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One for the money
Two for the show
Three to get ready
And four to go.

Nursery rhyme

Abstract. Finitary monads on a locally finitely presentable category A are well-
known to possess a presentation by signatures and equations. Here we prove that,
analogously, bases on A , i.e., finitary functors from A to the category of finitary monads
on A , possess a presentation by parametrized signatures and equations.

1. Introduction

It is known since the classical work by Michael Barr [9] that free algebras for an endo-
functor H (equivalently, the parametrized initial algebras µX.(HX+A)) yield the object
assignment of a monad, in fact, the free monad on H. Similarly, the parametrized final
coalgebras TA = νX.(HX +A) yield a monad as shown by Larry Moss [18]. This monad
is completely iterative in the sense of Calvin Elgot, Stephen Bloom and Ralph Tindell [10].
We have proven in [1] that T is in fact the free completely iterative monad on H.

It was an idea of Tarmo Uustalu [22] that monad structures from parametrized initial
algebras and final coalgebras can be obtained more generally from what he called a para-
metrized monad (in lieu of an endofunctor). A parametrized monad on a category A is
a functor 2 which assigns to every object X of A a monad X 2 − on A , the leading
example being X 2 A = HX + A with the monad structure given by coproduct. He
showed that the initial algebras µX.(X 2 A) and the final coalgebra νX.(X 2 A) yield
monads, the latter being completely iterative.

Subsequently, we introduced a “finitary” form of parametrized monads, called bases [5],
which are finitary functors

2 : A −→ Mndf (A )
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from a locally finitely presentable category A to the category of finitary monads on A .
A leading example is X 2 A = HX + A for a finitary endofunctor H. We used bases as
the starting point of an extensive study of parametrized iterativity [5, 6, 7], generalizing
and extending classical work on iterative algebras for a signature of Evelyn Nelson [19]
and Jerzy Tiuryn [21] as well as our own work on iterative algebras for endofunctors [4].

The present paper does not study parametric iterativity of algebras for a base; here we
concentrate on bases as such. We generalize the result of Max Kelly and John Power [13]
that every finitary monad on A has an equational presentation (using the appropriate
concept of a signature in a locally finitely presentable category) to bases. For that we
introduce parametrized signatures and equations.

In the rest of this introduction we explain the approach of Max Kelly and John Power
to signatures in general categories, specializing it to the case of finitary signatures since
this is the only case of interest for bases. In Sections 2–5 we then generalize this approach
to parametrized signatures and in Section 6 we discuss the special case where A = Set.

Throughout the paper A denotes a locally finitely presentable category in the sense
of Peter Gabriel and Friedrich Ulmer, see [11] or [8]. Let Afp be a small full subcategory
representing all finitely presentable objects.

1.1. Definition. A signature Σ is a collection of objects Σ(m) of A indexed by m in Afp.
A morphism h : Σ −→ Γ of signatures is a collection of morphisms hm : Σ(m) −→ Γ(m).

Thus, the category of signatures is simply the functor category

Sig(A ) = [|Afp|,A ],

where |Afp| denotes the discrete category given by the objects of Afp. This is, in the case
where A = Set, the classical concept; also the concept of a Σ-algebra is the classical one
for A = Set. That is, a set A together with m-ary operations indexed by Σ(m) for all m
in N. We can view the latter as a function from Set(m,A) × Σ(m) into A. For general
categories we use M • X to denote a coproduct of M copies of X. We are lead to the
following

1.2. Definition. A Σ-algebra is a pair (A, a) where A is an object of A and a is a
morphism

a :
∐

m∈|Afp|

A (m,A) • Σ(m) −→ A

A homomorphism into another Σ-algebra (B, b) is a morphism h : A −→ B such that
the component of h · a corresponding to f : m −→ A composed with h is precisely the
component of b corresponding to h · f : m −→ B.

We obtain the category of Σ-algebras and homomorphisms.
Recall from [15] that finitary monads are monadic over signatures. In more detail, if

Mndf (A ) is the category of finitary monads and monad morphisms, we have a canonical
forgetful functor

U ′ : Mndf (A ) −→ Sig(A )
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taking a monad T to the signature

U ′(T ) = Σ, where Σ(m) = Tm. (1.1)

This functor preserves filtered colimits, since they are formed objectwise in Mndf (A ).
Every signature Σ generates a free finitary monad, i.e., U ′ has a left adjoint

F ′ : Sig(A ) −→ Mndf (A ) (1.2)

Moreover, U ′ is a monadic functor. In particular, every finitary monad T has a presenta-
tion as a coequaliser of two morphisms between free monads:

F ′Γ
λ //

ρ
// F ′Σ c // T

The finitary monad of F ′ a U ′ on the category Sig(A ) signatures is denoted by (−)∗.
Observe that since Mndf (A ) is finitary monadic over the (obviously cocomplete) category
Sig(A ), it is a cocomplete category, too. Indeed, this category is finitary monadic over
the category Fin[A ,A ] of all finitary endofunctors on A (see e.g. [15]).

1.3. Example. If A = Set then for every signature Σ the n-ary operation symbols of
Σ∗ are precisely the Σ-terms on n variables.

A beautiful characterisation of Eilenberg-Moore algebras for T was given in [13, 14]:
these algebras are precisely the algebras for Σ that satisfy the equations specified by the
above pair (λ, ρ). The technique is to associate with every object B of A a finitary monad
〈B,B〉 on A such that, for any finitary monad T , we have a bijection

TB −→ B

T −→ 〈B,B〉
between Eilenberg-Moore algebras on B and monad morphisms from T to 〈B,B〉. We
recall this technique, introduced by Anders Kock [14], in Section 4. Analogously, with
every morphism f : B −→ C of A one can associate a finitary monad {f, f} on A such
that, given a finitary monad T , we have a bijection

f : B −→ C

T −→ {f, f}
between homomorphisms f of Eilenberg-Moore algebras for T and monad morphisms
from T to {f, f}. To prove the above equational presentation of algebras for T one then
simply employs the universal property of coequalizers.

We mimic this technique for bases. Using results of [15] we prove that the category
of all bases on a locally finitely presentable category A is monadic over the appropriate
category of parametrized signatures in A . This allows us to prove that every base is a
coequalizer of a parallel pair of base morphisms between free bases. Then we associate
with every object B a base 〈〈B,B〉〉 with the analogous universal property of 〈B,B〉 above
w.r.t. bases, and with every morphism f a base {{f, f}} with the analogous property
w.r.t. base morphisms. This allows us to derive an equational presentation of algebras for
a base.
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Index of notations

Categories Functors Special symbols
(order by appearance)

Afp, 2.1 E, 2.1 2, 2.4

Alg2, 4.2 F , (3.4) (̂−), 2.1

Base(A ), 2.6 F ′, (1.2) •, 2.10

Fin[A ,B], 2.2 J , 3.5 t, 2.10

IdxSig(A ), 3.16 Usig, 3.17 ◦, 2.8

Mon([Afp,A ]), 2.2 Fsig, 3.17 ⊗, 2.11

Mndf (A ), 2.2 U ′fun, 3.18 Σ, 3.1, 3.3

ParFin(A ), 2.7 F ′fun, 3.18 ♦, 3.7

Sig(A ), 1.1 2Σ, 3.8, 3.9

Σ(i), Σ(X), 3.9

Σ@, 3.13

Acknowledgement We are very grateful to the referee whose careful reading and nu-
merous suggestions helped us improving our presentation.

2. Bases as monoids

The approach to bases we develop in this section is inspired by the treatment of monads
in [12, 13, 15]. In fact, the notions introduced below are slight modifications of notions
introduced in the abovementioned papers to the finitary and parametrized cases.

2.1. Notation. In the rest of the paper, A is a locally finitely presentable category.
That is, a cocomplete category having a small full subcategory E : Afp −→ A of finitely
presentable objects such that A is the closure of Afp under filtered colimits. (An object
is called finitely presentable if its hom-functor preserves filtered colimits.) By |Afp| we
denote the set of objects of Afp and we treat |Afp| as a (small) discrete category.

2.2. Remark. The category A is a free cocompletion of Afp under filtered colimits,
see [8]. We thus have, for every category B with filtered colimits, an equivalence between

(1) the category Fin[A ,B] of finitary functors from A to B, and

(2) the functor category [Afp,B].
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This equivalence is given by restriction and left Kan extension along the full embedding
E : Afp −→ A .

Thus, below we often define a finitary functor by specifying its values on finitely
presentable objects only, and we often use the same symbol to denote a finitary functor
on A and its restriction Afp −→ A .

Moreover, the equivalence Fin[A ,A ] ' [Afp,A ] makes [Afp,A ] a monoidal category
whose monoidal structure corresponds to composition in Fin[A ,A ]. This yields an equiv-
alence of

(1) the category Mndf (A ) of finitary monads on A , and

(2) the category Mon([Afp,A ]) of monoids in [Afp,A ].

The objects of Mon([Afp,A ]) have been identified in [3], completely analogous to the
famous presentation of monads by Ernie Manes [17], as finitary Kleisli triples . A finitary

Kleisli triple (T, η, (̂−)) consists of

(i) An object-assignment X 7−→ TX for every finitely presentable object X.

(ii) A collection of arrows ηX : X −→ TX indexed by finitely presentable objects.

(iii) An assignment (̂−) called extension sending every arrow s : X −→ TY , X and
Y finitely presentable, to an arrow ŝ : TX −→ TY subject to the following three
axioms:

(a) η̂X = idTX , for every finitely presentable X.

(b) ŝ · ηX = s, for every s : X −→ TY , X, Y finitely presentable.

(c) (̂t̂ · s) = t̂ · ŝ, for every pair s : X −→ TY and t : Y −→ TZ, where X, Y and
Z are finitely presentable.

Therefore we often, instead of specifying a finitary monad, specify the corresponding
finitary Kleisli triple.

We proceed now by “lifting” the above treatment of finitary monads to the parame-
trized case. Parametrized monads were first studied by Uustalu in [22]. In our subsequent
work [6] we introduced the name base for the finitary case. We recall this concept and
the concept of a parametrized endofunctor first.

2.3. Definition. By a base on A we understand a finitary functor 2 from A to the
category Mndf (A ) of finitary monads on A .

A base morphism is a natural transformation between bases.
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2.4. Notation. We use bases 2 : A −→ Mndf (A ) in the uncurried form as functors
in two variables: X 2 A is the object that the monad X 2 − assigns to A. Analogously
for morphisms f : X −→ X ′, g : A −→ A′, we write f 2 g : X 2 A −→ X ′ 2 A′.
Every finitary monad X 2 − has the unit uXA : A −→ X 2 A and the multiplication
mX
A = X 2 (X 2 A) −→ X 2 A.

2.5. Example. ([5])

(1) Coproduct yields a base
X 2 A = X + A

Every finitary monad X + − has the unit uXA = inr : A −→ X + A and the
multiplication mX

A = ∇+ A.

(2) In the category of sets we have the base

X 2 A = X∗ × A

where (X∗, ηX , µX) is the free monoid on X. The unit of X 2 − is uXA = ηX × A :
1×A −→ X∗×A and the multiplication of X2− is mX

A = µX×A : X∗×X∗×A −→
X∗ × A.

(3) Every finitary endofunctor H : A −→ A defines the base

X 2 A = HX + A

with the unit of X 2− being uXA = inr : A −→ HX + A and the multiplication of
X 2− being mX

A = ∇+ A : HX +HX + A −→ HX + A.

(4) Finitary monads (M, η, µ) are bases independent of the parameter: X 2 A = MA.

(5) More generally, for every finitary monad (M, η, µ) on A and every finitary endo-
functor H : A −→ A we have a base

X 2 A = M(HX + A)

with the unit of X 2 − being uXA = ηHX+A · inr and the multiplication of X 2 −
being

M(HX +M(HX + A))
M [ηHX+A·inl ,id ]−−−−−−−−−→MM(HX + A)

µHX+A−−−−→M(HX + A).

2.6. Notation. We denote by

Base(A ) = Fin[A ,Mndf (A )]

the category of bases on A .



7

2.7. Definition. A parametrized endofunctor on A is a finitary functor

H : A −→ Fin[A ,A ]

into the category Fin[A ,A ] of finitary endofunctors on A . We will often write the values
of H in uncurried form as H(X,A) (rather than H(X)(A)).

The category

ParFin(A )

of parametrized endofunctors is defined as the category Fin[A ,Fin[A ,A ]].

To specify a parametrized endofunctor, it suffices to specify a functor of two finitely
presentable variables, since the equivalences below hold:

ParFin(A ) ' [Afp, [Afp,A ]] ' [Afp ×Afp,A ]. (2.1)

Again we shall often write the same symbol for a parametrized endofunctor and its cor-
responding restrictions to Afp in either or both of its arguments.

2.8. Notation. The strict monoidal structure on Fin[A ,A ] induces a strict monoidal
structure on the category ParFin(A ) = Fin[A ,Fin[A ,A ]] in the “pointwise” manner.
Namely, for parametrized endofunctors H, K we define the parametrized endofunctor
K ◦H by putting, (K ◦H)(X) : A −→ A to be the composite K(X) ·H(X), for every
X. Written in the uncurried form:

(K ◦H)(X,A) = K(X,H(X,A))

Thus the monoidal multiplication (K,H) 7−→ K ◦H is finitary in each variable, and it is
strictly associative. The two-sided unit is given by the family I(X) = Id : A −→ A , or,
when uncurried,

I(X,A) = A

constitutes the two-sided unit for ◦.

2.9. Lemma. The bases on A are in bijective correspondence with the monoids in the
monoidal category (ParFin(A ), ◦, I).

Proof. Write a base 2 : A −→ Mndf (A ) in its uncurried form, i.e., write

X 2 A

for the value of 2 at X, A. Denote the finitary monad given by every X 2− by

(X 2−, uX ,mX)



8

Apart from monad laws, the above data must satisfy the following compatibility conditions
for every h : X −→ X ′ and every f : A −→ A′:

A
uXA //

f
��

X 2 A

h2f
��

A′
uX
′

B′

// X ′ 2 A′
(2.2)

and

X 2 (X 2 A)
mX

A //

h2(h2f)
��

X 2 A

h2f

��

X ′ 2 (X ′ 2 A′)
mX′

A′

// X ′ 2 A′

(2.3)

They express the naturality of uX and mX and the fact that for every morphism h :
X −→ X ′ we have a monad morphism h2 (−) : X 2 (−) −→ X ′ 2 (−).

The morphisms u : I −→ 2 and m : 2 ◦2 −→ 2 in ParFin(A ) satisfy the axioms for
a monoid, this follows from the unit law and the associativity of the monads X 2 (−)

The correspondence between morphisms of bases and morphisms of monoids is verifed
analogously.

2.10. Notation. For a set M and an object A of A we denote by

M • A =
∐
m∈M

A

the M -fold copower of A and by

M t A =
∏
m∈M

A

the M -fold power of A. Analogously, for a morphism g : A −→ B we denote by M • g :
M • A −→ M • B the M -fold copower and by M t g : M t A −→ M t B the M -fold
power of g.

For every set M there are bijections

A (X,M t A) ∼= Set
(
M,A (X,A)

)
∼= A (M •X,A) (2.4)

natural in X and A.

2.11. Remark.
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(1) The equivalence (2.1) allows us to transfer the monoidal structure of Notation 2.8
from ParFin(A ) to [Afp ×Afp,A ]. More precisely, the monoidal product K ◦H is
transferred to

(K ⊗H)(X,A) =

∫ Z:Afp

A (Z,H(X,A)) •K(X,Z) (2.5)

The two-sided unit I of the (now non-strict!) monoidal product ⊗ is I(X,A) = A.

(2) Due to the above equivalence and Lemma 2.9 we obtain an equivalence

Base(A ) ' Mon([Afp ×Afp,A ])

in complete analogy to finitary monads.

In addition, by the above equivalences, both Base(A ) and ParFin(A ) are locally
finitely presentable categories, hence complete and cocomplete.

(3) Observe that for any H, K, the functors K⊗− and −⊗H preserve filtered colimits.
The former follows directly from (2.5) and the latter follows from the fact that −⊗H
is a left adjoint. Indeed, by a standard argument, there is a natural bijection

K ⊗H −→ L

K −→ [[H,L]]
(2.6)

in [Afp ×Afp,A ], where

[[H,L]](X,A) =

∫
Z:Afp

A (A,H(X,Z)) t L(X,Z).

Recall the concept of an algebra for an endofunctor H as a pair (A, a) where a :
HA −→ A is a morphism. AlgH is the category of algebras for H and homomorphisms
(given by the obvious commutative squares). If H is finitary, then every object A of A
generates a free H-algebra given by the colimit of the ω-chain (Wn) with W0 = A and
Wn+1 = A+HWn, see [2]. Analogously for parametrized endofunctors:

2.12. Proposition. The forgetful functor

Ubase : Base(A ) −→ ParFin(A ) (2.7)

has a left adjoint Fbase. The free base 2H = Fbase(H) on a parametrized endofunctor H
is given by

X 2H A = free algebra on A for the endofunctor H(X,−).

Explicitly, X 2H A is a colimit of the following ω-chain:

A // A+H(X,A) // A+H(X,A+H(X,A)) // · · ·
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Proof. For the purposes of the proof, it is more convenient to perceive 2H as a free
monoid in ParFin(A ) with the monoidal structure ◦ of Notation 2.8.

The free monoid chain of [12, 13] translates to

W0 = I, Wk+1 = I +H ◦Wk

with the obvious connecting morphisms wk,k+1 : Wk −→ Wk+1. For fixed X and A, we
therefore obtain

W0(X,A) = I(X,A) = A,

Wk+1(X,A) = I(X,A) + (H ◦Wk)(X,A) = A+H(X,Wk(X,A)).

The colimit X 2H A of the above chain is obviously the free algebra on A for the functor
H(X,−). The unit of the free algebra is uXA : X −→ X 2H A.

3. Monadicity of bases over parametrized signatures

Using [15] we prove in this section that bases are monadic over the category of para-
metrized signatures. Recall the concept of a signature in a locally finitely presentable
category from the Introduction. The parametrized analogue is the following concept:

3.1. Definition. A parametrized signature Σ on A is a collection

Σ =
(

Σ(i, p)
)
i,p∈|Afp|

of objects of A indexed by pairs of finitely presentable objects.

3.2. Remark. In the case where A = Set we can choose |Setfp| as the set of natural
numbers and consider the sets Σ(i, p) as consisting of operation symbols of arity i+ p; for
every σ ∈ Σ(i, p) the number i is called the iterativity of σ. This name stems from the
fact that the first i arguments of operations specified by a signature Σ may be used in
recursive specifications, which can be solved in iterative Σ-algebras (see [5, 6]). For the
purposes of the present paper, “iterativity” is just a name.

3.3. Notation. A parametrized signature can be viewed as a functor Σ : |Afp|×|Afp| −→
A . We denote by

ParSig(A ) = [|Afp| × |Afp|,A ]

the category of all parametrized signatures on A .

3.4. Remark. In the following remark and in the proof of Corollary 3.19 we will apply
Paré’s “absolute coequalizer” version [20] of Beck’s monadicity theorem. According to
this theorem a functor G : B −→ C is monadic if and only if (a) G has a left adjoint,
(b) G reflects isomorphisms, and (c) B has coequalizers of those reflexive pairs whose
image under G has an absolute coequalizer, and G preserves these coequalizers. Actually,
in most of our applications B will be cocomplete and G a left adjoint from which (c)
clearly follows.
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3.5. Remark. Denote by J : |Afp| −→ Afp the inclusion functor. Composition with
J × J : |Afp| × |Afp| −→ Afp ×Afp yields a functor

Ufun : ParFin(A ) −→ ParSig(A ), H 7−→
(

(i, p) 7−→ H(i, p)
)

(3.1)

that has both left and right adjoints, given by left and right Kan extensions along J × J .
Moreover, since J × J is identity on objects, Ufun reflects isomorphisms. Since ParFin(A )
is cocomplete we conclude from Remark 3.4 that Ufun is monadic.

The left adjoint
Ffun : ParSig(A ) −→ ParFin(A ) (3.2)

of Ufun is given by left Kan extension along J × J . To every parametrized signature Σ it
assigns the corresponding polynomial parametrized endofunctor:

Ffun(Σ) = HΣ(X,A) =
∐

i,p∈|Afp|

(
A (i,X)×A (p,A)

)
• Σ(i, p) (3.3)

On morphisms Ffun is defined analogously.

3.6. Notation. We denote by

U : Base(A ) −→ ParSig(A )

the forgetful functor assigning to a base 2 the parametrized signature Σ given by

Σ(i, p) = i2 p for all i, p finitely presentable.

That is, identifying bases with monoids in [Afp×Afp,A ], the functor U is the composite
of the functors Ubase of (2.7) and Ufun of (3.1). And thus U has a left adjoint that we
denote by F : ParSig(A ) −→ Base(A ). Summing up, we have the following picture of
adjoint situations:

Base(A )
Ubase

//⊥
��

F

ParFin(A )
Fbaseoo

Ufun

//⊥ ParSig(A )
Ffunoo

OO

U

(3.4)

3.7. Theorem. The functor U : Base(A ) −→ ParSig(A ) is monadic, i.e., bases are
monadic over parametrized signatures.

Proof. The proof uses Theorem 2 of [15]. To verify its assumptions we use that

Base(A ) ' Mon([Afp ×Afp,A ]), ParSig(A ) = [|Afp| × |Afp|,A ],

and that the following conditions hold:

(1) The monoidal structure on [Afp × Afp,A ] is closed on the right. This is precisely
what (2.6) says.
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(2) The functor Ubase : Mon([Afp × Afp,A ]) −→ [Afp × Afp,A ] has a left adjoint and
the functor Ufun : [Afp × Afp,A ] −→ [|Afp| × |Afp|,A ] is monadic. The former is
given by Proposition 2.12 and the latter was shown in Remark 3.5.

(3) There is a functor ♦ : [Afp ×Afp,A ]× [|Afp| × |Afp|,A ] −→ [|Afp| × |Afp|,A ] such
that the square

[Afp ×Afp,A ]× [Afp ×Afp,A ]
⊗
//

Id×Ufun

��

[Afp ×Afp,A ]

Ufun

��

[Afp ×Afp,A ]× [|Afp| × |Afp|,A ]
♦
// [Afp ×Afp,A ]

commutes up to an isomorphism. Indeed, it suffices to define the parametrized
signature H♦Σ by putting

(H♦Σ)(i, p) = H(i,Σ(i, p)).

3.8. Example. ([5]) We present free bases on the parametrized signature Σ that has just
one binary operation, but of various iterativities.

(1) In the case of iterativity 2, i.e., Σ(2, 0) = 1 and Σ(i, p) = 0 else, the corresponding
parametrized endofunctor H = Ffun(Σ) of Set is given by

H(X,A) = X ×X

and the free base 2Σ = Fbase(H) is, as shown in [5], given by

X 2Σ A = HX + A = X ×X + A.

(2) In the case of iterativity 1, i.e., Σ(1, 1) = 1 and Σ(i, p) = 0 else, the corresponding
parametrized endofunctor H = Ffun(Σ) is given by

H(X,A) = X × A

and the free base 2Σ is

X 2Σ A = X∗ × A

where X∗ denotes the free monoid on X.

(3) In the case of iterativity 0, i.e., Σ(0, 2) = 1 and Σ(i, p) = 0 else, we have H = Ffun(Σ)
given by

H(X,A) = A× A

and the free base 2Σ assigns to (X,A) a free binary algebra on A.
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3.9. Remark.

(1) By Theorem 3.7, every base 2 can be expressed as a coequalizer of the form

2Γ
//
// 2Σ

// 2

where 2Γ and 2Σ are bases, free on parametrized signatures Γ and Σ. We will
use this coequalizer in giving an equational description of algebras for a base in
Section 5.

(2) Every parametrized signature Σ defines derived signatures (non-parametrized, see
Definition 1.1) depending on a choice X of an object of A : we define Σ(X) to have
as p-ary symbols those given by the copowers of Σ(i, p) indexed by all morphisms
from i to X. Here i ranges through Afp. Shortly:

Σ(X)(p) =
∐
i∈|Afp|

A (i,X) • Σ(i, p) for all p ∈ |Afp|. (3.5)

3.10. Proposition. The base 2Σ, free on a parametrized signature Σ, is given by

X 2Σ A = free Σ(X)-algebra on A.

Proof. By Proposition 2.12, uXA : A −→ X2ΣA is a free algebra on A for the endofunctor
Ffun(Σ)(X,−) = HΣ(X,−), see (3.3). Because we have the isomorphisms

HΣ(X,−) =
∐

i,p∈|Afp|

(
A (i,X)×A (p,−)

)
• Σ(i, p)

∼=
∐

p∈|Afp|

A (p,−) •
( ∐
i∈|Afp|

A (i,X) • Σ(i, p)
)

=
∐

p∈|Afp|

A (p,−) • Σ(X)(p),

the functor HΣ(X,−) is the ordinary polynomial functor HΣ(X) : A −→ A for the
ordinary derived finitary signature (3.5). Thus, uXA : X −→ X 2Σ A exhibits X 2Σ A as
a free Σ(X)-algebra on A.

3.11. Example. Let A = Set. The base 2Σ = F (Σ), free on a parametrized signature
Σ, can be described by using the following (ordinary) signatures

Σ(i), i ∈ N.

The p-ary operation symbols of Σ(i) have the form

σ(x0, . . . , xj−1,−, . . . ,−)

where, for any j ∈ N, we choose σ in Σ(j, p) and we also choose a j-tuple (x0, . . . , xj−1)
in i = {0, . . . , i− 1}.

We then have
i2Σ p = all terms of Σ(i) in p variables.
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3.12. Notation. For every signature Σ (in the sense of Definition 1.1) we denote by Σ∗

the signature given by the free monad on Σ. Thus (−)∗ is the monad of the adjunction
F ′ a U ′ : Mndf (A ) −→ Sig(A ) described in the Introduction.

3.13. Notation. The monad Σ 7−→ Σ∗ has the following parametrized version:

Σ@ = UF (Σ), the parametrized signature given by the free base on Σ

for the adjunction F a U : Base(A ) −→ ParSig(A ).

3.14. Example. Let Σ be a parametrized signature on Set. Then Σ@(i, p) =
(
Σ(i)
)∗

(p)

is the set of all terms of the signature Σ(i) of Example 3.11 in p variables.

3.15. Remark. The above formation i 7−→ Σ(i) of signatures from a parametrized signa-
ture Σ extends to morphisms u : i −→ i′ of Afp in the expected way: Σ(u) : Σ(i) −→ Σ(i′)

is given by components

Σ(u)(p) =
∐

j∈|Afp|

A (j, u) • Σ(j, p), p in Afp.

Thus every parametrized signature Σ defines a functor into the category of signatures of
Definition 1.1:

Σ(−) : Afp −→ Sig(A )

Such a functor is an example of an indexed signature that we define next. Observe that
Σ@ in its curried form |Afp| −→ Sig(A ) is just the restriction (along J : |Afp| −→ Afp) of
the indexed signature

(
Σ(−)

)∗
.

3.16. Definition. An indexed signature is a functor from Afp to Sig(A ). The category
of indexed signatures is thus the functor category

IdxSig(A ) = [Afp, Sig(A )].

3.17. Example. Conversely, every indexed signature D : Afp −→ Sig(A ) defines canon-
ically a parametrized one, called Usig(D): its symbols of iterativity i and parametricity p
are precisely the p-ary symbols of D(i):

Usig(D)(i, p) = D(i)(p)

This gives us a forgetful functor

Usig : IdxSig(A ) −→ ParSig(A )

Its left adjoint Fsig is defined by

Fsig(Σ) = Σ(−).
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3.18. Remark. Every parametrized endofunctor

H : Afp −→ [Afp,A ]

defines an indexed signature i 7−→ H(i) · J . This defines a forgetful functor

U ′fun : ParFin(A ) −→ IdxSig(A ).

It has a left adjoint

F ′fun : IdxSig(A ) −→ ParFin(A )

assigning to every indexed signature D : Afp −→ [|Afp|,A ] the parametrized endofunctor
obtained by left Kan extension of uncurry(D) : Afp × |Afp| −→ A along id × J : Afp ×
|Afp| −→ Afp ×Afp.

3.19. Corollary. The monadic forgetful functor U : Base(A ) −→ ParSig(A ) has the
following decomposition into three monadic functors

Base(A ) U //

Ubase

��

ParSig(A )

ParFin(A )
U ′fun

//

Ufun

55

IdxSig(A )

Usig

OO

where we have

Ufun = Usig · U ′fun

(cf. (3.4)), and the corresponding left adjoint is

Ffun = F ′fun · Fsig.

Proof. That U = Ubase · U ′fun · Usig follows from the definition of Usig, U
′
fun and Ubase. All

three functors have left adjoints. The left adjoints of Usig and U ′fun are given by left Kan
extension along J × id : |Afp|×Afp −→ |Afp|×Afp and id ×J : Afp×|Afp| −→ Afp×Afp,
respectively. The functors Usig and U ′fun also have right adjoints given by right Kan
extension. Since both J × id and id × J are bijective on objects, both Usig and U ′fun
reflect isomorphisms. It follows that both functors are monadic using Remark 3.4. The
functor Ubase has a left-adjoint by Proposition 2.12, and Ubase reflects isomorphisms since
U does. Finally, condition (c) from Remark 3.4 for Ubase follows since the monadic functor
U satisfies condition (c). Indeed, if c is a reflexive coequalizer that is mapped by Ubase to
an absolute coequalizer in ParFin(A ), then c is mapped by Ufun to an absolute coequalizer
in ParSig(A ). Since U preserves the reflexive coequalizer c, so does Ubase.
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4. Algebras for a base and the calculus of bases

Every base, similarly to a monad, gives rise to the category of its algebras. These are
defined as follows:

4.1. Definition. (See [5].) An algebra (A, a) for a base 2 is given by its underlying
object A and its structure map a : A2A −→ A that makes it an Eilenberg-Moore algebra
for the monad A2−, i.e., the following two diagrams commute:

A
uAA // A2 A

a
��

A

A2 (A2 A) A2a //

mA
A
��

A2 A

a

��

A2 A a
// A

A homomorphism from a base algebra (A, a) to a base algebra (B, b) is a morphism
f : A −→ B in A making the following square commutative:

A2 A
f2f

//

a
��

B 2B

b
��

A
f

// B

4.2. Notation.

1. We denote the category of all algebras for 2 by

Alg 2 .

2. Analogously, given a parametrized endofunctor H, by an H-algebra we mean an
object A together with a structure map a : H(A,A) −→ A. We denote by

AlgH

the category of H-algebras and homomorphisms (defined by an obvious square).

4.3. Example.

(1) A base algebra for X2A = X+A is precisely an algebra with one unary operation:
the algebra structure is given by an endomorphism of A.

(2) A base algebra for X2A = X∗×A is an algebra with one binary operation: given α :
A×A −→ A, we obtain the corresponding base-algebra structure α : A∗×A −→ A
by α(a1 . . . an, a) = α(a1, α(a2, . . . , α(an, a)). And every base-algebra structure has
the form α for a unique α.
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(3) Base algebras for X 2 A = HX + A are precisely the algebras for the endofunctor
H. That is, an algebra structure is given by a morphism α : HA −→ A.

Thus, for example, the bases X∗ × A and X ×X + A have the same algebras.

Observe that the algebras for a base 2 are not the actions of the corresponding monoid
2. Thus we cannot employ the closed structure of (2.6) to deal with the bijection

2⊗H −→ H

2 −→ [[H,H]]

of monoid actions and monoid homomorphisms. Instead, we modify the notions of [13]
to obtain bijections

H(B,B) −→ C

H −→ 〈〈B,C〉〉
where H is a parametrized endofunctor. We achieve the bijection in two stages: the first
stage uses the bijection

H(B)(B) −→ C

H(B) −→ 〈B,C〉
where 〈B,C〉 is the construction from [12, 13], which we recall in Definition 4.4 below.
Notice that above we wrote the parametrized functor in its curried form, hence H(B) is
the finitary functor X 7−→ H(B,X). Finally, we use the ideas of right Kan extensions to
achieve the bijection

H(B) −→ 〈B,C〉
H −→ 〈〈B,C〉〉

4.4. Definition. [See [13]]

(a) For objects B and C of A we denote by

〈B,C〉 : Afp −→ A (pronounced “brackets B,C”)

the functor given pointwise by the formula

〈B,C〉(X) = A (X,B) t C, X in Afp, (4.1)

defined in the expected manner on morphisms. This assignment is contravariant in
B and covariant in C: that is, we obtain a functor

〈−,−〉 : A op ×A −→ [Afp,A ]

defined on objects as expected: for f : B′ −→ B and g : C −→ C ′, we define

〈f, g〉 : 〈B,C〉 −→ 〈B′, C ′〉

to be the natural transformation with the X-component

〈f, g〉X = A (X, f) t g.
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(b) For a morphism f : B −→ C of A we denote by

{f, f} : Afp −→ A (pronounced “braces f, f”)

the following pullback:

{f, f} pB //

pC
��

〈B,B〉
〈B,f〉
��

〈C,C〉
〈f,C〉

// 〈B,C〉

in the category [Afp,A ].

4.5. Remark. Technically speaking, to obtain 〈B,C〉 one first computes the right Kan
extension RanB C : A −→ A of C : 1 −→ A along B : 1 −→ A and then restricts the
result along the full embedding E : Afp −→ A :

〈B,C〉 = RanB C · E.

The corresponding finitary endofunctor on A is then given by forming the left Kan
extension of 〈B,C〉 along E. Note that this is different from RanB C. Further note that
RanB C(X) = A (B,C) t X holds for all objects X, while Equation (4.1) holds only for
finitely presentable objects X.

The following facts are verified using easy modifications of considerations in the proof
of [12, Proposition 22.4] (see also [13] or [14, Theorem 3.2]).

4.6. Observation.

1. For every object B of A , the functor 〈B,B〉 is a finitary monad on A .

To see this, recall first that for every endofunctor H : A −→ A there is a bijection

[A ,A ](H,RanB C) ∼= A (HB,C).

Therefore, if H is finitary we thus obtain

[Afp,A ](H · E, 〈B,C〉) ∼= [A ,A ](H,RanB C) ∼= A (HB,C), (4.2)

where the first bijection is by the adjunction LanE a (−) · E and using that H ∼=
LanE(H · E).

Thus, we have an adjunction evB a 〈B,−〉, where evB sends H : Afp −→ A to HB.
By abstracting B, ev yields a monoidal action

ev : [Afp,A ]×A −→ A ,

and from this one sees that, for every object B of A , 〈B,B〉 is a monoid in [Afp,A ]
(equivalently, a finitary monad on A ) by general principles of monoidal actions.

2. Given an object B of A and a finitary monad T , the above bijection (4.2) restricts
to a bijection between monad morphisms b : T −→ 〈B,B〉 and Eilenberg-Moore
algebras b] : TB −→ B.
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4.7. Remark. By using an analogous argument as in Obervation 4.6 one can show that
for every morphism f : B −→ C of A the functor {f, f} is a finitary monad on A .
Moreover, given a finitary monad T there is a bijection between

(a) monad morphisms m : T −→ {f, f}, and

(b) homomorphisms of T -algebras carried by f between (pBm)] : TB −→ B and
(pCm)] : TC −→ C.

This bijection is natural in T and B, C in A .

4.8. Definition. For objects B and C of A , define the parametrized endofunctor

〈〈B,C〉〉 : Afp −→ [Afp,A ] (pronounced “double brackets B, C”)

by
〈〈B,C〉〉 : X 7−→ A (X,B) t 〈B,C〉, X in Afp, (4.3)

where the power is taken in the (complete) category [Afp,A ]. Its action on morphisms is
as expected.

For arrows f : B′ −→ B and g : C −→ C ′, define

〈〈f, g〉〉 : 〈〈B,C〉〉 −→ 〈〈B′, C ′〉〉

to be the natural transformation with the X-component

〈〈f, g〉〉X = A (X, f) t 〈f, g〉.

4.9. Remark. Let H : A −→ Fin[A ,A ] be a parametrized endofunctor. Then there
is a bijection between natural transformations from H to 〈〈B,C〉〉 and morphisms from
H(B,B) to C, natural in B, C in A . In fact, the parametrized endofunctor 〈〈B,C〉〉
is, technically, a right Kan extension of 〈B,C〉 : 1 −→ Fin[A ,A ] along B : 1 −→
A restricted to finitely presentable objects. Using this definition of 〈〈B,C〉〉, a similar
argument as in Observation 4.6.1 establishes the bijections

ParFin(A )
(
H, 〈〈B,C〉〉

)
∼= Fin[A ,A ]

(
HB, 〈B,C〉

)
∼= A

(
H(B,B), C

)
. (4.4)

We again use the uncurried form of 〈〈B,C〉〉 as a functor from A ×A to A (noting
that this is different from RanB〈B,C〉). For finitely presentable objects X and A, the
value of 〈〈B,C〉〉 can be computed as follows:

〈〈B,C〉〉(X,A) =
(
A (X,B) t 〈B,C〉

)
(A)

= A (X,B) t
(
A (A,B) t C

)
∼=

(
A (X,B)×A (A,B)

)
t C

∼= A (X + A,B) t C.

(4.5)
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4.10. Observation. The functor 〈〈B,B〉〉 is a base for every object B of A . In fact,
objectwise we have 〈〈B,B〉〉X = A (X,B) t 〈B,B〉, thus, 〈〈B,B〉〉 : Afp −→ Mndf (A )
assigns to X the power of the monad 〈B,B〉 with exponent A (X,B). Analogously for
morphisms h : X −→ X ′ we have that

〈〈B,B〉〉(h) = A (h,B) t 〈B,B〉 : A (X,B) t 〈B,B〉 −→ A (X ′, B) t 〈B,B〉

is a monad morphism, since it is a power of the identity monad morphism on 〈B,B〉.

4.11. Proposition. The bijection (4.4) restricts to a natural bijection between base mor-
phisms τ : 2 −→ 〈〈B,B〉〉 and base algebras τ ] : B 2 B −→ B, natural in B in A and 2

in Base(A ).

Proof. A base morphism τ : 2 −→ 〈〈B,B〉〉 is a collection

τX : X 2 (−) −→ 〈〈B,B〉〉(X)

of monad morphisms that is natural in X in A . It is not difficult to prove that the
bijection (4.4) sends the collection (τX) to a single monad morphism

τB : B 2 (−) −→ 〈B,B〉

which, by virtue of Remark 4.5, corresponds to an Eilenberg-Moore algebra

B 2B −→ B

for the monad B 2 (−).

4.12. Definition. For every morphism f : B −→ C in A we define the parametrized
endofunctor

{{f, f}} : Afp −→ [Afp,A ] (pronounced “double braces f , f”)

by the pullback

{{f, f}} pB //

pC
��

〈〈B,B〉〉
〈〈B,f〉〉
��

〈〈C,C〉〉
〈〈f,C〉〉

// 〈〈B,C〉〉
(4.6)

in the category ParFin(A ) of parametrized endofunctors of A .

4.13. Proposition. The functor {{f, f}} is a base for every morphism f : B −→ C
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Proof. We show first that each {{f, f}}X is a finitary monad. It is easier to prove that
this defines a finitary Kleisli triple (recall that notion from Remark 2.2).

Observe that the pullback defining {{f, f}} is formed pointwise. To define the unit

uXA : A −→ {{f, f}}(X,A)

use the universal property of pullbacks on the commutative square

A
α //

β

��

〈〈B,B〉〉(X,A)

〈〈B,f〉〉(X,A)

��

〈〈C,C〉〉(X,A)
〈〈f,C〉〉(X,A)

// 〈〈B,C〉〉(X,A)

(4.7)

where α : A −→ 〈〈B,B〉〉(X,A) is determined by the unit ηBA : A −→ 〈B,B〉A of the
monad 〈B,B〉 as follows:

A
α //

ηBA ++

〈〈B,B〉〉(X,A) = A (X,B) t 〈B,B〉A
πh
��

〈B,B〉A

(4.8)

and similarly for β

A
β

//

ηCA ++

〈〈C,C〉〉(X,A) = A (X,C) t 〈C,C〉A
πk
��

〈C,C〉A

(4.9)

That the square (4.7) commutes follows from the fact that projections

πh : A (X,B) t 〈B,C〉A −→ 〈B,C〉A

are collectively monic and from the commutative diagram below:

(4.8)

A α //

β
��

ηCA

//

ηBA

��

A (X,B) t 〈B,B〉A
A (X,B)t〈B,f〉A
��

πh // 〈B,B〉A

〈B,f〉A

��

(4.9) A (X,C) t 〈C,C〉AA (X,f)t〈f,C〉A
//

πfh

��

(∗)

A (X,B) t 〈B,C〉A

πh
((

〈C,C〉A
〈f,C〉A

// 〈B,C〉A
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(part (∗) commutes by the definition of A (X, f) t 〈f, C〉A).
For every morphism

s : A −→ {{f, f}}(X,A′)

we define the extension

s̃ : {{f, f}}(X,A) −→ {{f, f}}(X,A′)

using the universal property of pullbacks as follows:
Firstly, s : A −→ {{f, f}}(X,A′) determines sB = pB · s : A −→ 〈〈B,B〉〉(X,A′)

(see (4.6)), hence we have an extension

ŝB : 〈〈B,B〉〉(X,A) −→ 〈〈B,B〉〉(X,A′)

w.r.t. the monad 〈〈B,B〉〉(X,−). Similarly, one obtains

ŝC : 〈〈C,C〉〉(X,A) −→ 〈〈C,C〉〉(X,A′).

The outside of the following diagram below is easily seen to commute:

{{f, f}}(X,A)
pB(X,A)

//

pC(X,A)

��

s̃

++

〈〈B,B〉〉(X,A)

ŝB
��

{{f, f}}(X,A′) pB(X,A′)
//

pC(X,A′)
��

〈〈B,B〉〉(X,A′)
〈〈B,f〉〉(X,A′)
��

〈〈C,C〉〉(X,A)
ŝC

// 〈〈C,C〉〉(X,A′)
〈〈f,C〉〉(X,A′)

// 〈〈B,C〉〉(X,A′)

Thus, we can define s̃ as the unique mediating morphism. The axioms for a finitary Kleisli
triple are easily verified by using the universal property of the pullback (4.6).

4.14. Proposition. For every morphism f : B −→ C in A and every base 2 there is a
natural bijection between

(a) base morphisms a : 2 −→ {{f, f}} and

(b) homomorphisms of base algebras carried by f between (pBa)] : B 2 B −→ B and
(pCa)] : C 2 C −→ C (cf. Observation 4.6).

Proof. (1) Let us write 〈B,C〉• for RanB C, i.e. we have

〈B,C〉•X = A (X,B) t C for all X in A .

The functor 〈〈B,C〉〉 : Afp −→ [Afp,A ] is a finitary version of the functor

〈〈B,C〉〉• : A −→ [A ,A ]
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given by the right Kan extension of RanB C : 1 −→ [A ,A ] along B : 1 −→ A , i.e. we
have

〈〈B,C〉〉•X = A (X,B) t 〈B,C〉• for all X in A .

Now observe that to every functor H : Afp −→ [Afp,A ] we can assign the composite with
LanE : [Afp,A ] −→ [A ,A ] and take the left Kan extension along E : Afp −→ A to
obtain a functor

H? = LanE(LanE(−) ·H) : A −→ [A ,A ].

This defines a functor (−)? : [Afp, [Afp,A ]] −→ [A , [A ,A ]], which has a right-adjoint
assigning to K : A −→ [A ,A ] the functor

K? : Afp −→ [Afp,A ] with K?X = KEX · E : Afp −→ A .

It is easy to verify that our functor 〈〈B,C〉〉 from Definition 4.8 is precisely (〈〈B,C〉〉•)?.
So the adjunction (−)? a (−)? gives us for every base 2 the natural isomorphism below
(where 〈〈B,C〉〉 is considered as a parametrized endofunctor on the left):

ParFin(A )(2, 〈〈B,C〉〉) ∼= [Afp, [Afp,A ]](2?, (〈〈B,C〉〉•)?) ∼= [A , [A ,A ]](2, 〈〈B,C〉〉•),

where the second isomorphism uses that (2?)? ∼= 2 due to finitarity.
(2) Observe that when a base 2 is specified, then to give a base morphism a : 2 −→

{{f, f}} is to give a commutative square in ParFin(A ) with b and c are morphisms in
Base(A ):

2
b //

c

��

〈〈B,B〉〉
〈〈B,f〉〉
��

〈〈C,C〉〉
〈〈f,C〉〉

// 〈〈B,C〉〉

(Hence, pBa = b and pCa = c.) By using the adjunction in part (1) and the fact that 2

is finitary this is equivalent to giving a commutative square in [A , [A ,A ]] where 〈〈−,−〉〉
replaced by 〈〈−,−〉〉• everywhere. And this is equivalent to giving a commutative diagram
as follows

B2B
f2f

//

bB,B

��

cB,B

++

b]

//

C2C

cC,C

��

c]

oo

A (B,C)t〈C,C〉•B
A (f,C)t〈C,C〉•f

//

A (B,f)t〈f,C〉•B
��

πf

((

A (C,C)t〈C,C〉•C

πid

��

A (B,B)t〈B,B〉•B
A (B,B)t〈B,f〉•B

//

πid

��

A (B,B)t〈B,C〉•B

πid

��

〈C,C〉•B

〈f,C〉•B

vv

〈C,C〉•f
// 〈C,C〉•C

πid

��

〈f,C〉•Cvv

〈B,B〉•B
〈B,f〉•B

//

πid

��

〈B,C〉•B
〈B,C〉•f

//

πid
,,

〈B,C〉•C
πf

((
B

f
// C

All inner parts commute either by definition or by naturality.
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4.15. Remark. Recalling from the Introduction the concept of Σ-algebras and homo-
morphisms for non-parametrized signatures, we use an analogous concept here. More
precisely: let Σ be a parametrized signature and denote by Σ the corresponding non-
parametrized signature with

Σ(m) =
∐

Σ(i, p),

where the coproduct ranges over all pairs i, p of objects of Afp whose coproduct is m. Then
Σ-algebras are called, by abuse of notation, simply Σ-algebras (and the corresponding
category is denoted by AlgΣ). Explicitly, a Σ-algebra consists of an object A and a
morphism

a :
∐

i,p∈|Afp|

A (i+ p,A) • Σ(i, p) −→ A.

4.16. Observation.

1. Σ-algebras can alternatively be described as morphisms Σ −→ U(〈〈A,A〉〉) of para-
metrized signatures:

ParSig(A )(Σ, U(〈〈A,A〉〉)) ∼=
∏

i,p∈|Afp|A
(

Σ(i, p),A (i+ p,A) t A
)

by (4.5)

∼=
∏

i,p∈|Afp|A
(
A (i+ p,A) • Σ(i, p), A

)
by (2.4)

∼= A
(∐

i,p∈|Afp|A (i+ p,A) • Σ(i, p), A
)

2. Similarly, every homomorphism f : (A, a) −→ (B, b) of Σ-algebras can be identi-
fied with a morphism of parametrized signatures from Σ to U({{f, f}}). (Use the
fact that U preserves the pullback defining {{f, f}} and then perform analogous
considerations as in the proof of Proposition 4.13.)

3. The adjunction F a U : Base(A ) −→ ParSig(A ) yields the bijection

Base(A )(2Σ, 〈〈A,A〉〉) ∼= ParSig(A )(Σ, U(〈〈A,A〉〉)).

This bijection allows us to identify Σ-algebras A with base morphisms 2Σ −→
〈〈A,A〉〉.

4.17. Notation. Let 2 be a base and Σ a parametrized signature. For a morphism
f : Σ −→ U(2) we denote by

f̌ : 2Σ −→ 2 (4.10)

its transpose under the monadic adjunction F a U of Theorem 3.7. In particular, for a
Σ-algebra (A, a) we obtain ǎ : 2Σ −→ 〈〈A,A〉〉 by the above bijection.

4.18. Proposition. The categories AlgΣ and Alg2Σ are isomorphic.

Proof. The correspondence of a : Σ −→ U(〈〈A,A〉〉) and ǎ in (4.10) gives us the desired
bijection on objects. To obtain the (functorial) bijection on hom-sets replace 〈〈A,A〉〉 by
{{f, f}} and observe that, by Proposition 4.14, f is a homomorphism of Σ-algebras if and
only if it is a homomorphism of base algebras for 2Σ.
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5. Equations and equational presentations

Every algebra (X, a) for a monad (M, i,m) on a general category X has a presentation
in the form of a coequalizer

(MMX,mMX)
Ma //

mX

// (MX,mX) a // (X, a) (5.1)

see, e.g. [17]. Apply this to the monad (M, i,m) on the category X = [|Setfp|, Set] of
signatures that assigns to a signature Σ the signature Σ∗ given by the free monad F ′(Σ)
on the signature Σ (see Notation 3.12), i.e. we have

MΣ = Σ∗. (5.2)

The above coequalizer can be used to prove that algebras for a finitary monad on Set
are precisely the algebras for a certain signature that satisfy certain equations, see [17,
Theorem 1.5.40] or [16].

Indeed, the coequalizer (5.1) is but a special case of the most general situation

F ′(Γ)
λ̌ //

ρ̌
// F ′(Σ)

γ
// T (5.3)

where Γ and Σ are signatures and λ̌, ρ̌ denote the adjoint transposes of signature mor-
phisms λ, ρ : Γ −→ Σ∗. The universal property of coequalizers, together with Observa-
tion 4.6, then establish the following bijections for the above monad T (where the last
line is explained further below):

algebras TA −→ A for T

monad morphisms T −→ 〈A,A〉

monad morphisms F ′(Σ) −→ 〈A,A〉 coequalizing λ̌, ρ̌

Let us now explain that the last line equivalently expresses that A is a Σ-algebra satisfying
the set of equations given by λ and ρ. First, the adjoint transpose under F ′ a U ′ of a
monad morphism F ′(Σ) −→ 〈A,A〉 is a signature morphism Σ −→ U(〈A,A〉). And this
signature morphism is in turn equivalent to a Σ-algebra structure on A (analogously as
in Observation 4.16 for parametrized signatures). Second, to understand how a pair of
signature morphisms λ, ρ : Γ −→ Σ∗ encodes equations, recall that an equation t = s
in n variables for a classical signature Σ in Set is a pair of elements of a free Σ-algebra
ΦΣn on n generators. Thus, a collection Γ of equations for Σ can be viewed as another
signature, where Γn is the set Γ ∩ (ΦΣn)2 of all equations of Γ using n variables. Since
for Σ∗ from (5.2) we have Σ∗n = ΦΣn, the collection Γ of equations yields two signature
morphisms ρ, λ : Γ −→ Σ∗ (assigning to t = s in Γn the terms t and s, respectively).
It is now not difficult to prove that the Σ-algebra A satisfies the equations in Γ (in the
usual sense of general algebra) iff the corresponding monad morphism F ′(Σ) −→ 〈A,A〉
coequalizes λ̌ and ρ̌.

Here is the parametric variant of the above:
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5.1. Definition.

(1) An equation λ = ρ for a parametrized signature Σ is a parallel pair of morphisms
in ParSig(A ) with codomain Σ@:

Γ
λ
//

ρ
// Σ@.

We call λ and ρ the left-hand and right-hand sides of λ = ρ, respectively.

(2) A Σ-algebra a : A 2Σ A −→ A satisfies the equation λ = ρ if ǎ : 2Σ −→ 〈〈A,A〉〉
coequalizes λ̌, ρ̌ (see Notation 4.17):

2Γ
λ̌

//

ρ̌
//
2Σ

ǎ // 〈〈A,A〉〉.

5.2. Examples. Here bases in Set are considered.

(1) Consider the free base
X 2Σ A = X ×X + A

on the parametrized signature Σ of one binary operation of iterativity 2, see Exam-
ple 3.8(1). Its algebras are the sets with a binary operation. The commutativity
law of that operation is formalized as follows. Let Γ be the parametrized signature
with Γ(i, p) = i × i for all i, p. Let λ, ρ : Γ −→ Σ@ be given by λ(x, y) = (x, y)
and ρ(x, y) = (y, x). Then it is easy to see that a base algebra is commutative iff it
satisfies λ = ρ.

In contrast, associativity is not an equation in the sense of Definition 5.1. We
demonstrate this in Example 6.8.

(2) For the base
2Σ = X∗ × A

of one binary operation of iterativity 1, see Example 3.8(2), commutativity is not
an equation in the sense of Definition 5.1, see Example 6.13.

5.3. Notation. For every equation

Γ
λ
//

ρ
// Σ@

we denote by Alg (Σ, λ = ρ) the full subcategory of AlgΣ consisting of all Σ-algebras
satisfying it.

5.4. Theorem. The category Alg (Σ, λ = ρ) is isomorphic to Alg2 for the base 2 ob-
tained as a coequalizer

2Γ
λ̌

//

ρ̌
//
2Σ

γ
// 2

in the category Base(A ).



27

Proof. We define a functor

Φ : Alg2 −→ Alg (Σ, λ = ρ)

using composition with γ : 2Σ −→ 2 as follows:

Consider the following diagram

2Γ
λ̌

//

ρ̌
//
2Σ

γ
//

$$

2

��

〈〈A,A〉〉

in Base(A ) from which it immediately follows, due to Propositions 4.11 and 4.13, that
we have natural bijections

base algebras A2 A −→ A

base morphisms 2 −→ 〈〈A,A〉〉

base morphisms 2Σ −→ 〈〈A,A〉〉 coequalizing λ̌, ρ̌

Σ-algebras satisfying λ = ρ

This defines Φ on objects.

To prove the (functorial) bijective correspondence for morphisms, take 2-algebras
(B, b) and (C, c) and a morphism f : B −→ C and consider the diagram

2Γ
λ̌

//

ρ̌
//
2Σ

γ
//

((

2

��

{{f, f}}

from which it follows that we have by applying natural bijections

f a homomorphism of 2-algebras

a base morphism 2 −→ {{f, f}}

a base morphism 2Σ −→ {{f, f}} coequalizing λ̌, ρ̌

f a homomorphism of Σ-algebras satisfying λ = ρ

Thus, we define that Φ is the identity on hom sets.

It is easy to verify that this is an isomorphism of categories.
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We analyse in detail now what it means for an algebra A for a parametrized signature
Σ to satisfy an equation

Γ
λ
//

ρ
// Σ@ = UF (Σ).

By using the decomposition U = Usig · U ′fun · Ubase and Fbase · F ′fun · Fsig of F a U of
Corollary 3.19, the above pair corresponds uniquely to the pair

Fsig(Γ)
λ̂

//

ρ̂
// U ′funUbaseF (Σ)

in IdxSig(A ), i.e., to the family of pairs

Γ(i)

λ̂i

//

ρ̂i // (Σ(i))∗ (5.4)

of morphisms in Sig(A ) natural in i ranging over Afp.

5.5. Definition. Given an equation λ = ρ the above pair (5.4) is called the i-th derived
equation of λ = ρ.

5.6. Proposition. A diagram

2Γ
λ̌

//

ρ̌
//
2Σ

γ
// 2 (5.5)

is a coequaliser in Base(A ) iff every uip : p −→ i2 p is a free Σ(i)-algebra on p satisfying
the i-th derived equation of λ = ρ.

Proof. The above diagram (5.5) is a coequaliser in Base(A ) iff the following diagram

i2Γ (−)
λ̌(i,−)

//

ρ̌(i,−)
// i2Σ (−)

γ(i,−)
// i2 (−) (5.6)

is a coequaliser in Mndf (A ) for every i. By Proposition 3.10, i2Γ (−) is the free monad
F ′(Γ(i)) and i2Σ (−) is the free monad F ′(Σ(i)). Hence the coequaliser (5.6) has the form

F ′(Γ(i))
λ̌(i,−)

//

ρ̌(i,−)
// F ′(Σ(i))

γ(i,−)
// i2 (−) (5.7)

Thus, by the results of [13], i2 (−) is the monad of Σ(i)-algebras satisfying the equation

Γ(i)

(λ̌(i,−))[
//

(ρ̌(i,−))[
// U ′F ′(Σ(i))
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in Sig(A ), where (−)[ denotes the transpose under F ′ a U ′ : Mndf (A ) −→ Sig(A ). Since
U ′F ′(Σ(i)) = (Σ(i))∗ by Notation 3.12, it remains to prove that

(λ̌(i,−))[ = λ̂i and (ρ̌(i,−))[ = ρ̂i.

But this follows from the fact that the composite U ′fun · Ubase : Base(A ) −→ IdxSig(A )
is the functor [Afp, U

′] : [Afp,Mndf (A )] −→ [Afp, Sig(A )] that postcomposes with U ′ :
Mndf (A ) −→ Sig(A ). This completes the proof.

5.7. Remark. The coequaliser in Base(A ) of Proposition 5.6 presents a base 2 by “op-
erations and equations”. Every base 2 can be presented in this way. This follows from
the presentation of 2 by the coequalizer in (5.1):

(Σ@@, µΣ@)
µΣ

//
α@
// (Σ@, µΣ) α // (Σ, α),

where (Σ, α) is the (−)@-algebra corresponding to 2. The corresponding equation is then
α@ · ηΣ@ = id , i.e, the following parallel pair in ParSig(A ):

Σ@

id
//

α@·η
Σ@
// Σ@.

For the concrete examples presented in the next section we need the following view of
base algebras as “natural” collections of Eilenberg-Moore algebras for the monads i2 (−)
where i ranges over |Afp|:

5.8. Notation. Let a : A 2 A −→ A be a base algebra. For every i ∈ |Afp| and every
morphism h : i −→ A we denote by

A(h)

the Eilenberg-Moore algebra for i2 (−) given by the morphism

ah = (i2 A h2A //A2 A a //A).

5.9. Remark. Observe that for all m : i −→ j in Afp the following triangle commutes:

i2 A
ah·m

##

m2A
��

j 2 A ah
// A.

(5.8)

5.10. Definition. Let 2 be a base. By a natural family of algebras on a given object A
of A we mean a family of Eilenberg-Moore algebras

ah : i2 A −→ A

indexed by all morphisms h : i −→ A with i ∈ |Afp| and such that the triangles (5.8)
commute.
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5.11. Lemma. There is a bijective correspondence between base algebras on A and natural
families of Eilenberg-Moore algebras on A.

Proof. The passage from a base algebra to the natural family of Notation 5.8 has the
following inverse: write A as the colimit of the canonical diagram of all morphisms h :
i −→ A, i ∈ |Afp|. Since 2 is finitary, A 2 A is a filtered colimit of all objects of the
form i 2 A, i ∈ |Afp|, with colimit injections h 2 A : i 2 A −→ A 2 A. The morphisms
ah : i2A −→ A form a compatible cocone. Let a : A2A −→ A be the unique morphism
with

a · (h2 A) = ah.

It is easy to verify that (1) a : A 2 A −→ A is a base algebra and (2) by applying the
construction in Notation 5.8 to it, we obtain the original natural family.

Now note that by the Lemma 5.11 to give Σ-algebra structure a : A 2Σ A −→ A is
equivalent to giving a natural family of Σ(i)-algebra structures on A, i.e. a natural family
of Eilenberg-Moore algebra structures ah : i2Σ A −→ A indexed by h : i −→ A.

5.12. Corollary. A Σ-algebra A satisfies the equation λ = ρ iff for every morphism
h : i −→ A, i ∈ |Afp|, the Σ(i)-algebra (A(h)) of Notation 5.8 satisfies the i-th derived
equation of λ = ρ.

Proof. Indeed, consider the coequalizer in (5.5). A Σ-algebra A satisfying λ = ρ is
equivalently a base algebra a : A 2 A −→ A, which in turn is equivalent to giving the
natural family of Eilenberg-Moore algebras a·(h2A) : i2A −→ A where h ranges over all
morphisms h : i −→ A. And this means, equivalently, that the Σ(i)-algebras A(h) satisfy
the i-th derived equation of λ = ρ.

6. Presentation of bases over Set

In this section we study in more detail a presentation of bases over Set by means of
“operations and equations”. That is, we explicate Proposition 5.6 for the case A = Set.

6.1. Definition. Let Σ be a parametrized signature over Set. A pair (l, r) of elements
of Σ@(i, p) (for i, p in N) is called a Σ-equation; we denote it by l = r. The equation is
called n-ary if n = i+ p.

How does this relate to the equations λ, ρ : Γ −→ Σ@ of Definition 5.1? For any
equation λ = ρ we can substitute the following set E of Σ-equations:

E = { l = r | l = λ(x) and r = ρ(x) for some i, p ∈ Setfp and x ∈ Γ(i, p) }. (6.1)

This is the idea behind the following concept of a Σ-algebra satisfying l = r. Recall that

Σ@(i, p) = free Σ(i)-algebra on p generators.

Recall also that
Σ(i)p =

∐
j

Setfp(j, i) • Σ(j, p).
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6.2. Remark.

1. Recall from Example 3.14 that Σ@(i, p) =
(
Σ(i)
)∗

(p). Thus, every Σ-equation l = r

in Σ@(i, p) is also an equation w.r.t. the ordinary signature Σ(i).

It is easy to see that a Σ-algebra A satisfies the Σ-equation l = r if and only if
for each h : i −→ A, the Σ(i)-algebra A(h) of Notation 5.8 satisfies this equation
(considered as a Σ(i)-equation) in the ordinary sense of general algebra.

2. Given a morphism u : i −→ j in Setfp, the signature morphism
(
Σ(u)

)∗
:
(
Σ(i)
)∗ −→(

Σ(j)
)∗

obtained from Σ(u) in Remark 3.15 has components that we denote by(
Σ(u)

)∗
(p) :

(
Σ(i)
)∗

(p) −→
(
Σ(j)

)∗
(p).

3. Let λ = ρ be an equation. Then for every i in Setfp the i-th derived equation

λ̂i, ρ̂i : Γ(i) −→
(
Σ(i)
)∗

yields the following set

Ei = {λ̂i(p)(x) = ρ̂i(p)(x) | p ∈ Setfp, x ∈ Γ(i)(p)}

of Σ(i)-equations. Note that λ̂i : Γ(i) −→
(
Σ(i)
)∗

= Σ@(i,−) acts as follows: we have

Γ(i)p =
∐

j Setfp(j, i) • Γ(j, p), and the p-component of λ̂i is the unique morphism
induced by the family of all

Γ(j, p)
λj,p
//
(
Σ(j)

)∗
(p)

(Σ(u))
∗
(p)
//
(
Σ(i)
)∗

(p) ,

indexed by all maps u : j −→ i. The natural transformation ρ̂i is obtained similarly
from ρ.

4. It follows that for the set E of Σ-equations of (6.1) we have E ⊆
⋃
Ei. Indeed, for

u = id : i −→ i, λ̂i(p) is equal to λi,p.

6.3. Remark. Let A be a Σ-algebra. We have seen in Notation 5.8 that every i-tuple
h : i −→ A induces the Σ(i)-algebra A(h). Explicitly, for A = Set, any operation symbol
σ(x0, . . . , xi−1,−, . . . ,−) with σ ∈ Σ(i, p) defines the p-ary operation

σA(h)(h(x0), . . . , h(xi−1),−, . . . ,−) : Ap −→ A.

6.4. Notation. Let A be a Σ-algebra. Given an element s ∈ Σ@(i, p) and an i-tuple
h : i −→ A, we denote by

h](s) : Ap −→ A

the p-ary polynomial of the Σ(i)-algebra A(h) induced by the Σ(i)-term s. Explicitly,
h](s) sends a p-tuple k : p −→ A to the unique Σ(i)-homomorphism k̂ from Σ@(i, p) to
A(h) extending k, evaluated at s. (Recall that Σ@(i, p) is the free Σ(i)-algebra on p by
Proposition 3.10.)
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6.5. Definition. A Σ-algebra A satisfies a Σ-equation l = r in Σ@(i, p) provided that

h](l) = h](r) for every i-tuple h : i −→ A.

Recall from Remark 6.2.1 that Σ@(i, p) =
(
Σ(i)
)∗

(p);

6.6. Lemma. If a Σ-algebra satisfies a Σ-equation l = r in Σ@(i, p), then for every
function u : i −→ i′ it also satisfies l(u) = r(u) in Σ@(i′, p), where l(u) =

(
Σ(u)

)∗
(p)(l)

and r(u) =
(
Σ(u)

)∗
(p)(r).

Proof. Given a Σ-algebra A satisfying l = r and a function h : i′ −→ A, it is our task
to prove

h](l(u)) = h](r(u))

in the Σ(i′)-algebra A(h). That is, given a p-tuple k : p −→ A and the Σ(i′)-homomorphism
k̂ : Σ@(i′, p) −→ A(h), we are to prove that

k̂(l(u)) = k̂(r(u)).

Consider the Σ(i)-algebra A(h·u) given by the composite h · u : i −→ A, and let k̃ :
Σ@(i, p) −→ A(h·u) be the Σ(i)-homomorphism extending k above. We know that k̃(l) =

k̃(r). Thus, the desired equality follows from the following ones:

k̂(t(u)) = k̃(t) for all t in Σ@(i, p),

which we now prove by induction on the complexity of the term t.
If t is one of the p variables, then k̃(t) = k(t) and, since t(u) = t, also k̂(t(u)) = k(t).
In the induction step we assume that t is, for some q-ary operation symbol of Σ(i),

given by a q-tuple t0, . . . , tq−1 of terms for which the desired equality holds:

k̂(t
(u)
0 ) = k̃(t0), . . . , k̂(t

(u)
q−1) = k̃(tq−1).

An operation symbol in Σ(i) has the form σ(x0, . . . , xj−1,−, . . . ,−) for some σ in Σ(j, q)
and some j-tuple (x0, . . . , xj−1) in i. Thus we perform the induction step on the term

t = σ(x0, . . . , xj−1, t0, . . . , tq−1).

The left-hand side of the desired equation works with t(u) which is the term

t(u) = σ(u(x0), . . . , u(xj−1), t
(u)
0 , . . . , t

(u)
q−1).

(We leave the straightforward induction verifying this to the reader.) Since k̂ is a
Σ(i′)-homomorphism and the operation σ(u(x0), . . . , u(xj−1),−, . . . ,−) is interpreted as
σ(hu(x0), . . . , hu(xj−1),−, . . . ,−) in A(h), we get

k̂(t(u)) = σ(hu(x0), . . . , hu(xj−1), k̂(t
(u)
0 ), . . . , k̂(t

(u)
q−1))

= σ(hu(x0), . . . , hu(xj−1), k̃(t0), . . . , k̃(tq−1)).x
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Since k̃ is a Σ(i)-homomorphism and the operation σ(x0, . . . , xj−1,−, . . . ,−) is interpreted
as

σ(hu(x0), . . . , hu(xj−1),−, . . . ,−)

in A(h·u), we have

k̃(t) = σ(hu(x0), . . . , hu(xj−1), k̃(t0), . . . , k̃(tq−1)).

This completes the proof.

The above immediately implies that satisfaction of any equation

Γ
λ
//

ρ
// Σ@

in the sense of Definition 5.1 is the same as satisfaction of the corresponding set of Σ-
equations:

6.7. Corollary. A Σ-algebra satisfies an equation λ = ρ iff it satisfies the set E of
Σ-equations of (6.1).

Proof. Suppose that a Σ-algebra A satisfies the equation λ = ρ. By Corollary 5.12,
the Σ(i)-algebra A(h) satisfies the i-th derived equation of λ = ρ. Equivalently, each
A(h) satisfies the Σ(i)-equations from the set Ei. Thus by Remark 6.2(4), A satisfies the
Σ-equations in the set E.

Conversely, if A satisfies the Σ-equations in E, then it satisfies the Σ-equations in
every set Ei; this follows from Lemma 6.6 recalling the definition of λ̂i and ρ̂i from
Remark 6.2(3). Equivalently, each A(h) satisfies the Σ(i)-equations in Ei by Remark 6.2(1).

6.8. Example. One binary operation of iterativity 2:

Σ(2, 0) = {σ}, Σ(i, p) = ∅ otherwise.

A Σ-algebra is a set with a binary operation. We know from Example 3.11 that Σ(i) is
the signature of nullary operations σ(x0, x1) indexed by i× i. Thus

Σ@(i, p) = i× i+ p

(a) Choose i = 2 and consider the Σ-equation

(0, 1) = (1, 0)

It is satisfied by an algebra A iff for every pair h : i −→ A we have σ(h(x0), h(x1)) =
σ(h(x1), h(x0)). This is the commutativity of the operation.



34

(b) Associativity cannot be expressed as a Σ-equation. Indeed, given a Σ-equation l = r
in Σ@(i, p) with l 6= r, if l and r both lie in the right-hand summand of i× i+p, then
the equation l = r holds for trivial algebras (of at most one element) only. If l and
r both lie in the left-hand summand of i × i + p, they present one of the following
laws for Σ:

(b1) σ(x, y) = σ(y, x) (commutativity of σ),

(b2) σ(x, x) = σ(y, y) (diagonal is merged),

(b3) σ(x, y) = σ(x′, y) (σ depends on the right-hand variable only); note that this is
equivalent to σ(x, y) = σ(y, y),

(b4) σ(x, y) = σ(x, y′) (σ depends on the left-hand variable only); note that this is
equivalent to σ(x, y) = σ(x, x),

or

(b5) σ(x, y) = σ(x′, y′) (σ is constant).

And the case of l and r lying in different summands of i × i + p yields two cases
σ(x, y) = z and σ(x, x) = y both of which only hold in the trivial algebras.

6.9. Notation. Let E be a set of Σ-equations. Define a parametrized signature ΓE as
follows:

ΓE(i, p) = E ∩ (Σ@(i, p)× Σ@(i, p)) for all i, p in N.

We have obvious projections

λ, ρ : ΓE −→ Σ@

in ParSig(Set): they assign to l = r in E the elements l and r, respectively.

6.10. Definition. A base 2 over Set is said to have a presentation by Σ-equations for
some parametrized signature Σ if there exists a coequaliser in Base(Set) of the form

2ΓE
λ̌

//

ρ̌
//
2Σ

γ
// 2

for some set E of Σ-equations.

6.11. Remark. For every i let

Ei = {l(u) = r(u) | j ∈ N, (l, r) ∈ Ej and u : j −→ i arbitrary }

Then i2 p is the free Σ(i)-algebra on p generators modulo the equations Ei.
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6.12. Example.

(1) The base
i2 p = P2i+ p

where P2 is the functor assigning to every set all unordered pairs in it, has a pre-
sentation by Σ of Example 6.8 and the single equation (0, 1) = (1, 0) in Σ@(2, 0).

Indeed, P2i + p is the free algebra on p generators for the signature of nullary
operation symbols σ(x0, x1) where (x0, x1) range through P2i. Thus Example 6.8
yields the result.

(2) The base
i2 p = (i× i)/∼+ p

where ∼ merges the diagonal of i× i to a single element has a presentation by Σ of
Example 6.8 and the single Σ-equation (0, 0) = (1, 1) in Σ@(2, 0) (this is case (b2)
in Example 6.8).

(3) The two equations
(1, 0) = (0, 1) and (0, 0) = (1, 1)

together present the base
i2 p = (i× i)/≈+ p

where ≈ merges both (x, y) with (y, x) and all (x, x).

6.13. Example. One binary operation of iterativity 1:

Σ(1, 1) = {σ}, Σ(i, p) = ∅ otherwise.

We know from Example 3.11 that Σ(i) is the signature of i unary operations σ(x,−) for
x = 0, . . . , i− 1. Thus

Σ@(i, p) = i∗ × p.

For i = 2 and p = 1 consider the Σ-equation

(01, 0) = (10, 0).

This is satisfied by precisely those Σ-algebras that fulfil the following weakening of the
commutative law:

σ(x, σ(y, z)) = σ(y, σ(x, z)).

That is, the derived unary operations σ(x,−) commute with each other. Let B be the bag
functor, assigning to every set X the set BX of bags (i.e., finite multisets in X), which is
the free commutative monoid on X. The free binary algebra on p generators modulo the
above weakened commutative law is Bi×p. Thus, we obtained a presentation of the base

i2 p = Bi× p.



36

6.14. Example. Finally, consider a single binary operation of iterativity 0:

Σ(0, 2) = {σ}, Σ(i, p) = ∅ otherwise.

Thus Σ(i) = {σ} for all i and Σ@(i, p) is the free binary algebra on p generators. For
every variety V of algebras on a single binary operation we obtain a presentation of the
following base

i2 p = free algebra of V on p generators.

6.15. Corollary. Every base over Set has a presentation by a parametrized signature
Σ and Σ-equations.

Proof. This follows from Theorem 5.4 and Corollary 6.7.
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