutes by (4).

Verifying that q̂ is a also morphism of monads is immediate: q̂ ◦ ηŜ =
J(q) ◦ J(ηS) = J(ηR) = ηR̂ and q̂ ◦ µŜ = J(q) ◦ J(µS) = J(µR) ◦ J(Rq ◦ γS) =
µŜ ◦ R̂q̂ ◦ γ̂S.

All its components are epi since J is a left adjoint and thus preserves epis.

Proof of Theorem 6.5. Point 1 holds by Proposition 6.6. In particular, the
morphism ξ̂ : Ĥ∗ ⇒ R̂ is of the right type because Ĥ∗ = Ĥ∗ by Proposi-
tion 2.5. For point 2 we observe that, for K`(M), Ĥ, Ĥ∗ and ĤJX + Id,
proving Assumption 6.1 amounts to showing Assumption 5.1, which we al-
ready did in Theorem 5.5.

Thus it only remains to prove that R̂ has sufficiently many canonical
fixpoints. Using Proposition 2.9 and Theorem 2.8 this follows if we show
that for all Y ∈ K`(M) initial algebras for R̂(Id + Y), R̂(R̂(Id + Y) + Y)
and R̂(Id + Id + Y) exist. By virtue of Proposition 5.10, it suffices to show
that R : Sets → Sets is accessible. The accessibility of the quotient R of

35

H∗ : Sets → Sets is guaranteed from the fact that H∗ : Sets → Sets is
accessible (Remark 5.9(3)) and thus bounded (Remark 5.9(1)) and that the
quotients of bounded functors are also bounded.

Notice that condition (4) and the first part of Statement 1 are related
to [11, Theorem 1]; however, that paper treats distributive laws of monads
over endofunctors. Observe also, that [11, Example 3] gives a counterexample
of a monad quotient and distributive law involving the functor FX = R×X
that does not satisfy (4). This distributive law is easily seen to be a dis-
tributive law between monads, if we regard F as a monad (with the monad
structure arising from the monoid (R,+, 0)). Thus, this yields a counterex-
ample to Proposition 6.6.

Example 6.7 (Mazurkiewicz traces). This example, using a known equiv-
alence in concurrency theory, illustrates the use of the quotient semantics
developed in this section.

The trace semantics proposed by Mazurkiewicz [29] accounts for concur-
rent actions. Intuitively, let A be the action alphabet and a, b ∈ A. We will
call a and b concurrent, and write a ≡ b, if the order in which these actions
occur is not relevant. This means that we equate words that only differ in the
order of these two actions, e.g. uabv and ubav denote the same Mazurkiewicz
trace.

To obtain the intended semantics of Mazurkiewicz traces we use the quo-
tient semantics defined above3. In particular, for Mazurkiewisz traces one
considers a symmetric and irreflexive “independence” relation I on the label
set A. Let ≡ be the least congruence relation on the free monoid A∗ such
that

(a, b) ∈ I ⇒ ab ≡ ba.

We now have two monads on Sets, namely H∗X = A∗ × X + A∗ and
RX = A∗/≡×X+A∗/≡. There is the canonical quotient of monads ξ : H∗ ⇒
R given by identifying words of the same ≡-equivalence class. We now verify
that those data satisfy the assumptions of Theorem 6.5.

Proposition 6.8. The monads P : Sets → Sets and R : Sets → Sets, the

3Mazurkiewicz traces were defined over labelled transition systems which are similar
to NDA but where every state is final. For simplicity, we consider LTS here immediately
as NDA.

36

functor H : Sets→ Sets and the quotient of monads ξ : H∗ ⇒ R satisfy the
assumptions of Theorem 6.5.

Proof. Clearly the functor H : Sets → Sets is accessible. The remaining
properties of H and of the monad P : Sets → Sets are as in Theorem 2.10
and have been already verified in [23]. Thus it remains to show that the
quotient ξ : H∗ ⇒ R satisfies condition (♦) of Theorem 6.5. For this purpose,
fix a set X. The desired morphism λ′X : RPX → PRX will be given by
the universal property of a standard coequalizer diagram induced by the
congruence relation ≡ ⊆ A∗ × A∗. First we define the set EPX ⊆ (H∗PX ×
H∗PX) as

EPX := {
(
(w, Y)(v, Y)

)
| w ≡ v} ∪ {(w, v) | w ≡ v}.

Intuitively, EPX is the set of equations on H∗PX induced by ≡. There are
evident projection maps π1, π2 : EPX → H∗PX. It is immediate to verify
that the following is a coequalizer diagram.

EPX

π1 //

π2
// H∗PX

ξPX // RPX

Also one can check that the morphism PξX ◦ λX : H∗PX → PRX (where
λ : H∗P ⇒ PH∗ is the distributive law from Example 2.7) gives the same
values when precomposed with π1 or with π2. Thus the universal property
of coequalizer yields a unique morphism λ′X making the following commute:

EPX

π1 //

π2
// H∗PX

ξPX //

λX
((

RPX

λ′X

��

PH∗X

PξX
((

PRX

Commutativity of the above diagram yields condition (♦) of Theorem 6.5.

Continuing with Example 6.7 we are thus entitled to apply the quotient
semantics [[−]]∼. This will be given on an NDA e : X → ĤX by first embed-
ding it into Ĥ∗ as ē = κX◦e : X → Ĥ∗X and then into R̂ as ξ̂X◦ē : X → R̂X.
To this morphism we apply the canonical fixpoint operator of R̂ to obtain

37

(ξ̂X ◦ ē)∼, that is, the semantics [[e]]∼ : X → R0 = A∗/≡. It is easy to see
that this definition captures the intended semantics: for all states x ∈ X

[[e]]∼(x) = {[w]≡ | w ∈ [[e]](x)}.

Indeed, by Proposition 6.3, [[e]]∼ = ξ̂0 ◦ [[e]] and ξ̂0 : Ĥ∗0 → R̂0 is just Jξ0

where ξ0 : A∗ → A∗/≡ maps every word w into its equivalence class [w]≡.

7. Non-Deterministic Transducers

We now consider another application of our theory, namely to non-deterministic
transducers. Introduced by Schützenberger [36], these systems are a gener-
alisation of classical automata by allowing each transition to produce an
output word. They have been employed in various areas of computational
linguistics [27, 32]. The question of whether transducers could be modelled
coalgebraically was tackled by Hansen [21], though her results were only
about deterministic transducers and did not capture the semantics in a fully
satisfactory way.

In this section, we consider the more general case of non-deterministic
transducers and show how their semantics can be correctly modeled in a
Kleisli category. Later, we shall also extend our approach to transducers
with internal behaviour.

Formally, a non-deterministic transducer with inputs in A and outputs
in B is a tuple (X, δ, o) where X is a set of states, δ ⊆ X × A × B∗ × X
is a transition relation and o : X → P(B∗) is a terminal output function
associating to each state a language over B. To avoid confusion amongst
the words in A∗ and those in B∗, we use w,w1, w2, . . . for the former and

v, v1, v2, . . . for the latter. Moreover, we write x
a/v−−→ y for (x, a, v, y) ∈ δ

and x⇓v for v ∈ o(x). We shall simply speak of transducers dropping “non-
deterministic” whenever we feel like it.

Every state x ∈ X induces a function ‖x‖ : A∗ → P(B∗) mapping a word
w ∈ A∗ into the set

‖x‖(w) = {v | ∃xi ∈ X, ai ∈ A, vi ∈ B∗ s.t. w = a1 · · · an,

v = v1 · · · vn+1 and x
a1/v1−−−→ x1 · · ·

an/vn−−−→ xn⇓vn+1
}.

For example consider the transducer A (below on the left) with input alpha-
bet A = {a} and output alphabet B = {0, 1}. The function o has value {1}

38

on u and the empty language on the other states of A. In the central column
we show the function ‖ · ‖ for each state; the unspecified words of A∗ are
mapped to the empty language on B.

x
a/0
// z

a/1

%%
y

a/01
// u

1

��k

a/ε
::

‖x‖ : aa 7→ {011}
‖z‖ : a 7→ {11}
‖u‖ : ε 7→ {1}
‖y‖ : aa 7→ {011}
‖k‖ : a 7→ {1}

e(x) = {(0, a, z)}
e(z) = {(1, a, u)}
e(u) = {(1,X)}
e(y) = {(01, k)}
e(k) = {(ε, a, u)}

We model non-deterministic transducers as coalgebras

e : X → P(B∗ × (A×X + 1)),

letting (v, a, y) ∈ e(x) if and only if x
a/v−−→ y and (v,X) ∈ e(x) if and only if

x⇓v. The rightmost column above shows the definition of e for A.
Analogously to the case of non-deterministic automata, in order to prop-

erly capture their semantics we want to formally distinguish between the
branching and the transition type of transducers. To this aim, we split the
functor P(B∗×(A× Id + 1)) as MH with M = P(B∗×Id) and H = A×Id+1
and, like for NFA, we consider coalgebras for some lifting Ĥ of H to K`(M).

7.1. Distributive Laws, again.

Before defining Ĥ, we have to show that P(B∗× Id) is a monad. For this
purpose, we can compose the monads P and B∗ × Id (in Example 2.1) via
the following distributive law:

ψX : B∗ × PX → P(B∗ ×X)

(w, Y) 7→ {(w, y) | y ∈ Y }

The unit ηX : X → P(B∗×X) of the composed monad P(B∗×Id) maps x ∈ X
into the singleton {(ε, x)}. Its multiplication µX : P(B∗ × P(B∗ ×X)) →
P(B∗ ×X) assigns to each Y ∈ P(B∗ × P(B∗ ×X)) the set

{(v1v2, x) | ∃Z ∈ P(B∗ ×X) s.t. (v1, Z) ∈ Y and (v2, x) ∈ Z}.

For defining Ĥ : K`(M) → K`(M), we need to provide a distributive
law θ of H over M . This is constructed by combining the distributive law

39

ϕ : HP ⇒ PH (given in Example 2.3) and χ : H(B∗ × Id) ⇒ B∗ × H(Id)
with the following components:

χX : A× (B∗ ×X) + 1→ B∗ × (A×X + 1)

X 7→ (ε,X)

(a, (w, x)) 7→ (w, (a, x))

Then, we can give θ : HP(B∗ × Id)⇒ P(B∗ ×H(Id)) as:

θX : HP(B∗ ×X)
ϕB∗×X

// PH(B∗ ×X)
PχX // P(B∗ ×HX).

By unfolding the definitions of ϕ and χ, this just means:

θX : A× P(B∗ ×X) + 1→ P(B∗ × (A×X + 1))

X 7→ {(ε,X)}
(a, Y) 7→ {(w, (a, x)) | (w, x) ∈ Y }

For ϕ, ψ and χ, we do not report the proofs showing that these satisfy
the equations of distributive laws, since they are straightforward calculations.
For θ instead, we can provide a nicer proof relying on the following general
result, which is a variation of [16, Theorem 2.1].

Proposition 7.1. Let M , T be monads and F an endofunctor on some
category C. Also consider distributive laws α : TM ⇒MT (of the monad T
over the monad M), β : FM ⇒ MF (of the functor F over the monad M)
and γ : FT ⇒ TF (of the functor F over the monad T). If the “Yang-Baxter
equation” holds, that is, the following diagram commutes

FMT
βT //MFT

Mγ
))

FTM

Fα 55

γM))

MTF

TFM
Tβ
// TMF

αF

55
(YB)

then δ : FMT ⇒ MTF defined as Mβ ◦ γT is a distributive law of F over
the monad MT .

Proof. See Appendix A.

Proposition 7.2. θ is a distributive law of H over the monad P(B∗ × Id).

40

Proof. We instantiate Proposition 7.1 to the case where F , M , T , α, β, γ
are H, P, B∗ × Id, ψ, ϕ, χ, respectively. In order to prove the statement, it
suffices to check commutativity of the diagram

HP(B∗ ×X)
ϕB∗×X

// PH(B∗ ×X)
PχX

**

H(B∗ × PX)

HψX 44

χPX ++

P(B∗ ×HX)

B∗ ×HPX
B∗×ϕX // B∗ × PHX

ψHX

33

which is verified by considering the following two cases.

X � // {X} �
))

X
1

88

&&

{(ε,X)}

(ε,X) � // (ε, {X})
,

55

(a, {(w, y) | y ∈ Y }) � // {(a, w, y) | y ∈ Y }
�

++

(a, w, Y)
)

44

�
**

{(w, a, y) | y ∈ Y }

(w, a, Y) � // (w, {(a, y) | y ∈ Y })
'

33

By Propositions 2.2 and 7.2 it follows that:

Corollary 7.3. There exists a lifting Ĥ of H to K`(P(B∗ × Id)).

This lifting acts on object X as Ĥ(X) = HX and, on morphisms f : X →
Y in K`(P(B∗× Id)), as Ĥf : A×X+ 1→ A×Y + 1 mapping X to {(ε,X)}
and (a, x) to {(v, (a, y)) | (v, y) ∈ f(x)}.

7.2. Final Semantics for Transducers

We now have all the ingredients to model the trace semantics of transduc-
ers in K`(P(B∗× Id)), following the approach of Section 2.4. One can readily
check that K`(P(B∗ × Id)) is Cppo-enriched (with composition left strict)
and that Ĥ : K`(P(B∗× Id))→ K`(P(B∗× Id)) is locally continuous. There-
fore, by Theorem 2.10, the final Ĥ-coalgebra is Jι−1 where ι : A×A∗+1→ A∗

is, like for NDA (Example 2.11), the initial H-algebra.

41

For a transducer e : X → P(B∗×(A×X + 1)), the final coalgebra homo-
morphism !e : X → A∗ is the function X → P(B∗ × A∗) which maps every
state x into the set {(v, w) | v ∈ ‖x‖(w)}. This is displayed in the following
diagram, which is the same as (2) for NDA but in K`(P(B∗ × Id)):

X

e

��

(v, ε) ∈ !e(x) ⇔ (v, ε) ∈ e(x)

(v, aw) ∈ !e(x) ⇔ for some v1, v2 ∈ B∗, y ∈ X v = v1v2,

(v1, a, y) ∈ e(x) and

(v2, w) ∈ !e(y)

!e // A∗

Jι−1

��

A×X + 1
A×!e+1

// A× A∗ + 1

In order to read the definition of !e from the commutativity, it is worth to
spell out the various ingredients forming the diagram. First, the composition
of two morphisms f : X → Y and g : Y → Z in K`(P(B∗×Id)) is the function
g ◦ f : X → P(B∗ × Z)

x 7→ {(v, z) | ∃v1, v2 ∈ B∗, y ∈ Y s.t. v = v1v2,

(v1, y) ∈ f(x) and (v2, z) ∈ g(y)}.

Second, by unfolding the definitions of the unit of P(B∗ × Id), J and ι, we
have that Jι−1 maps ε into {(ε,X)} and aw into {(ε, a, w)}. Therefore the
morphism passing through the top-right corner is the function Jι−1◦ !e : X →
P(B∗ × (A× A∗ + 1)) with

x 7→ {(v,X) | (v, ε) ∈ !e(x)} ∪ {(v, a, w) | (v, aw) ∈ !e(x)}.

Third, the morphism through the bottom-left corner is the function Ĥ(!e) ◦
e : X → P(B∗ × (A× A∗ + 1)) with

x 7→ {(v,X) | (v, ε) ∈ e(x)} ∪ {(v, a, w) | ∃v1, v2 ∈ B∗, y ∈ Xs.t. v = v1v2

(v1, a, y) ∈ e(x), (v2, w) ∈ !e(y)}.

It is now easy to see that the equation Ĥ(!e) ◦ e = Jι−1 ◦ !e is equivalent to
the two conditions in the above diagram.

7.3. Transducers with Internal Behaviour

The above semantics of non-deterministic transducers already takes care
correctly of the algebraic structure on the output labels in B∗—this is a

42

“built-in” feature of the category K`(P(B∗ × Id)). However, just as in the
case of NDAs, it fails to detect the monoid structure on A∗. We now focus on
a case in which this is relevant: transducers with internal behaviour—that is,
with transitions labeled on (A+ {ε})×B∗ rather than just A×B∗. In order
to model their semantics, we shall apply the general framework of Section 5.
In fact, the construction presented for NDAs in the previous sections suffices
for that purpose: one simply needs to change the underlying category from
K`(P) to K`(P(B∗ × Id)).

As for an NDA, the semantics of a transducer with internal behaviour
e : X → P(B∗×(A×X+1+X)) can be defined by transforming it into the Ĥ∗-
coalgebra ē = [κX , ηX]◦ e where the natural transformation [κ, η] : Ĥ + Id⇒
Ĥ∗ is defined for each set X as

[κX , ηX] : A×X + 1 +X → P(B∗ × (A∗ ×X + A∗))

(a, x) 7→ {(ε, a, x)}
X 7→ {(ε, ε)}
x 7→ {(ε, ε, x)}

For example, consider the following transducer B with internal behaviour,
on input alphabet A = {a} and output alphabet B = {0, 1}.

x
a/0
// z

a/1
// u

1
��y

ε/01
// k

a/ε
99

e(x) = {(0, a, z)}
e(z) = {(1, a, u)}
e(u) = {(1,X)}
e(y) = {(01, k)}
e(k) = {(ε, a, u)}

ē(x) = {(0, a, z)}
ē(z) = {(1, a, u)}
ē(u) = {(1, ε)}
ē(y) = {(01, ε, k)}
ē(k) = {(ε, a, u)}.

The semantics of an Ĥ∗-coalgebra e : X → P(B∗×(A∗×X+A∗)) is given
by canonical fixpoint as [[e]] = e† = ¡ ◦ !e:

X
!e //

e

��

(A∗)∗ ×A∗

∼=

��

¡
// A∗

A∗ ×X +A∗
id×!e+id

// A∗ × ((A∗)∗ ×A∗) +A∗

TT

id×¡+id
// A∗ ×A∗ +A∗

µ0

OO

(12)

By following the same arguments as for an NDA, one can readily check
that commutativity of the left-hand square (which is the same as (4), but in

43

a different Kleisli category) uniquely makes !e the unique map such that

(v, 〈〉, w) ∈ !e(x) ⇔ (v, w) ∈ e(x)

(v, w1 :: l, w) ∈ !e(x) ⇔ ∃v1, v2, y v = v1v2, (v1, w1, y) ∈ e(x)

and (v2, l, w) ∈ !e(y)

Commutativity of the right-hand square makes ¡ the unique map such that

¡(〈〉, w) = {(ε, w)}
¡(w1 :: l, w) = {(v3, w1w2) | (v3, w2) ∈ ¡(l, w)}

By composing the two morphisms in K`(P(B∗ × Id)), one obtains that

[[e]](x) = {(v, w) | (v, w) ∈ e(x)}∪
{(v1v2v3, w1w2) | ∃y, (l, w) s.t. (v1, w1, y) ∈ e(x), (v2, l, w) ∈ !e(y)

and (v3, w2) ∈ ¡(l, w)}.

Observe that, by the definition of ¡, (v3, w2) ∈ ¡(l, w) implies that v3 = ε and
that w2 is just the concatenation of all the words in l and w. Thus, it is
easy to see that (v, w) ∈ [[e]](x) if and only if either (v, x) ∈ e(x) or there
exist v1, v2, w1, w2 and y such that (v, w) = (v1v2, w1w2), (v1, w1, y) ∈ e(x)
and (v2, w2) ∈ [[e]](y).

For the transducer B given above, we display the value of !ē and [[ē]]:

!ē(x) = {(011, [aa], ε)}
!ē(z) = {(11, [a], ε)}
!ē(u) = {(1, 〈〉, ε)}
!ē(y) = {(011, [ε, a], ε)}
!ē(k) = {(1, [a], ε)}

[[ē]](x) = {(011, aa)}
[[ē]](z) = {(11, a)}
[[ē]](u) = {(1, ε)}
[[ē]](y) = {(011, a)}
[[ē]](k) = {(1, a)}.

Observe that !ē takes correctly into account the algebraic structure of B∗ but
not the one on A∗. The semantics [[ē]] instead works properly also for A∗,
thanks to the quotient ¡.

Just as for the case of NDAs, we can instantiate the theory developed in
Section 5.2 to obtain a sound ε-elimination procedure for transducers. The
relevant diagram is the same as in Example 5.11, but considered in K`(P(B∗×

44

Id)) in lieu of K`(P). Concretely, the procedure follows the same rules as the
one for NDAs, provided that words of B∗ are composed appropriately when
creating new transitions. For instance, in transforming the transducer B of

the example above, one just needs to replace the transition y
ε/01−−→ k with

y
a/01−−→ u—observe that output ε’s are not eliminated since they belong to

B∗. As a result, one obtains the transducer A introduced at the beginning
of this section.

8. Discussion

The framework introduced in this paper provides a uniform way to ex-
press the semantics of systems with internal behaviour via canonical fixpoint
solutions. Moreover, these solutions are exploited to eliminate internal tran-
sitions in a sound way, i.e., preserving the semantics. We have shown our
approach at work on NDA with ε-transitions but, by virtue of Theorem 5.5,
it also covers all the examples in [23] (like probabilistic systems) and more
(like the weighted automata on positive reals of [37]).

It is worth noticing that, in principle, our framework is applicable also
to examples that do not arise from Kleisli categories. Indeed the theory
of Section 4 is formulated for a general category C: Assumption 5.1 only
requires C to have coproducts and the monads F ∗ and FX + Id to have
sufficiently many canonical fixpoints.

As a further remark, let us recall that our original question concerned the
problem of modeling the semantics of systems where labels carry an algebraic
structure. In this paper we have mostly been focusing on automata theory,
but there are many other examples in which the information carried by the
labels has relevance for the semantics of the systems under consideration:
in logic programming labels are substitutions of terms; in (concurrent) con-
straint programming they are elements of a lattice; in process calculi they
are actions representing syntactical contexts and in tile systems [19] they
are morphisms in a category. We believe that our approach provides various
insights towards a coalgebraic semantics for these computational models.

The case of process calculi is particularly challenging: internal transitions
are typically abstracted away by a notion of observational equivalence called
weak bisimilarity. Being particularly hard to model by coalgebras, weak
bisimilarity has recently captured a renewed interest by the community [12,
13, 20, 14]. Some of these works adopt techniques that are also part of

45

our methodology: for instance, the idea of using systems over a free monad
also appeared in [12, 13]. However, the approach is substantially different:
rather than eliminating ε-transitions, in weak bisimilarity one has to saturate,
namely to add more transitions to the systems.

Acknowledgments. In between the CMCS’14 paper and this journal ver-
sion we had the chance to discuss with Alex Simpson at the Bellair Work-
shops on Duality and Probabilistic Systems. Alex provided us important
insights which eventually lead to weaken our assumptions by dropping Cppo-
enrichement and local continuity. We would like also to thank Tomasz Bren-
gos for the interesting discussion at ETAPS 2014. The work of Alexan-
dra Silva is partially funded by the ERDF through the Programme COM-
PETE and by the Portuguese Foundation for Science and Technology, project
ref. FCOMP-01-0124-FEDER-020537 and SFRH/BPD/71956/2010. The first
and the fourth author acknowledge support by project ANR 12IS0 2001 PACE.

References

[1] Adámek, J., 1974. Free algebras and automata realizations in the lan-
guage of categories. Comment. Math. Univ. Carolin. 15, 589–602.

[2] Adámek, J., Milius, S., Velebil, J., 2010. Equational proper-
ties of iterative monads. Inform. and Comput. 208, 1306–1348,
doi:10.1016/j.ic.2009.10.006.

[3] Adámek, J., Milius, S., Velebil, J., 2011. Elgot theories: a new perspec-
tive of the equational properties of iteration. Math. Structures Com-
put. Sci. 21 (2), 417–480.

[4] Adámek, J., Porst, H.-E., 2004. On tree coalgebras and coalgebra pre-
sentations. Theoret. Comput. Sci. 311, 257–283.

[5] Adámek, J., Rosický, J., 1994. Locally presentable and accessible cate-
gories. Cambridge University Press.

[6] Asada, K., Hidaka, S., Kato, H., Hu, Z., Nakano, K., 2013. A param-
eterized graph transformation calculus for finite graphs with monadic
branches. In: Peña, R., Schrijvers, T. (Eds.), PPDP. ACM, pp. 73–84.

[7] Balan, A., Kurz, A., 2011. On coalgebras over algebras. Theoretical
Comput. Sci. 412(38), 4989–5005.

46

[8] Barr, M., 1970. Coequalizers and free triples. Math. Z. 116, 307–322.

[9] Bloom, S. L., Ésik, Z., 1993. Iteration Theories: the equational logic
of iterative processes. EATCS Monographs on Theoretical Computer
Science. Springer.

[10] Bonchi, F., Milius, S., Silva, A., Zanasi, F., 2014. How to kill epsilons
with a dagger - A coalgebraic take on systems with algebraic label struc-
ture. In: Coalgebraic Methods in Computer Science - 12th IFIP WG
1.3 International Workshop, CMCS 2014, Colocated with ETAPS 2014,
Grenoble, France, April 5-6, 2014, Revised Selected Papers. pp. 53–74.

[11] Bonsangue, M. M., Hansen, H. H., Kurz, A., Rot, J., 2013. Presenting
distributive laws. In: [24], pp. 95–109.

[12] Brengos, T., 2013. Weak bisimulation for coalgebras over order enriched
monads. CoRR abs/1310.3656.
URL http://arxiv.org/abs/1310.3656

[13] Brengos, T., 2014. On coalgebras with internal moves. In: Bonsangue,
M. M. (Ed.), Coalgebraic Methods in Computer Science - 12th IFIP
WG 1.3 International Workshop, CMCS 2014, Colocated with ETAPS
2014, Grenoble, France, April 5-6, 2014, Revised Selected Papers. Vol.
8446 of Lecture Notes in Computer Science. Springer, pp. 75–97.

[14] Brengos, T., Miculan, M., Peressotti, M., 2014. Behavioural equivalences
for coalgebras with unobservable moves. CoRR abs/1411.0090.
URL http://arxiv.org/abs/1411.0090

[15] Brookes, S. D., Main, M. G., Melton, A., Mislove, M. W., Schmidt, D. A.
(Eds.), 1994. Mathematical Foundations of Programming Semantics, 9th
International Conference, New Orleans, LA, USA, April 7-10, 1993, Pro-
ceedings. Vol. 802 of Lecture Notes in Computer Science. Springer.

[16] Cheng, E., 2011. Iterated distributive laws. Math. Proc. Camb. Philos.
Soc. 150 (3), 459–487.

[17] Freyd, P., 1991. Algebraically complete categories. In: Carboni, A.,
Pedicchio, M. C., Rosolini, G. (Eds.), Category Theory: Proceedings of
the International Conference held in Como. Vol. 1488 of Lecture Notes
in Math. Springer, pp. 95–104.

47

http://arxiv.org/abs/1310.3656
http://arxiv.org/abs/1411.0090

[18] Freyd, P. J., 1992. Remarks on algebraically compact categories. In:
Applications of Categories in Computer Science: Proceedings of the
London Mathematical Society Symposium, Durham 1991. Vol. 177 of
London Mathematical Society Lecture Notes Series. Cambridge Univer-
sity Press, pp. 95–106.

[19] Gadducci, F., Montanari, U., 2000. The tile model. In: Plotkin, G. D.,
Stirling, C., Tofte, M. (Eds.), Proof, Language, and Interaction. The
MIT Press, pp. 133–166.

[20] Goncharov, S., Pattinson, D., 2014. Coalgebraic weak bisimulation from
recursive equations over monads. In: Esparza, J., Fraigniaud, P., Hus-
feldt, T., Koutsoupias, E. (Eds.), Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part II. Vol. 8573 of Lecture Notes
in Computer Science. Springer, pp. 196–207.
URL http://dx.doi.org/10.1007/978-3-662-43951-7_17

[21] Hansen, H. H., Dec. 2010. Subsequential transducers: A coalgebraic
perspective. Inf. Comput. 208 (12), 1368–1397.

[22] Hasuo, I., 2006. Generic forward and backward simulations. In: Baier,
C., Hermanns, H. (Eds.), Proc. International Conference on Concur-
rency Theory (CONCUR’06). Vol. 4137 of Lecture Notes in Comput.
Sci. Springer, pp. 406–420.

[23] Hasuo, I., Jacobs, B., Sokolova, A., 2007. Generic trace semantics via
coinduction. Log. Methods Comput. Sci. 3 (4:11), 1–36.

[24] Heckel, R., Milius, S. (Eds.), 2013. Algebra and Coalgebra in Computer
Science - 5th International Conference, CALCO 2013, Warsaw, Poland,
September 3-6, 2013. Proceedings. Vol. 8089 of Lecture Notes in Com-
puter Science. Springer.

[25] Hopcroft, J., Motwani, R., Ullman, J., 2006. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Wesley.

[26] Johnstone, P., 1975. Adjoint lifting theorems for categories of algebras.
Bull. London Math. Soc. 7, 294–297.

48

http://dx.doi.org/10.1007/978-3-662-43951-7_17

[27] Jurafsky, D., Martin, J. H., 2009. Speech and Language Processing (2Nd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[28] Kelly, G. M., 1980. A unified treatment of transfinite constructions for
free algebras, free monoids, colimits, associated sheaves, and so on.
Bull. Austral. Math. Soc. 22, 1–83.

[29] Mazurkiewicz, A., July 1977. Concurrent Program Schemes and Their
Interpretation. Aarhus University, Comp. Science Depart., DAIMI PB-
78.

[30] Mac Lane, S., 1971. Categories for the Working Mathematician.
Springer, Berlin.

[31] Milius, S., Palm, T., Schwencke, D., 2009. Complete iterativity
for algebras with effects. In: Kurz, A., Lenisa, M., Tarlecki, A.
(Eds.), Proc. Coalgebraic and Algebraic Methods in Computer Science
(CALCO’09). Vol. 5728 of Lecture Notes Comput. Sci. Springer, pp.
34–48.

[32] Mohri, M., Jun. 1997. Finite-state transducers in language and speech
processing. Comput. Linguist. 23 (2), 269–311.

[33] Mulry, P. S., 1993. Lifting theorems for kleisli categories. In: [15], pp.
304–319.

[34] Plotkin, G. D., Turi, D., 1997. Towards a mathematical operational
semantics. In: Proc. Logic in Computer Science (LICS’97). pp. 280–291.

[35] Rabinovich, A. M., 1993. A complete axiomatisation for trace congru-
ence of finite state behaviors. In: [15], pp. 530–543.

[36] Schützenberger, M. P., 1977. Sur une variante des fonctions sequentielles.
Theor. Comput. Sci. 4 (1), 47–57.

[37] Silva, A., Westerbaan, B., 2013. A coalgebraic view of -transitions. In:
[24], pp. 267–281.

[38] Simpson, A., Plotkin, G. D., 2000. Complete axioms for categorical
fixed-point operators. In: Proc. 15th Symposium on Logic in Computer
Science (LICS’00). IEEE Computer Society, pp. 30–41.

49

[39] Sobociński, P., 2012. Relational presheaves as labelled transition sys-
tems. In: Coalgebraic Methods in Computer Science (CMCS ‘12). Vol.
7399 of LNCS. Springer, pp. 40–50.

50

Appendix A. Composing Distributive Laws

Proof of Proposition 7.1. The unit law amounts to commutativity of the fol-
lowing diagram.

F

(1)

FηMT

��

FηT

��

ηMF

((

ηMT
F

��

FT
FηMT

uu

ηMFT
��

(3) MF

MFηTvv
(5)

(2)

MηTF

((

FMT
βT

//

θ

44MFT
(6)

(4)

Mγ
//MTF

(1), (2) and (6) commute by definition of θ and of ηMT . (4) and (5)
commute because β and γ, respectively, are distributive laws. Finally (3)
commutes by naturality of ηM .

Here is the diagram for the multiplication law.

FMTMT

FµMT

��

FMαT

��

βTMT ((

θMT //MTFMT

MTβT ((

MTθ //MTMTF

MαTF

��

µMT
F

��

MFTMT

(2)

MγMT

66

MFαT
��

MTMFT

(3)

MTMγ

66

MαFT
��

MFMTT

(4)

MβTT //MMFTT

(5)

MMFµT

~~

µMFTT

MMγ
//MMTFT

(6)

MMTγ

((

FMMTT(1) (9)

β
66

FMMµT

��

MMTTF (7)(8)

µMTTF

��

MMFT (10)

µPFT

��

MFTT

MFµT

��

MγT
��

FMMT
βT //

FµMT
��

MFMT
(11)

MβT

OO

MTFT
(12)

MTγ
//MTTF

MµTF
��

FMT
βT //

θ

33MFT
(13)

Mγ
//MTF

51

Diagrams (1) and (7) commute by definition of µMT and (2), (3) and (13)
by definition of θ. (4) and (9) commute by naturality of β, (10) and (8) by
naturality of µM and (6) by naturality of α. Commutativity of diagrams (11)
and (12) is because of β and γ being distributive laws. Finally, (5) is just
the application of M to diagram (YB), which commutes by assumption.

52

	Introduction
	Preliminaries
	Monads
	Distributive Laws and Liftings
	Cppo-Enriched Categories
	Final Coalgebras in Kleisli categories
	Monads with Fixpoint Operators

	Motivating examples
	Canonical Fixpoint Solutions
	A Theory of Systems with Internal Behaviour
	Uniform Trace Semantics
	Elimination of Internal Transitions
	Soundness of -Elimination

	Quotient Semantics
	Non-Deterministic Transducers
	Distributive Laws, again.
	Final Semantics for Transducers
	Transducers with Internal Behaviour

	Discussion
	Composing Distributive Laws

