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Abstract. SCADE is an industrial strength synchronous language and tool suite
for the development of the software of safety-critical systems. It supports formal
verification using the so-called Design Verifier. Here we start developing a freely
available alternative to the Design Verifier intended to support the academic study
of verification techniques tailored for SCADE programs. Inspired by work of Ha-
gen and Tinelli on the SMT-based verification of LUSTRE programs, we develop
an SMT-based verification method for SCADE programs. We introduce LAMA

as an intermediate language into which SCADE programs can be translated and
which easily can be transformed into SMT solver instances. We also present first
experimental results of our approach using the SMT solver Z3.

1 Introduction

The software of safety-critical systems needs to fulfil strong requirements concerning
its correctness. This is why great efforts are made to verify, validate and certify such
software. A model-based development accompanied by formal verification is a well
accepted means to frontload and complement quality assurance for software. In fact,
formal methods, in particular formal verification techniques, are highly recommended
by safety standards, such as DO-178B [11] for the avionics domain or EN50128 [8]
for the railway domain, in a software process appropriate for the higher safety integrity
levels.

For many safety-critical systems, synchronously clocked controllers are the pre-
ferred implementation method. SCADE5 is an industrial strength modelling language
and tool suite for the development of such controllers. Its language is based on the
synchronous data flow language LUSTRE (Halbwachs et al. [17]) and was extended by

5 SCADE is developed and distributed by Esterel Technologies, see www.
esterel-technologies.com.
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various features, most importantly, by so-called safe state machines (André [2]). The
tool suite includes, among other features, code generation, graphical modelling, test
automation, and the SCADE Design Verifier (DV) for SAT-based verification6.

However, while SCADE DV performs very well for certain verification tasks, it can
fail badly for others due to complexity problems. In the latter case the user has little to
no information guiding to the causes making verification infeasible. This makes it al-
most impossible to assess whether it may be most promising to take further measures to
make the formal verification task at hand eventually feasible, to settle for a weaker ver-
ification result (e.g. using bounded model checking using the debug strategy of SCADE
DV) or even abandon further formal verification attempts and rather invest more efforts
in testing. This is a disadvantage both for practical application in industry and for re-
search pertaining to formal verification with SCADE DV (see, e.g., the study [20] on
formal safety analysis of two industrial SCADE models). It may also explain the indus-
tries’ indecision towards adopting formal verification in productive processes.

The work we present here is intended as a first step to counteract the above disadvan-
tage. It is inspired by Hagen and Tinelli’s work [15,16] on the SMT-based verification of
synchronous LUSTRE programs. We build on their ideas to make the first steps towards
a new verification method for SCADE models. After recalling necessary preliminaries
in Sec. 2, we introduce the language LAMA in Sec. 3. This language is intended as an
intermediate language into which synchronous models such as SCADE models can be
translated and that allows for an easy generation of SMT instances. In the ensuing Sec. 4
and 5 we then describe the translation of SCADE synchronous programs to LAMA and
of LAMA programs to SMT instances. Further, in Sec. 6 we present a prototypical im-
plementation of a verification tool based on these translations. As an SMT solver we
use Z3 [26]. We also provide first experimental results comparing our verification tool
with SCADE DV. While SCADE DV still outperforms our tool, our experiments provide
an argument for the correctness of our translations. In addition, our verification tool is
freely available online. Hence, the LAMA language and our implementation can serve
as a platform for the further academic study of the verification of synchronous SCADE
programs, in particular for trying out various optimization and abstraction techniques
in future work.

Related work. This paper reports the results of the first authors master’s thesis [5].
We already mentioned Hagen’s and Tinelli’s work [15,16] on the SMT-based verifi-
cation of LUSTRE programs resulting in the model checker KIND (using Yices [12]
as SMT solver). Recent progress on this using parallelization was reported by Kahsai
and Tinelli [22]. The basic ideas for verifying synchronous models using a SAT solver
and induction go back to Sheeran et al. [28], and were implemented in the LUCIFER
tool [23], a precursor of SCADE DV. The basics and usage of SCADE DV were reported
by Abdulla et al. [1].

There are several methods and tools available for the formal verification of LUSTRE
programs. The Lesar tool comes with the LUSTRE distribution [19,27]. NBAC [21] is
a verification tool that is founded on abstract interpretation. Luke is a verification tool
written by Koen Claessen which is an inductive verifier using an eager encoding into

6 SCADE DV uses a SAT solver developed by Prover Technologies, see www.prover.com.
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a SAT solver. Rantanplan by Franzén [14] is an incremental SMT-based verification
tool for the inductive verification of LUSTRE programs; Franzén compared his tool
with NBAC and Luke. Champion et al. [9] proposed to enhance k-induction based
verification for LUSTRE by automated lemma generation. In the STUFF tool they joined
property-directed heuristics and the arbitrary combination of system variables to come
up with invariants that allow to strenghten the property to be proven.

An alternative approach to the verificaton of SCADE programs was developed at
Rockwell Collins (see Whalen at al. [29]). This approach makes use of a transforma-
tion from SCADE to LUSTRE that was provided by the SCADE code generator at the
time. LUSTRE programs are then translated into SAL (“Symbolic Analysis Laboratory”,
see [25]), which also uses Yices as SMT solver. This translation is not freely available
but was reimplemented by Hagen and Tinelli [16] to compare performace with KIND;
the latter outperformed the SAL based verification in most cases. The SAL language
comes quite close to LAMA but is missing automata; it does have quantifiers (over val-
ues), though, a feature not present in LAMA. Unfortunately, the translation from SCADE
to LUSTRE is no longer provided by current SCADE versions.

2 Preliminaries

We begin with a very brief overview of the SCADE language and formal verification
using SCADE DV in Sec. 2.1; for a detailed language description see [13].

In Sec. 2.2–2.4 we give a brief overview over the role of Satisfiability Modulo The-
ories (SMT), the SMT-logic and background theories we are using, and how we are
encoding the semantics of synchronous systems using this logic and theories.

2.1 SCADE and SCADE DV

As we mentioned already, SCADE is a mixture of a LUSTRE-based synchronous dataflow
languages and so-called safe state machines. The basic building blocks of a SCADE
model are the operators, each of which declares its input, output and local (state) vari-
ables. The type system supports simple datatypes (bool, int , . . . ) as well as enumer-
ations, arrays and records. The LUSTRE like dataflow part of the language allows to
connect inputs to outputs using (among others) logical and arithmetic operations, case
distinction (“if-then-else”) and up to iterators (map and fold) on arrays. Information
can be stored in local variables across clock cycles and, importantly, the delay opera-
tors fby (“followed by”) and pre allow to access values of variables from previous clock
cycles. The safe state machines allow to switch control between different dataflow di-
agrams. They support hierarchy, i.e., states can contain arbitrary dataflow or state ma-
chine models. Safe state machines and dataflow models are fully integrated. Figure 1
shows an example SCADE node (without the interface specification).

The behavior of a SCADE model is formally captured as a transition system on
which SAT-based model checking of safety properties can be performed [1]. SCADE
DV does not offer a temporal logic but properties have to be modeled as combination
of an invariant and synchronous observers [18] in the SCADE modeling language. Such
an observer for a given SCADE operator is itself a SCADE operator that receives the
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inputs and outputs of the operator to be observed and signals through a Boolean output
whether the safety property it monitors holds. SCADE DV then verifies whether the
Boolean output of the observer in parallel composition with the given SCADE operator
is always true.

x_1 - 1 x

B

x_1 + 1 x

A

<SM1>

PRE x_1x

-1

1

x >= 10

1

x <= 0

Fig. 1. Periodic counter in SCADE from [24]

2.2 Satisfiability Modulo Theories

In many cases performing model checking by fully exploring the state space of a system
is infeasible at best, or even impossible. A lot of research has been devoted to tackle this
problem. One possibility is to perform so-called symbolic model checking by encoding
a system into logical formulas (usually in first-order logic). Most such descriptions use
some so-called “background theory” T [3], which is independent of the system under
consideration (e.g. integer arithmetic). It might be possible to encode such a theory T
as “library” in first-order logic, but this can lead to performance problems. Usually, the
required theories are nicely behaved, so a general purpose solver can be replaced by
a specialized solver for T . Using a fixed background theory T , systems can often be
described by quantifier free formulas. The validity of these formulas is then efficiently
checked by combining a SAT-solver with a specialized solver for T . This combination
of SAT with specialized theories is called Satisfiability Modulo Theories (SMT).

The SMT-solver that we are using in our implementation is Z3 [26]. To communi-
cate with the solver we use the standardized text format SMT-LIBv2 [4].

2.3 Simplified SMT-Logic

In this paper we are using an instance of SMT with theories for arithmetic on the inte-
gers Z, the rationals Q and the finite rings Zn = Z/nZ. Moreover, we need to be able
to make inductive definitions on the naturals N and combine these basic types using a
product type. Besides the usual arithmetic operators and relations among the basic types
we will use λ-abstraction over variables of the basic types above. To ease readability
we favor a specialized syntax over SMT-LIBv2, even though SMT-LIBv2 is used in the
implementation. The syntax we use is displayed in Fig. 2. The used variables x range
over a set Var of term variables, the special symbols ite and p1, p2 are functions having
the expected meaning of if-then-else and product projections, respectively. The arith-
metic operations and relations are overloaded for Z, Q and Zn, and formulas can be
used as terms of type B (Boolean).
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Terms 3 t ::= x | c | ϕ | t� t | ite(ϕ, t, t) | λx.t | t t | (t, t) | p1(t) | p2(t)
� ∈ {+,−, ∗, /}

Forms 3 ϕ ::= x | > | ⊥ | ¬ϕ | ϕ�1 ϕ | t�2 t

�1 ∈ {∧,∨,→} �2 ∈ {≡, <,>,≤,≥}

Fig. 2. Syntax of the used SMT terms and formulas

Another feature we require is the ability to define uninterpreted symbols. We write
Σ = v1 : A1, . . . , vn : An for the uninterpreted signature with variables vi of type Ai.
If Γ is a set of formulas, then we say that a formula ϕ is valid in Σ and Γ , if ϕ holds
for any assignment to variables in Σ under the assumption of Γ , denoted as Σ;Γ � ϕ.

2.4 Streams

One way of giving semantics to synchronous programs is by viewing them as stream
transformations, i.e., functions taking streams of inputs to streams of outputs. A stream
over a set X is a map σ : N → X . We denote the set of all streams over X by Xω ,
hence a stream transformation is a map Xω → Y ω .

The output of a synchronous program depends only on “what happened so far”.
More precisely, synchronous programs are in the class C(X,Y ) of causal stream trans-
formations, where f : Xω → Y ω is causal if for all σ ∈ Xω and n ∈ N the value
f(σ)(n) only depends on σ(0), . . . , σ(n). The reason is that synchronous programs
work step-wise, i.e., they are given by a map c : S ×X → S × Y taking a state s ∈ S
and an input x ∈ X to c(s, x) = (s′, y), a new state s′ and an output y. Transition maps
like c are known as Mealy machines, and inherently forbid “to look into the future”.

We can represent streams over X directly in the SMT language from Sec. 2.2 as
function symbols of type N → X . Assume we are given a transition map c, then the
semantics of c for an input stream σ is given by the predicate

Iter(c, σ, γ, τ, n) := (γ(n+ 1) ≡ c1(γ(n), σ(n))) ∧ (τ(n) ≡ c2(γ(n), σ(n))), (1)

where γ : Sω is the stream of internal states, τ : Y ω the stream of outputs and ci =
pi ◦ c, i = 1, 2. If σ, γ and τ are understood from the context, we just write ĉn =
Iter(c, σ, γ, τ, n). Given an initial condition s0 : S, the formula ∆n = (γ(0) ≡ s0) ∧∧n

i=0 ĉi defines γ(i) and τ(i), i = 0, . . . , n uniquely, i.e., it approximates the streams γ
and τ up to the n-th position. Just using τ , we can thus approximate the corresponding
causal f ∈ C(X,Y ): ∆n � f(σ)(n) ≡ τ(n).

This approximation is the basis for bounded model checking: given a predicate
P (x, s, y) on X × S × Y , we can check that P holds up to depth n by showing
Σ;∆n �

∧n
i=0 Pi. Here we simplify again notation by writing Pi = P (σ(i), γ(i), τ(i))

and, moreover, we use Σ = σ : Xω, γ : Sω, τ : Y ω .
On the other hand, if we want to prove that the predicate P holds for every n ∈ N,

we can show this by induction, i.e., by showing that Σ;∆0 � P0 and Σ; ĉn, Pn, ĉn+1 �
Pn+1 hold. Since this not possible for every c and P , one can try to strengthen the
induction hypothesis by, for example, using k-induction [6,28].
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3 The LAMA Language

We introduce the intermediate language LAMA (= Low Abstraction & Mode Automata)
to bridge the gap between the numerous and complex concepts offered in the SCADE
language and the encoding as a set of formulas that can be delivered to an SMT-solver.

LAMA supports a reduced set of language concepts only, but structured data types
and automata are included as they are promising for optimizations when transferred to
the SMT framework. In this sense, LAMA extends and varies from NBAC [21]: LAMA
automata allow for hierarchical and parallel composition, local dataflow may be as-
signed to modes, i.e. automata states, at each level. LAMA automata are inspired by
mode automata [24], but with the difference that the LAMA transitions semantics cor-
responds to strong transitions as used in safe state machines [2] in SCADE.

A LAMA program consists of a collection of declarations of types, constants, input,
local, and state variables and nodes, a (global) dataflow, initializations, assertions and
an invariant. A node is declared by its name and its input and output parameters. It
may contain a set of subnodes N , its own local and state variables V , a local flow F ,
initializations S0, automata definitions A, and an invariant Inv. A node is denoted by
N = (node x y N V F S0 A Inv) in what we call abstract syntax; the concrete syntax
is shown in the example in Fig. 3. An automaton A = (automaton LA l0 EA) ∈ A
consists of a collection LA of modes ( location in the concrete LAMA syntax) and an
initial mode l0. The body contains the transitions (edge) EA between the modes.

In case a variable is not explicitly defined in each mode, the default block is used
to define a default assignment. The usage of a node is denoted by (use N t1 . . . tk) in
LAMA where ti are the actual parameter terms.

A dataflow consists of local variable definitions and the initialization and transition
definition for state variables.

The definition of the next state’s value of a variable7 is denoted by ”’ “ (see line 6,
Fig. 3). In order to deal with the SCADE operators fby and pre either a transition def-
inition will be used, or an automata declaration is introduced (see Sec. 4 for details).
LAMA expressions may use the usual logical, arithmetical and relational operators, pro-
jections (for product types), and pattern matching for user defined enumerations. Their
use, as well as the full syntax of LAMA can be found in appendix A.1 in [5].

The scope of a variable is exactly the block in which it is declared (excluding inner
blocks) with the exception of globally declared enumerations and constants.

The Type System. The syntax and semantics of LAMA types are shown in Fig. 4. The
LAMA typing rules follow the Cardelli’s ideas [7], the details are given in appendix A.2
in [5].

Causality Analysis. As for SCADE, LAMA programs have to be causal, meaning that
the definition of a variable for the current time instant must not instantaneously depend
on itself. In order to check causality, a dependency graph of the variables is constructed.
If this yields a strict (evaluation) order on the variables, the program is causal. Our
approach for LAMA is similar to the causality check in SCADE.

7 i.e., the next value within the stream associated with x in the LAMA semantics.
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1 nodes
2 node UpDown ( ) r e t u r n s ( xo : i n t ) l e t
3 l o c a l x1 : i n t ;
4 s t a t e x : i n t ;
5 d e f i n i t i o n xo = x1 ;
6 t r a n s i t i o n x ’ = x1 ;
7
8 automaton l e t
9 l o c a t i o n A l e t d e f i n i t i o n x1 = (+ x 1 ) ; t e l

10 l o c a t i o n B l e t d e f i n i t i o n x1 = (− x 1 ) ; t e l
11 i n i t i a l A;
12 edge (A, B) : (= x 1 0 ) ;
13 edge (B , A) : (= x 0 ) ;
14 edge (A, A) : ( not (= x 1 0 ) ) ;
15 edge (B , B) : ( not (= x 0 ) ) ;
16 t e l
17
18 i n i t i a l x = (− 1 ) ;
19 t e l
20 l o c a l x : i n t ;
21 d e f i n i t i o n x = ( use UpDown ) ;
22
23 i n v a r i a n t
24 ( and (>= x 0) (<= x 1 0 ) ) ; −− range : 0 t o 10

Fig. 3. UpDown counter example adapted from [24]

3.1 Dynamic Semantics

The internal state space of a LAMA program P is denoted S =
∏

jJT
int
j K where T int

j is
the type of a state variable vj . The space of the input and output values is denoted X =∏

kJT
in
k K and Y =

∏
lJT

out
l K. As the definition of a variable may depend on the current

modes of the automata, the semantics takes the modes into account: Q =
∏

A∈AP
LA.

The semantics of P is then given by a stream transformation JP K : Xω → Y ω

defined by a Mealy machine (Sec. 2.4) cP : S × Q × X → S × Q × Y on the state
space S × Q. The mapping JP K is defined by the iteration of cP : let x be an input
stream, we put (sn+1, qn+1, yn) = cP (sn, qn, xn). This sequence starts at (s0, q0) =
(JS0K, (lA0 )A∈AP

), the semantics of the initialization predicate, and initial modes of all
automata. Using this iteration, we define JP K(x)(n) = yn. The LAMA semantics for
the dataflow part coincides with the LUSTRE semantics.

For the sake of brevity, we discuss the automata semantics only informally: In
LAMA a node N may contain a collection A of automata. If a flow refers to N in a
use-construct, then N ’s automata are considered to run in parallel at the same hierar-
chical level. However, within a location l of any automaton A ∈ A a flow may use
a subnode N.M that again may contain a collection M.B of automata. The automata
B ∈ M.B are the counterpart of subautomata residing within the state of a state ma-
chine in SCADE (see Sec. 4 for the translation).
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〈Type〉 ::= 〈BaseType〉
| 〈Identifier〉
| 〈BaseType〉 ˆ n
| ( # T1 . . . Tn )

〈BaseType〉 ::= bool
| int
| real
| sint [n]
| uint [n]

JboolKΣ = B
JintKΣ = Z
JrealKΣ = Q

Jsint[n]KΣ = {−2n−1, . . . , 2n−1 − 1}
Juint[n]KΣ = {0, . . . , 2n − 1}

JxKΣ = Σ(x)

JT∧nKΣ = J(#T . . . T︸ ︷︷ ︸
n

)KΣ

J(#T1 . . . Tn)KΣ =

n∏
i=0

(JTiKΣ)

Fig. 4. Syntax and semantics of LAMA types

For each automaton we distinguish between the selected mode at which the n-th
step is assumed to start and the active mode that is executed at step n, n ≥ 0. Let us
assume node N is evaluated at step n. For each automaton A ∈ A the selected mode
mA,n is considered and the most prior outgoing transition, whose guard evaluates to
true, is determined. If such a transition exists, it is executed and its target m′A is said
to be the active mode of A in step n. Otherwise the selected mode is set active, i.e.
m′A = mA,n. This corresponds to strong transition semantics and giving outermost
transitions priority as in SCADE. Now the flow definitions are evaluated for the active
mode m′A. In case the flow of m′A makes use of a subnode with automata B ∈ M.B,
the selected modes mB of all B are evaluated for outgoing transitions recursively until
the innermost automata are reached. The result of the flow evaluation contributes to the
next step’s state variables sn+1. Finally, the next step’s selected mode mA,n+1 is set to
m′A for all automata residing in N .

Comparison with SCADE. SCADE offers a lot more language concepts most of which
are translated to LAMA as explained in Sec. 4. Some concepts are not handled yet,
but left for a future extension of the translation: Among these are the basic type char,
records, and type variables, sensors, signals, clocks, and probes. Functions, which can
be translated to nodes easily, static input, and the where . . . numeric construct, which
allows to declare polymorphic operators over numeric types, are missing. Within equa-
tions guarantee, handle, and returns are not handled yet, whereas in automata, dataflow
cannot be assigned to transitions, synchro-transitions and final states are missing, as
well as branching transitions. The sequential operators when and merge and clocked
expressions are not supported. The use of higher order operators and clocked uses of
operators are left out. Tuples, some array operations and structs can be easily handled.

Let us point out that even though the existing implementation cannot yet handle
the full SCADE syntax, all missing language constructs can be reduced to the existing
LAMA syntax in a straightforward way. Only for operator casts some primitive operators
should be added to LAMA. Moreover, our translation does support a sufficiently large
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fragment of SCADE that allows to perform experiments on industrial relevant models
such as the ones considered in Sec. 6.

4 Translating SCADE to LAMA

We are now going to describe the translation of a SCADE model to LAMA. Due to space
constraints we can only sketch the general principles and indicate where the subtleties
of the translation arise; a detailed description can be found in [5]. We also must assume
that the reader is sufficiently familiar with the SCADE language (see [13]). Fig. 3 shows
(a simplified) form of the translation result of the SCADE model from Fig. 1.

SCADE operators are translated to LAMA nodes. Note though that each instance of
a SCADE operator has its own state memory. Thus, for every instance of a SCADE
operator N a copy of the translation of N with a fresh name is generated in LAMA.
Within a SCADE operator there are state independent (without any synchronous state
machines) and state dependent dataflows, and these must be handled separately.

State independent dataflow. Logical and arithmetic base operations as well as variables,
constants, array functions and if-then-else of SCADE have counterparts in LAMA, and
are hence translated directly. Stream operators are handled as follows: each fby is re-
placed by a chain of pre and→ (init) operators and then translated. For the translation
of → and pre one has to distinguish several cases. In the first case of a SCADE state-
ment x = M → preN with M = c a constant expression and N not containing→ or
pre, one translates this as a LAMA flow: initial x = c; transition x’ = N; (the second
case x = preM is handled by simply omitting the initialization of x – this is correct
in LAMA if the original SCADE operator was correct). In the third case where M is not
constant the initial statement is not allowed in LAMA and so the translation yields an

automaton with three modes dummy
true // init

true //run where in init we have x = M;
and in state run we have x = N. Finally, the remaining cases x = M are treated by
unrolling, i.e.,M is rewritten so that one of the first three cases can be applied (see [5]).

State dependent dataflow. SCADE synchronous state machines are translated to LAMA
state machines. Hierarchy of state machines in SCADE is handled by introducing LAMA
nodes for subautomata. For example, let s be a state of a SCADE state machine contain-
ing another state machine Ms with states s1, s2 that read variables a, b, c and write to
variable x. Then state s is translated to a state containing a statement x = (use Ns a b c),
where the LAMA node Ns contains the translation of state machine Ms.

Recall that SCADE knows several types of transitions between states of synchronous
state machines. The strong transitions have the same semantics as transitions in LAMA
and are translated directly, whereas weak transitions need a special treatment. In par-
ticular our translation needs to carefully handle several cases where a state has both
types of transitions entering and/or leaving the state (see [5] for details). SCADE also
distinguishes restart and resume transitions. The former leads to the initialization of all
flows in the target state; they are translated by essentially transforming them into resume
transitions, which have the same semantics in LAMA and can be translated directly.
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We omit the description of the translation of default declarations as well as of pre
and last within states. There are also some derived language constructs in SCADE that
are translated by first replacing them by equivalent SCADE constructs whose translation
we already explained; this concerns: the fby operator (mentioned previously), if-blocks
(replaced by state machines), when-match-blocks (replaced by a case switch and an
if-block) and the times operator.

Finally, let us mention two easy optimizations that are performed in this translation
step: (1) pre operators are brought to the root of expressions as much as possible (e.g. by
using the distributive law f(preM1, . . . , preMn) ≡ pre f(M1, . . . ,Mn) that holds
for every non stream operator f ); (2) the elimination of auxiliary variables in textual
SCADE code (especially when it is obtained from graphical models) by inlining. Both
techniques reduce the number of state variables in the SMT instances obtained in the
next transformation step and so lead to a smaller problem for the SMT solver at the end.

5 Translating LAMA to SMT

In this section we are going to translate a given LAMA program into a set of SMT-
formulas that we can use to verify the invariant the program comes with. This is done
by first translating the nodes (recursively) into Mealy machines, see Sec. 2.4, and then
constructing another Mealy machine for the data flow of the program. The translation
process yields one machine per variable and automaton, where a machine can use all
inputs and the previous state of all machines in the current scope. More precisely, we
are going to construct a signature Σ and formulas dependent on the step n, such that
every symbol in Σ, except for input symbols, is defined by one formula. The symbols
for each state variable and automaton have a stream type (over the type of the variable).
One formula Dx then defines x at position n + 1, possibly using other symbols at po-
sition n. This translation is easier to implement and use than constructing one machine
describing all state variables/automata at once.

5.1 SMT-Formulas from Nodes

Assume that we are given a LAMA node N = (node x y N V F S0 A P ) of type
X → Y . We add symbols x : JXKω and y : JY Kω to the signature Σ, where one should
note that X and Y may be product types if the node has several inputs or outputs. For
every variable (v : T ) ∈ V of type T we add another symbol v : JT Kω to the signature
Σ. Finally, for each A = (automaton LA l0 EA) ∈ A we add two more symbols
actA, selA : T (LA)

ω to Σ. Here we use a type T (LA) that encodes the modes of A,
for example, using integers or bitvectors.

An equation (v = M) ∈ F (where v can be an output y) gives rise to a formula
Dv := λn. v(n) ≡ M(n), a state transition s′ = M ∈ F on the other hand defines
Ds := λn. s(n + 1) ≡ M(n). The initial condition for s at 0 is given by the formula
Is := (s(0) ≡ a) for s = a ∈ S0. We describe the translation of LAMA terms M in
Sec. 5.2.

The symbols actA, selA : T (LA)
ω for an automaton A ∈ A represent the active

and the selected mode, respectively. Since we are using strong transition semantics,
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selA will always be defined by the formula selA(n + 1) ≡ actA(n) and the initial
condition IA := (selA(0) ≡ l0). The symbol actA on the other hand is assigned the
active mode of the automaton in the current step:

actA(n) ≡ next(selA, EA)(n),

where next returns the active mode (see Sec. 3.1). Depending on the active mode we
select the used computation for a variable v:

Dv := λn. v(n) ≡ match(actA, LA, v)(n).

Here match selects the used flow for v, depending on the active mode:

match(actA, LA, v) := λn. if actA(n) ≡ l1 then M1(n)

· · ·
else if actA(n) ≡ ln−1 then Mn−1(n)

else Mn(n)

for (li, Fli) ∈ LA and equations (v =Mi) ∈ Fli .

Finally, we tie everything together by formulas describing the flow of N using an acti-
vation condition eN (“enable N”):

DN := λn. if eN (n) then
∧
v∈V

Dv(n) else
∧

s∈state(V )

Ids(n)

IN :=
∧

s∈state(V )

Is

using the formula Ids(n) = (s(n+ 1) ≡ s(n)) in case the dataflow of N is disabled.
The activation condition is only relevant in the case where a node is used inside a

mode, since its dataflow is independently generated and shall only be active, if the mode
in which the node is used is active. Let l ∈ LA be the mode in which a node N is used,
then eN is simply eN := λn. actA(n) ≡ l.

Example 5.1. We translate here the node UpDown from Sec. 3. The resulting signature
is Σ = {xo : Nω, x1 : Nω, x : Nω, actA, selA : TA

ω} with TA = {1, 2}. The state
variables are defined by the formulas

Dxo := λn. xo(n) ≡ x1(n)
Dx := λn. x(n+ 1) ≡ x1(n)
Dx1 := λn. x1(n) ≡ (if actA(n) ≡ 1 then x(n) + 1 else x(n)− 1)

5.2 Translating Dataflow

There are two kinds of right-hand-sides one can have in the dataflow of LAMA: expres-
sions or the use of a node. We will not describe the translation of LAMA expressions
into SMT here, since this is just a point-wise application on streams. This leaves us with
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the case of (use N t) for a node identifier N and the argument t. Recall that we added
symbols for input and output, say x, y, to the signature Σ of node N . The use of a node
is driven by “connecting” x to t:

Dx := λn. x(n) ≡ t(n).

The term (use N t) is translated to the symbol y, i.e., an equation v = (use N t) is
translated to Dv := v(n) ≡ y(n) in Sec. 5.1.

5.3 SMT-Formulas from Programs

Finally, we translate the top level of a LAMA program. Such a program consists of node
declarations and dataflow, which are handled as described in the previous subsections,
and an invariant P . This P is immediately translated to an SMT-formula and hence we
can check its validity according to Sec. 2.4, using the formulas DN and Dv from the
above translation in lieu of Iter from (1).

5.4 Correctness of the Translations

We briefly mention here a possible strategy for proving the correctness of the given
translations. A scheme of the translation steps we have given is shown in the top row

SCADE Reduced SCADE LAMA SMT

Clocked LUSTRE

∼=

Fig. 5. Translation steps

of Fig. 5. In [10] Colaço et al. gave semantics to a fragment of SCADE, including safe
state machines, by translating it into a variant of LUSTRE with clocks. Thus, a possible
strategy would be to translate LAMA into this language as well and show that our trans-
lation yields equally behaving programs. If, moreover, we give semantics to LUSTRE
with clocks in terms of Mealy machines, we can also prove our translation into SMT
formulas correct.

However, this proof has not been carried out so far, and we leave it as future work.
Instead, we have taken a more practical approach for the time being, in that we have
compared our implementation to the SCADE Design Verifier, see Sec. 6.

6 Implementation and Experiments

In this section we describe a first implementation of the transformation of SCADE pro-
grams to SMT instances. We also present results of first experiments using our imple-
mentation on an industrial SCADE model. For this we reproduce verification results that
were already obtained in [20] using SCADE DV, and we compare the running times.
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Our implementation of the LAMA framework consists of the following components,
all of which are written in the functional programming language Haskell:

– A library to parse, manipulate and render LAMA-programs: language-lama.
– A parser library for the SCADE (textual) language: language-scade.8

– An SMT interface abstraction which allows us to seamlessly use multiple different
SMT solvers called smtlib2.9

– A program to translate SCADE- into LAMA-programs: scade2lama.
– An interpreter for the LAMA language, which can be used to interactively run

LAMA-programs: lama-interpreter.
– The verification component which verifies LAMA-programs by translating them

into SMT: lamasmt.

All components are available under liberal free-software licenses.10 The general work-
flow and the interaction of the components can be seen in Fig. 6.

SCADE
program scade2lama

LAMA
program

verification
node

lama-interpreter

lamasmt

user
input

values

SMT solver

trace

Fig. 6. Framework components and their interaction

SCADE programs are translated into the LAMA language using scade2lama. The
user has to supply the name of the SCADE node whose properties shall be verified.
The resulting LAMA program can then be formally verified using the lamasmt tool,
which uses either bounded model checking or k-induction. It communicates with the
SMT solver via the smtlib2 library and produces a counterexample trace or states that
the property holds for the node (this is only possible when using k-induction). If the
k-induction is not able to prove the property within a specifiable depth, lamasmt can
produce candidate-counterexamples from the induction step. These may be used later
to generate lemmas, to strengthen the induction hypothesis, e.g. by adapting ideas from
Champion et al. [9].

8 Available from https://github.com/hguenther/language-scade.
9 Available from https://github.com/hguenther/smtlib2.

10 Available from https://github.com/hbasold/lama

https://github.com/hguenther/language-scade
https://github.com/hguenther/smtlib2
https://github.com/hbasold/lama
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6.1 Benchmarks

We evaluated the performance of the lamasmt verification tool by applying it to a model
of a level crossing system.11 The details and the descriptions of hazards and the fault
modes of this model can be found in [20].

We compared our tool with the SCADE DV, the proprietary verification tool bundled
with SCADE. Like our tool, it can be used to verify the correctness of properties (called
“proof strategy”) or as a bounded model checker (called “debug strategy”). First, we
compared SCADE DV’s proof strategy against lamasmt with k-induction. We use the

SCADE DV LAMA

env. model proven time proven time

(1) yes 12s no (depth 27) 5h
(2) no (depth 42) 205m no (depth 46) 27h
(3) yes 23h no (depth 50) 68h

Table 1. Comparing proof strategies

three environment models described in the study [20]: in model (1) a train is constantly
occupying one of the two available tracks, while in model (2) a train can appear and
disappear on track one at random, and in (3) a single train passes through track one for
40 cycles. The property to prove for all these environment models is that no train runs
through an unprotected level crossing.

As Table 1 shows, the pure k-induction strategy does not work very well on the
provided model. This confirms an observation made in [9] that without further heuristics
k-induction does not scale up very well as a property may require a k that leads to a too
large unfolding of the model, or it may not be k-inductive at all.

We also compared the BMC strategies of SCADE DV and LAMA on the five de-
scribed fault modes of the model. Each fault mode was treated using environment model
(1). The fault modes describe the following behaviours: a defect of a traffic light (L1
and L3), a mis- or false-detection by a barrier sensor (BS13 and BS11 resp.), and a bar-
rier that got stuck or is misbehaving (B7 and B9 resp.). We can see in Table 2 that both
tools are able to find the three first fault modes and unable to find counter-examples for
the last two. The found faults occurred at depth 27 in all cases.

While the performance of lamasmt does not yet match that of the SCADE DV, the re-
sults nonetheless give us an indication that the implementation is indeed correct: There
are no false errors being found, nor are any hazards undetected by our implementation.
In the benchmarks, time and memory used by the intermediate translation steps are
negligible, most of the time is taken by the SMT-solver.

11 All benchmarks were performed on an Intel R© CoreTM Duo CPU P9600 @ 2.53 GHz with 4
GB of RAM.



An Open Alternative for SMT-based Verification of SCADE Models 15

SCADE DV LAMA

bug found time found time

L1 yes 1s yes 422s
BS13 yes 1s yes 491s
B7 + BS11 yes 11s yes 418s
B9 no (depth 35) 10s no (depth 35) 24m
L3 + BS11 no (depth 50) 62s no (depth 30) 13m

Table 2. Comparing BMC strategies

7 Conclusion and Future Work

In this work, we developed an open experimentation platform for the verification of
SCADE programs based on recent SMT technology. The verification process has been
divided into several translation steps. First, SCADE programs are transformed into a
small subset of SCADE that corresponds to programs in the intermediate language
LAMA. LAMA keeps a few abstractions of SCADE, which are promising to facilitate
optimization of the actual verification. After translating SCADE- into LAMA-programs,
the resulting LAMA programs can almost directly be interpreted as sets of SMT formu-
las, describing transition steps. This step-wise description can then be used to find coun-
terexample using bounded model checking or to prove predicates using k-induction.

These translation steps have been implemented as open source software. This soft-
ware can already find the same counterexamples in a medium-sized design developed
in industry as the proprietary SCADE Design Verifier, which comes with the SCADE
suite. However, the verification procedure and performance are still lacking behind.

Since the developed software is meant to be an experimentation platform, future
work obviously includes optimizing better verification techniques and the translations.
This might effect the intermediate language LAMA itself.
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A Appendix

A.1 LAMA Type Checking

For type checking we add the meta-type ok that indicates that a declaration is correctly
typed. Moreover, we add function types and polymorphic types to ease the handling of
functions and polymorphic operators like “+” (see Fig. 7).

〈IntermediateType0〉 ::= 〈Type〉 | ok | x
| 〈IntermediateType0〉 ⇒ 〈IntermediateType0〉

〈IntermediateType〉 ::= 〈IntermediateType0〉 | ∀ x : 〈Universe〉 . 〈IntermediateType〉
〈Universe〉 ::= Type | Num

Fig. 7. Intermediate types used in type checking

〈Intermediate0〉 denotes the quantifier-free level. By restricting the introduction of
quantifiers to 〈Intermediate〉 the construction of types with polymorphic arguments is
prevented: Any type variable x is assigned to a concrete type, that is either a numeric
type Num 3 bool, int, real, . . . or a user-defined type Type ⊃ Num.

Σ denotes the type environment which assigns a type variable to its type, ∆ denotes
the constant environment which assigns each constant its value, and Γ the variable
environment, respectively. The typing rules follow the ideas given in [7]: We use Σ `
D ∴ ∆ to denote that the declaration D is well-typed and yields signature ∆. For the
body of a LAMA program we use Σ,∆, Γ ` E : T to denote that expression E is well-
typed with type T. A LAMA program consists of declarations of types (T ), constants
(C), and inputs (In), declarations of local and state variables and nodes summarized
as (D), a dataflow (F ), an initialization (S0), an assertion (A) and an invariant (Inv).
A program is well-typed if all of its parts are well-typed, see Fig. 8. Most of the typing
rules are straightforward, as e.g. the rule for type declarations.

` T ∴ Σ
Σ ` In ∴ Γ1

Γ = Γ1 ∪ Γ2

Σ,∆, Γ ` F : ok
Σ,∆, Γ ` A : ok

Σ ` C ∴ ∆
Σ ` D ∴ Γ2

Σ,∆, Γ ` S0 : ok
Σ,∆, Γ ` Inv : ok

(program)
` T C In D F S0 A Inv : ok

` T1 ∴ Σ1, . . . , Tn ∴ Σn (typedef)
` typedef T1 . . . Tn ; ∴

⋃n
i=1Σi

Fig. 8. Typing rule for programs and type declarations

We just mention the typing rule for a node. Again all parts have to be well-typed
in order to deduce that a node is well-typed. Notably, a node is assigned a function
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type that maps the inputs to the outputs. The possible side effects on state variables and
automata modes are not reflected in the node type. The complete type system can be
found in [5].

T1 = Σ(t1), . . . , Tn = Σ(tn)

T′1 = Σ(t′1), . . . , T′m = Σ(t′m)

Σ ` D ∴ Γ3

Γ = Γ1 ∪ Γ2 ∪ Γ3

Σ,∆, Γ ` F : ok
Σ,∆, Γ ` S0 : ok

Γ1 = {(x1,T1), . . . , (xn,Tn)}
Γ2 = {(y1,T′1), . . . , (ym,T′m)}

Σ,∆, Γ ` C : ok
Σ,∆, Γ ` A : ok

(node)
Σ,∆ ` node x ( x1:t1, . . .,xn:tn )returns ( y1:t

′
1, . . .,ym:t

′
m )

let D F C S0 A tel : (# T1, . . . ,Tn)⇒ (# T′1, . . . ,T′m)

Fig. 9. Typing rules for programs and nodes
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